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Abstract

We introduce the notion of m-sparse power series (e.g. expanding sinz and
cosx at x = 0 gives 2-sparse power series: a coefficient a,, of the series can be
nonzero only if remainder(n,2) is equal to a fixed number). Then we consider the
problem of finding all m-points of a linear ordinary differential equation Ly = 0
with polynomial coefficients (i.e., the points at which the equation has a solution
in the form of an m-sparse series). It is easy to find an upper bound for m. We
prove that if m is fixed then either there exists a finite number of m-points and all
of them can be found or all points are m-points and L can be factored as L = LoC'
where C' is an operator of a special kind with constant coefficients. Additionally we
formulate simple necessary and sufficient conditions for the existence of m-points
for an irreducible L.

Résumé

On introduit la notion de série de puissances m-creuse. (Les dévéloppements de
sinx et de cos x autour de z = 0 sont des exemples de séries 2-creuses: on demande
que le coefficient a,, de la série soit non-nul seulement si n appartient & une classe
fixée de residus modulo 2). On considere le probleme de déterminer tous les m-
points d’une équation différentielle linéaire Ly = 0 & coefficients polynomiaux (i.e.
les points ou I’équation admet une solution sous forme m-creuse). Il est facile de
trouver une borne supérieure pour m. Pour m fixé on démontre qu’ou bien il existe
un nombre fini de m-points et on peut les déterminer, ou bien tous les points sont
des m-points et L peut se factoriser en L = Lo C ot C est un opérateur d’'un type
particulier & coefficients constants. En plus, on donne des critéres nécessaires et
suffisants simples pour 'existence de m-points lorsque I'opérateur L est irréductible.
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Sparse power series.
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1 Preliminaries

Let C be the set of infinite sequences (cg, ¢q,...) € €, S the set of formal power series
co + 1z + -+ - with (¢g,¢1,...) € C and m an integer > 2. Call ¢ = (¢p,c1,...) € C an
m-sparse sequence if there exists an integer N such that

(ch #0) = (n=N (mod m)). (1)

Call ¢g + c1x + - -+ € § an m-sparse power series if (g, ¢y, ...) is an m-sparse sequence.
For example, the series = + 2% + 27 + - -+ + 23" 4+ ... is 3-sparse with N = 1. Denote
by C™) (resp. S™)) the set of all m-sparse elements of C (resp. of S). It is obvious that

(my|mg) = (C™) c ¢clm) Stm2) ¢ sy,
Consider a linear ordinary differential equation Ly = 0 with
L =p(x)D"+ -+ pi(z)D + po(), (2)

po(x),...,p(x) € Clz], p(xz) # 0. It is well known that the coefficients (¢, cq,...) of
a power series solution ¢y + c;x + --- of a linear differential equation with polynomial
coefficients satisfy a linear recurrence (a difference equation) Re = 0:

q(n)cnsr + @o1(n)cpri—1 + -+ @(n)cppe = 0, (3)
@(n), qe1(n), ..., q(n) € Cnl; q(n),q(n) # 0. The operator R which is equal to
@(ME' +qa(n) B+ 4 qi(n) B (4)
is the R-image of L where R is the isomorphism of C[z,z~!, D] onto C[n, E, E~!]:
RD=n+1)E, Re =E' Ra~! = F; (5)
resp.
RIE =2t RE =2, R"'n=2aD

(see [4]). Note that it is possible that ¢ < 0 in (3), (4). For R of the form (4) we denote
w(R) = 1 —t. If the coefficient of 2" in the polynomial p;(z) is not equal to zero in (2)
then we write 2°D? € L. Tt is easy to check that if L is of the form (2) and R = RL then

I A fe min {4 b 6
max {j—i}, t= min {j —i}; (6)

and therefore

B
W)= mex - - i U

We will call any solution of the form

o0

Z (e —a)” (7)

n=0



of a differential equation local at the point a. Local solutions at a fixed point a form a
linear space over C. We will consider points a € C and formal power series solutions
Ya(z) of the form (7) such that

Lya(z) =0 (8)

and (cg, c1,...) € C'™ for an integer m > 1. Observe that y,(z) satisfies (8) iff

y(@) = cpa”
n=0

satisfies L%y(z) = 0 where
L* =p.(x+a)D" + -+ pi(x+a)D + po(z + a). (9)

In this paper we propose an algorithm for finding all m and a such that the equation
L% = 0 has a solution in S™). A preliminary version of this paper has appeared as [1].

