m-Sparse Solutions of Linear Ordinary Differential Equations with Polynomial Coefficients

Sergei A. Abramov*
Computer Center of the Russian Academy of Science
Vavilova 40, Moscow 117967, Russia
abramov@ccas.ru, sabramov@cs.msu.su

Abstract

We introduce the notion of m-sparse power series (e.g. expanding $\sin x$ and $\cos x$ at $x=0$ gives 2 -sparse power series: a coefficient a_{n} of the series can be nonzero only if remainder $(n, 2)$ is equal to a fixed number). Then we consider the problem of finding all m-points of a linear ordinary differential equation $L y=0$ with polynomial coefficients (i.e., the points at which the equation has a solution in the form of an m-sparse series). It is easy to find an upper bound for m. We prove that if m is fixed then either there exists a finite number of m-points and all of them can be found or all points are m-points and L can be factored as $L=\tilde{L} \circ C$ where C is an operator of a special kind with constant coefficients. Additionally we formulate simple necessary and sufficient conditions for the existence of m-points for an irreducible L.

Abstract

Résumé On introduit la notion de série de puissances m-creuse. (Les dévéloppements de $\sin x$ et de $\cos x$ autour de $x=0$ sont des exemples de séries 2 -creuses: on demande que le coefficient a_{n} de la série soit non-nul seulement si n appartient à une classe fixée de residus modulo 2). On considère le problème de déterminer tous les m points d'une équation différentielle linéaire $L y=0$ à coefficients polynomiaux (i.e. les points où l'équation admet une solution sous forme m-creuse). Il est facile de trouver une borne supérieure pour m. Pour m fixé on démontre qu'ou bien il existe un nombre fini de m-points et on peut les déterminer, ou bien tous les points sont des m-points et L peut se factoriser en $L=\tilde{L} \circ C$ où C est un opérateur d'un type particulier à coefficients constants. En plus, on donne des critères nécessaires et suffisants simples pour l'existence de m-points lorsque l'opérateur L est irréductible.

Keywords: Linear differential equations, Formal solutions, Recurrences for coefficients, Sparse power series.

[^0]
1 Preliminaries

Let \mathcal{C} be the set of infinite sequences $\left(c_{0}, c_{1}, \ldots\right) \in \mathbb{C}^{\infty}, \mathcal{S}$ the set of formal power series $c_{0}+c_{1} x+\cdots$ with $\left(c_{0}, c_{1}, \ldots\right) \in \mathcal{C}$ and m an integer ≥ 2. Call $c=\left(c_{0}, c_{1}, \ldots\right) \in \mathcal{C}$ an m-sparse sequence if there exists an integer N such that

$$
\begin{equation*}
\left(c_{n} \neq 0\right) \Rightarrow(n \equiv N \quad(\bmod m)) \tag{1}
\end{equation*}
$$

Call $c_{0}+c_{1} x+\cdots \in \mathcal{S}$ an m-sparse power series if $\left(c_{0}, c_{1}, \ldots\right)$ is an m-sparse sequence. For example, the series $x+x^{4}+x^{7}+\cdots+x^{3 n+1}+\cdots$ is 3 -sparse with $N=1$. Denote by $\mathcal{C}^{(m)}$ (resp. $\mathcal{S}^{(m)}$) the set of all m-sparse elements of \mathcal{C} (resp. of \mathcal{S}). It is obvious that

$$
\left(m_{1} \mid m_{2}\right) \Rightarrow\left(\mathcal{C}^{\left(m_{2}\right)} \subset \mathcal{C}^{\left(m_{1}\right)}, \mathcal{S}^{\left(m_{2}\right)} \subset \mathcal{S}^{\left(m_{1}\right)}\right)
$$

Consider a linear ordinary differential equation $L y=0$ with

$$
\begin{equation*}
L=p_{r}(x) D^{r}+\cdots+p_{1}(x) D+p_{0}(x), \tag{2}
\end{equation*}
$$

$p_{0}(x), \ldots, p_{r}(x) \in \mathbb{C}[x], p_{r}(x) \neq 0$. It is well known that the coefficients $\left(c_{0}, c_{1}, \ldots\right)$ of a power series solution $c_{0}+c_{1} x+\cdots$ of a linear differential equation with polynomial coefficients satisfy a linear recurrence (a difference equation) $R c=0$:

$$
\begin{equation*}
q_{l}(n) c_{n+l}+q_{l-1}(n) c_{n+l-1}+\cdots+q_{t}(n) c_{n+t}=0 \tag{3}
\end{equation*}
$$

$q_{t}(n), q_{t+1}(n), \ldots, q_{l}(n) \in \mathbb{C}[n] ; q_{l}(n), q_{t}(n) \neq 0$. The operator R which is equal to

$$
\begin{equation*}
q_{l}(n) E^{l}+q_{l-1}(n) E^{l-1}+\cdots+q_{t}(n) E^{t} \tag{4}
\end{equation*}
$$

is the \mathcal{R}-image of L where \mathcal{R} is the isomorphism of $\mathbb{C}\left[x, x^{-1}, D\right]$ onto $\mathbb{C}\left[n, E, E^{-1}\right]$:

$$
\begin{equation*}
\mathcal{R} D=(n+1) E, \mathcal{R} x=E^{-1}, \mathcal{R} x^{-1}=E ; \tag{5}
\end{equation*}
$$

resp.