2 m-~Points

We call a difference operator of the form (4) m-sparse if for some N
(gj(n) #0) = (j =N (mod m))
and we call a differential operator L m-sparse if for some N
(#'D' € L)= (j—i=N (mod m)).

It is easy to check that L is an m-sparse differential operator iff RL is an m-sparse
difference operator.

Let ¢ = (co, c1,...) € C. Denote by (¢, x) the formal series ¢y + c1x + - - - and by (¢)>g
the sequence (cg, Cxi1,...) € C with ¢ = ¢jy1 =+ =c_1 =01if k£ < 0. It can be shown
that if R = RL and R has the form (4) then

L(c,x) =0< R(c)>t =0 (10)

(see [2, 4]). Let R be of the form (4) and let 79 be the maximal nonnegative integer root
of g;(n) if such roots exist, and —1 otherwise. Set

L*(R) =1 +70.
If L € Clz,D] and R = RL, then we set (*(L) = *(R). For any (cp,c1,...) € C
such that L(c,xz) = 0 the values co,. .., () allow one to compute (by means of RL)
the values ¢,«(r)41, o+ (L)42, - - - (these Co*(L)+1, Ci*(L)+2; - - - are uniquely determined because

the leading coefficient of the operator RL does not vanish when we compute ¢, with
n > *(L)).

Lemma 1 The equation Ly = 0 has a nonzero local solution at 0 iff *(L) > 0.



Proof: Thanks to (10) and to the mentioned property of :*(L) we have that if /*(L) < 0
then Ly = 0 has only the zero local solution.
Let «*(L) > 0. Then set s = +*(L), take the initial segment

0+0z+-+ 02" +2° (11)

and extend it to a local solution using the mentioned property of the value /*(L). O

Lemma 2 Let L be an operator of the form (2) which can be factored as Ly o Ly, where
Lo is an operator with polynomial coefficients such that ord Ly > 1 and Lo has no local
solution at 0. Then 0 is a singularity of L.

Proof: 1f 0 is an ordinary point of L then L has r = ord L linearly independent local

solutions fi, fa,..., f. at 0. If the equation Lsy = 0 has no nonzero local solution then it
is injective on the space of formal power series. Then Lo f1, Lo fo, . .., Lo f, are still linearly
independent, and L; annihilates them all because L = L; o Ly. But this is impossible
because ord L < 7. O

Lemma 3 Let L be an m-sparse differential operator with polynomial coefficients. Let

the equation Ly = 0 have a local solution at 0. Then it has an m-sparse local solution at
0.

Proof: If Ly = 0 has a local solution at 0 then by Lemma 1 there is such a local solution
whose initial segment is of the form (11). The operator RL is an m-sparse difference
operator. Using this operator the initial segments (11) can be extended to m-sparse local
solutions. O

We can prove the following lemma on the possible values of m.

Lemma 4 Let L be of the form (2). Let R = RL and let Ly = 0 have a non-polynomial
solution f(x) =co+crx+--- € 8™ . Then m < w(R).

Proof: If m > w(R) then there is £ > max{w(R),*(R)} such that ¢ = -+ = Chywmr)-1 =
0. But then ¢, =0 for all n > k, i.e., f(z) € C[z]. Contradiction. O

From now on we will deal only with non-polynomial solutions. Polynomial solutions
can be found by the algorithm described in [2]. Furthermore we will suppose that L is of
the form (2), R = RL is of the form (4) and m is a fixed integer > 2.

First we discuss the existence in S of solutions of Ly = 0 (i.e., L%y = 0). Section
3 will be devoted to the search for all a such that the equation L%y = 0 has solutions in
S,

We will consider along with operators L and R = RL the set of m-sparse differential

operators Lg, ..., L,_1 and the set of m-sparse difference operators Ry, ..., R,,_1 which
are called an m-splitting of the operators L and resp. R:
LT = Z pjixiDj, (12)
ziDIEL
j—i—t=7 (mod m)



R= Y gmE (13)

t<j<l
j—t=7 (mod m)

RL=R.,,7=0,....m—1.
Lemma 5 Let Ry, ..., Rn_1 be the m-splitting of R. Let ¢ € C™ . Then
R(C>2t =0«< (Ri(c>2t =0,t=0,...,m— 1) (14)

Proof: a direct check. O

The lemma allows one to write down a necessary condition for the existence in S
of solutions of Ly = 0.

Theorem 1 Let Ry, ..., R, _1 be the m-splitting of R. Let Ly = 0 have a solution in
S . Then the greatest common right divisor (GCD) of the operators Ry, ..., Ry has
positive w:

w(GCD(Rg, ..., Rpn_1)) > 1. (15)

(We suppose as usual that R has the form (4) and that t is the lowest exponent of E in
GCD(Rg, ..., Rn-1).)

Proof: Due to (10) and Lemma 5. O

The operator
V = GCD(R(], ey Rm—l) (16)

can be found by the (right) Euclidean algorithm. We can assume V' to be an operator
with polynomial coefficients. If we apply the Euclidean algorithm to m-sparse difference
operators then we obviously obtain again an m-sparse operator. Hence, V' € C|n, E] is
an m-sparse operator. By R = Ry + ---+ R,,_1 we have that R is right-divisible by V,
but the coefficients of the quotient can be in C(n). For some w(n) € C[n] we have

wn)R=Q oV, (17)

where @ € C[n, E.

It is useful to define ¢, which will work together with ¢*. Let R be of the form (4). Let
r1 be the maximal nonnegative integer root of ¢;(n) if such roots exist, and —1 otherwise.
Set

t(R) = max{t +ry, —1}.

Let L € C[z,D] and R = RL, then we set t.(L) = w.(R). For any (co,cy,...) such
that L(c,z) = 0 the values ¢, cxy1,... with & > (L) + 1 let one compute (by means
of RL) the values ¢, (r)+1, ()42, - - - » Ck—1 (these ¢, (1)+1, € (L)42, - - -, Ck—1 are uniquely
determined because the lowest coefficient of the operator RL does not vanish when we
compute ¢, with n > «.(L)).

Going back to (16), (17) assume w(V) > 1 in (16). Set

u = max{w,(V), t.(wn)R), .*(V), *(w(n)R)},



v=u+w(R).

Using an algorithm proposed in [2] we can find a basis for the space B of vectors
(Coy.-.,Cy) € C**! which can be extended to infinite sequences ¢ = (co, €1, -..) € C which
satisfy the equation R(c)>; = 0. After a basis dy, ..., d,, w < v, for B is found one can
check (a linear problem) whether there exist ay, ..., a, € C such that apdy + - - - + ,dy
is an m-sparse vector whose last w(R) components satisfy the recurrence Ve = 0. If such
Qo, - . ., (, exist then we can extend the corresponding initial values using the recurrence
Ve=0. It will give us an infinite m-sparse sequence ¢ which satisfies R(c¢)>; = 0.
Later we will need the following theorem:

Theorem 2 Let Ly, ..., L,,_1 be the m-splitting of L. Let the equation Ly = 0 have a
solution in 8™ . Then
ord GCD(LQ, ey Lm—l) Z 1. (18)

Proof: Let f(z) =co+cx+---€ S™ Lf=0. Then R(c)s; = 0 where ¢ = (cg, ¢y, . . .).
Let Ry,...,Rnu-1 be the m-splitting of R. By Lemma 5 we have R;(c)s; = 0, i =
0,...,m—1. By (10) we get L;f =0,i=0,...,m— 1. O

Now for the last remark of this section. Suppose we know that for a fixed m the equa-
tion Ly = 0 has a solution in S . Then the next step could be, for example, the attempt
to find an m-sparse series solution which is at the same time m-hypergeometric [8] (a power
series is m-hypergeometric if its sequence of coefficients (cg, 1, . ..) is m-hypergeometric,
i.e., Chim =1(n)cn, n =0,1,..., for a rational function r(n)).

Let the operator from (16) have the form

V= vt+km(n)Et+km + vt+(k_1)m(n)Et+(k_1)m + v (n)E

and let an m-hypergeometric sequence c satisfy Ve = 0. Let ¢ be m-sparse, and assume
that equality (1) holds for some N, 0 < N <m — 1. It is evident that the sequence

/ / /
is hypergeometric. The sequence satisfies the recurrence V'¢’ = 0 with
r_ t+k t+h—1 t
V' = 0k () BT + Vg h—ym(n) E + -+ u(n)E.

Algorithm Hyper [7] allows one to find hypergeometric solutions of linear recurrences
whose coefficients are rational functions.

If we are only interested in m-hypergeometric m-sparse series solutions then there
is no need to compute GCD(Ry, ..., R,_1). We can find solutions in the form of m-
hypergeometric elements of S and then select the m-sparse ones among them. Using an
algorithm proposed in [8] we can find all m-hypergeometric solutions of the recurrence
Ve =0 and then answer the question about m-hypergeometric m-sparse solutions of the
original differential equation. Note that the mentioned algorithm from [8] allows one
to find only primitive m-hypergeometric solutions of a recurrence (an m-hypergeometric
sequence (C, Cri1,--.) 18 primitive if it satisfies no linear homogeneous recurrence with



rational coefficients of order < m). But it is obvious that an m-sparse m-hypergeometric
solution having ¢; # 0 with arbitrary large ¢ is primitive m-hypergeometric. Thus the
algorithm from [8] is sufficient for our goal.

However the usage of (18) is convenient when we solve the problem of searching for
the points a at which there exist solutions of the form (7) with (co,cp,...) € C™. We
will call these points the m-points both of the operator L and of the equation Ly = 0.

3 The search for m-points

Let again Ly = 0 be an equation with operator of the form (2) and m be a fixed non-

negative integer > 2. We formulate the problem of the search for m-points as follows: to

find all complex values of a such that the equation L%y = 0, with L® of the form (9), has

a solution in S . Consider the operator L® regarding a as an indeterminate over C. We

can find the m-splitting of L?, ie., L,..., L% ;. We can also construct R* = RL®* and
¢ ..., R" | (the m-splitting of R*). The coefficients of the operators

m—1

Lo L8 .. Lo . (19)

m

are polynomials in x over C[a]. In turn the coefficients of the operators

a a a
R’ 0’...,R

m—1

(20)

are polynomials in n over Cla]. If aq is a value of the parameter a then we can consider,
on the one hand
L Lg°, ..., L and R™ R3°,...,RY | (21)

and, on the other hand, the specialization of the operators (19), (20) for a = ay:
La‘a=aov Lg‘a=aov ] L?n—l‘aﬂlo and Ra‘a=aov Rg‘a=aov ey Rgn—l‘a=ao (22)

as the result of substitution of ag for a in (21). Operators (21) and (22) are equal. This
equivalence takes place due to the fact that evaluation of coefficients at a = ag commutes
both with m-splitting and with R.

This equivalence leads to the construction of a set including all m-points. We will
show how one can gather together all ay such that

ord GCD(L°, ..., L ) > 1. (23)

Observe that (18) is a particular version of (23) with ag = 0.
We will denote below by a a parameter while ag, aq,... denote concrete values of a
(ao, ai, ... <€ (D)

Theorem 3 Let R* = RL*. Let R* be

gl’(nv Q)El, t gy (n7 a)Et,' (24)



Then
r=10'">1 t =t deg, gv(n,a) =0, (25)

i.e., (24) can be written as
9r(n,@)E" 4 - + gry1(n, a) B + g, (n) E. (26)

Proof: We prove r = I’ using (6) and z°D" € L? (this follows from the fact that a is
an indeterminate). If z°D" € L then r = [ else r > [. The equality ¢t =t is obvious. The
equality deg, gv(n,a) = 0 (i.e., deg, g:(n,a) = 0) is a consequence of deg, lc, p;(z+a) = 0.
O

The last theorem allows one to assume that

2<m<wRY=I'-t'=r—t=ordL— min {j—1i}.
z*DieL

Lemma 6 Let L be an m-sparse operator and 0 be an ordinary point of it (i.e., p.(0) #
0). Then the equation Ly = 0 has r = ord L linearly independent solutions in S™).

Proof: At an ordinary point, any 7 initial coefficients ¢y, . .., ¢,_; determine a series which
satisfies the equation Ly = 0. We can take ¢; = ¢;; in the j-th element of the basis for
the space of vectors (cg,...,c.—1) € C", j=0,...,7r — 1. Let us extend every element of
the basis by elements ¢_; = 0,c_5 =0,...,¢ = 0. Applying m-sparse recurrence Rc = 0
to any of the extended vectors as to a vector of initial elements, we obtain an infinite
m-sparse sequence. O
Lemma 7 The operator GCD(LE, ..., L% ) is an m-sparse differential operator.

Proof: Indeed, if My = v,(2)D" + -+ 4+ vo(x), My = wy(z)D* + -+ - + wo(x) are two
m-sparse differential operators, r > s, then the operators ws(z)M;, v,.(x)D"* o My are
m-sparse. The number N mentioned in the definition of an m-sparse differential operator
is the same for both operators, thereby the difference of these operators is an m-sparse
operator. The order of the difference is < r. O

Observe that the operator GCD(LE, ..., L% ;) is defined up to a factor from C(a, x),
and a more precise statement is that one can assume this operator to be an m-sparse
differential operator.

Now the question is: for which values of the parameter a do the operators L§, ..., L% 4
have a nontrivial right common divisor? If one has two differential operators with co-
efficients which are polynomials in = over C[a] then the answer can be obtained, for
example, by applying the Euclidean algorithm to them. There is a finite set of values
of the parameter a for which the value of the leading coefficient of some remainder van-
ishes. The actual implementation would instead use differential subresultants for reasons

of efficiency [5, 6]. One way or the other, we can construct a pair (S,,(L), T,,(L)), where

e S,,(L) is an m-sparse differential operator whose coefficients are polynomials over

Clal,



e T, (L) is a finite subset of C,

such that the substitution of any ay ¢ T,,(L) into S,,(L) for a gives the operator
See = GCD(LG%, ..., Ly ;) with ordS,, = ordS,,(L). If ay € T, (L) then either
Sae 7 GCD(L°, ..., Ly_;) or the leading coefficient of S,,,(L) vanishes at a = ay.

Theorem 4 Fither the operator L has only a finite set of m-points, or any ordinary
point of L which does not belong to T, (L) is an m-point.

Proof: Let
S=8,(L), T=T,(L). (27)

If ord S = 0 then there exists only a finite set of ay which satisfy (23) and there is
nothing to prove.

Let ord S > 0. Let Sy, = S|a=q,- For ag ¢ T the operator L is right divisible by
Sag- 1f for some ag the equation S,,y = 0 has no local solution at 0 then by Lemma 2 ag
is a singularity of L. If this equation has a local solution at 0 then by Lemma 3 it has a
solution in S™), O

The last theorem provides us with an algorithm to find all m-points of the given
equation since all elements of T,,(L) and the singular points of L can be investigated by
the approach described in Section 2.

But we will show in the next section that Theorem 4 may be strengthened. This will
allow improving the algorithm.

4 The case of an infinite set of m-points

The purpose of this section is proving the following theorem:

Theorem 5 If L has an infinite set of m-points, then L = LoC where C' is an m-sparse
differential operator with constant coefficients, and ord C' > 0.

Let S be as in (27). The operator S belongs to the ring C(a)[x, D], and we write
S(a,z, D) for S.

Lemma 8 The operators S(a+ 1,z, D) and S(a,z — 1, D) are equal up to a factor from
C(a,x).

Proof: Let ay € C be such that
a0+ 1 ¢ Tou(L). (28)
Set " = S(ap+ 1,z,D),S" = S(apg,z — 1, D). Then
Sf=0&95"f=0 (29)

for any f € S since both equalities are equivalent to L%t f = 0. If ao is an ordinary
point of both S’ and S” then by Lemma 6 these operators become equal after making



them monic (i.e., S'/(IcS") = 5”/(1cS”)). Thus those two monic operators are equal for
all ay € C except for a finite set of values. Therefore the operators S(a + 1,z, D) and
S(a,x — 1, D) taken in the monic form are equal which proves the lemma. O

Call a differential operator L of the form (2) primitive if

ng(pO(x)V"apr(x)) = 17 (30)

where ged denotes the polynomial greatest common divisor. It is easy to see that L® (as
an operator whose coefficients are polynomials in z over C(a)) and L% are primitive iff
L is primitive.

The operator S(a,x, D) can be constructed in the form of a primitive m-sparse opera-
tor, whose coefficients are polynomials over C(a) (this is due to Lemma 7, as well as to the
fact that the greatest common divisor of polynomials of the form x° f (™), f(z) € C(a)[z],
and the quotient of such polynomials are polynomials of the same form). Then operators
S(a+ 1,z,D) and S(a,x — 1, D) are also primitive and by Lemma 8 should be equal
up to a factor from C(a) (due to the primitivity). But if the operator S(a,z, D) has at
least one coefficient which belongs to C(a,z) \ C(a), then S(a,z — 1, D) is not m-sparse.
At the same time any operator of the form r(a)S(a + 1,2, D), r(a) € C(a), is m-sparse.
Therefore all the coefficients of S(a,x, D) are in C(a). But the operators S(a + 1, z, D)
and S(a,x — 1, D) are equal after putting them in the monic form, and this implies that
the coefficients of S(a,x, D)/(lc S(a,z, D)) do not depend on a, i.e., these coefficients are
constants. Thus Theorem 5 is proven.

Theorem 6 If S =S,,(L) then C = S/(1cS) is the maximal m-sparse differential oper-
ator with constant coefficient which divides L.

Proof: If ord S > 0 then L has an infinite set of m-points and by Theorem 5, the operators
L, L% S are right-divisible by an m-sparse operator with constant coefficients. Let C' be
the maximal m-sparse operator with constant coefficients dividing S. Then C' divides L
and L*. Similarly to Lemma 7 it can be shown that the m-splitting of L*/C' is equal to
Lg/C, ... L% _,/C. Observe that S/C = GCD(L}/C,..., L% _,/C) and that S/C has no

positive-order right divisor with constant coefficients. Hence ord(S/C) = 0. O

Note that if L is right-divisible by an m-sparse operator C', ord C' > 0, with constant
coefficients, then all points are m-points. But the points of T,,(L) are of special inter-
est because the number of m-sparse linearly independent solutions can increase at those
points (each of them can be investigated by the approach described in Section 2).

Example 1 L = (—2% + 92* — 722 — 1)D? + (—22° + 2823 4 222) D? + (2% — 92* + T2 +
1)D + (22° — 2823 — 22x). Take m = 2. We have

L¢ = (=2 + (=15a® + 9)z* + (—15a* + 54a® — 7)x? — a® — Ta® + 9a*) D3 + (—22° +
(—20a? + 28)x® + (—10a* + 84a? + 22)x) D?(+25 + (15a% — 9)2* + (15a* — 54a® + 7)2® +
a® + 7a* — 9a*) D + 22° — (20a* — 28)2* + (10a* — 84a? — 22)x,

10



L¢ = (—6ax® + (—20a® + 36a)x® + (—6a® + 36a® — 14a)x)D? + (—10az* + (—20a® +
84a)x? — 2a® + 28a® + 22a)D? + (+6az® + (20a® — 36a)x> + (6a° — 36a® + 14a)z)D' +
10az* + (20a® — 84a)z? + 2a® — 28a® — 22a.

The algorithm from [6] allows to determine that GCD(Lg°, L{°) is
(=28 +924 — 722 —1) D3 + (—22° + 2823 +222) D* + (25 — 92t + 72? + 1) D+ 22° — 282% — 22z
if ay = 0, and D? — 1 otherwise. The equation Ly = 0 has two linearly independent 2-
sparse solutions

> (x—a0)2" > (I—CL0>2”+1
nz:% (2n)! 7 nz:‘; (2n + 1)!

at any ag # 0. It has three linearly independent 2-sparse solutions

2n o] 2n+1

;::0 2n)!” Z ‘ 2n+ 1) Z "

at x = 0.

5 When L is irreducible

An irreducible operator L cannot have a non-trivial right factor over C(x) of order < ord L
and we deduce the following theorem.

Theorem 7 Let L be a primitive irreducible operator. Then ag € C is an m-point of L
iff L is m-sparse and (*(L%) > 0.

Proof: Since L is irreducible, it cannot have a factor S such that 0 < ordS < ord L.
Therefore if ag is an m-point then GCD(Lg", ..., Ly° ;) = L. In the case of a primitive
L it is possible only if one of Lg%, ..., Ly, is equal to L® and all others are equal to zero.
Then L* is m-sparse. Together with Lemma 1 this proves the necessity. The sufficiency
follows from Lemmas 1, 3. O

We have as a consequence that if L is an irreducible primitive operator and aq is an
ordinary point of L then ag is an m-point of L iff L is m-sparse. By Lemma 6 we get
also that if an irreducible primitive operator L is such that L% is m-sparse for ag € C,
then the equation Ly = 0 has » = ord L linearly independent local solutions at ag.

Additionally we can prove the following simple necessary condition.

Theorem 8 Let L be a primitive irreducible operator of the form (2). Let ps (x),... ,
ps,. () be all the nonzero coefficients of L and let ty, . ..ty be their degrees. Let there exist
an m-point of L. Then

s$1—ti=... =8 —tr (modm). (31)

Proof: 1f ag is an m-point of L then by the previous theorem L% is m-sparse. But the
leading coefficients of the polynomial coefficients of L% do not depend on the value of
agp. O
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Theorem 9 An irreducible operator L has no more than one m-point.

Proof: Without loss of generality we can assume L to be a primitive operator (otherwise
we can divide L by the ged of its coefficients). If L is an operator with constant coefficients
then ord L = 1 due to its irreducibility and there is no ag € C such that L% is m-sparse.
If L is not an operator with constant coefficients and L% is m-sparse then for any a; € C,
ay # ag, the operator L* is not m-sparse. Due to Theorem 7 we obtain what was claimed.
O

Let L be again a primitive irreducible operator of the form (2). Does there exist ag
such that L is m-sparse and, if yes, how to construct such ay? First check condition
(31) and, if it is satisfied, set N = remainder(s; —t;,m). Construct L* and, using the
condition

(#'D? € L) = (j —i=N (mod m)),

we get algebraic equations for a that allow getting ag.

Example 2 y” + (z — 1)y = 0. We have 2 < m < 3. The operator L = D? + (z — 1) is
irreducible over C(x); L* = D* + (z +a — 1).

m = 2. Necessary conditions (31) is not satisfied: 2 —0 % 0 — 1 (mod 2). The
equation has no 2-points.

m = 3. Necessary conditions (31) is satisfied: 2—0=0—-1 (mod 3). The equation
a — 1 = 0 gives us the value ag = 1. This is an ordinary point, hence it is a 3-point. By
Lemma 6 the given equation has two linearly independent 3-sparse solutions. In this case
they can be taken as 3-hypergeometric:

1
+n§12-3-5-6---(3n—1)-3n’

= (e
(x_1)+;3_4,6.7...3n-(3n+1)'
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