$$
\mathcal{R}^{-1} E=x^{-1}, \mathcal{R}^{-1} E^{-1}=x, \mathcal{R}^{-1} n=x D
$$

(see [4]). Note that it is possible that $t<0$ in (3), (4). For R of the form (4) we denote $\omega(R)=l-t$. If the coefficient of x^{i} in the polynomial $p_{j}(x)$ is not equal to zero in (2) then we write $x^{i} D^{j} \in L$. It is easy to check that if L is of the form (2) and $R=\mathcal{R} L$ then

$$
\begin{equation*}
l=\max _{x^{i} D^{j} \in L}\{j-i\}, t=\min _{x^{i} D^{j} \in L}\{j-i\} ; \tag{6}
\end{equation*}
$$

and therefore

$$
\omega(R)=\max _{x^{i} D^{j} \in L}\{j-i\}-\min _{x^{i} D^{j} \in L}\{j-i\} .
$$

We will call any solution of the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \tag{7}
\end{equation*}
$$

of a differential equation local at the point a. Local solutions at a fixed point a form a linear space over \mathbb{C}. We will consider points $a \in \mathbb{C}$ and formal power series solutions $y_{a}(x)$ of the form (7) such that

$$
\begin{equation*}
L y_{a}(x)=0 \tag{8}
\end{equation*}
$$

and $\left(c_{0}, c_{1}, \ldots\right) \in \mathcal{C}^{(m)}$ for an integer $m>1$. Observe that $y_{a}(x)$ satisfies (8) iff

$$
y(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

satisfies $L^{a} y(x)=0$ where

$$
\begin{equation*}
L^{a}=p_{r}(x+a) D^{r}+\cdots+p_{1}(x+a) D+p_{0}(x+a) . \tag{9}
\end{equation*}
$$

In this paper we propose an algorithm for finding all m and a such that the equation $L^{a} y=0$ has a solution in $\mathcal{S}^{(m)}$. A preliminary version of this paper has appeared as [1].

2 m-Points

We call a difference operator of the form (4) m-sparse if for some N

$$
\left(q_{j}(n) \neq 0\right) \Rightarrow(j \equiv N \quad(\bmod m))
$$

and we call a differential operator $L m$-sparse if for some N

$$
\left(x^{i} D^{j} \in L\right) \Rightarrow(j-i \equiv N \quad(\bmod m))
$$

It is easy to check that L is an m-sparse differential operator iff $\mathcal{R} L$ is an m-sparse difference operator.

Let $c=\left(c_{0}, c_{1}, \ldots\right) \in \mathcal{C}$. Denote by (c, x) the formal series $c_{0}+c_{1} x+\cdots$ and by $(c)_{\geq k}$ the sequence $\left(c_{k}, c_{k+1}, \ldots\right) \in \mathcal{C}$ with $c_{k}=c_{k+1}=\cdots=c_{-1}=0$ if $k<0$. It can be shown that if $R=\mathcal{R} L$ and R has the form (4) then

$$
\begin{equation*}
L(c, x)=0 \Leftrightarrow R(c)_{\geq t}=0 \tag{10}
\end{equation*}
$$

(see [2, 4]). Let R be of the form (4) and let r_{0} be the maximal nonnegative integer root of $q_{l}(n)$ if such roots exist, and -1 otherwise. Set

$$
\iota^{*}(R)=l+r_{0} .
$$

If $L \in \mathbb{C}[x, D]$ and $R=\mathcal{R} L$, then we set $\iota^{*}(L)=\iota^{*}(R)$. For any $\left(c_{0}, c_{1}, \ldots\right) \in \mathcal{C}$ such that $L(c, x)=0$ the values $c_{0}, \ldots, c_{\iota^{*}(L)}$ allow one to compute (by means of $\mathcal{R} L$) the values $c_{l^{*}(L)+1}, c_{l^{*}(L)+2}, \ldots$ (these $c_{l^{*}(L)+1}, c_{l^{*}(L)+2}, \ldots$ are uniquely determined because the leading coefficient of the operator $\mathcal{R} L$ does not vanish when we compute c_{n} with $\left.n>\iota^{*}(L)\right)$.

Lemma 1 The equation $L y=0$ has a nonzero local solution at 0 iff $\iota^{*}(L) \geq 0$.

Proof: Thanks to (10) and to the mentioned property of $\iota^{*}(L)$ we have that if $\iota^{*}(L)<0$ then $L y=0$ has only the zero local solution.

Let $\iota^{*}(L) \geq 0$. Then set $s=\iota^{*}(L)$, take the initial segment

$$
\begin{equation*}
0+0 x+\cdots+0 x^{s-1}+x^{s} \tag{11}
\end{equation*}
$$

and extend it to a local solution using the mentioned property of the value $\iota^{*}(L)$.
Lemma 2 Let L be an operator of the form (2) which can be factored as $L_{1} \circ L_{2}$, where L_{2} is an operator with polynomial coefficients such that ord $L_{2} \geq 1$ and L_{2} has no local solution at 0 . Then 0 is a singularity of L.

Proof: If 0 is an ordinary point of L then L has $r=$ ord L linearly independent local solutions $f_{1}, f_{2}, \ldots, f_{r}$ at 0 . If the equation $L_{2} y=0$ has no nonzero local solution then it is injective on the space of formal power series. Then $L_{2} f_{1}, L_{2} f_{2}, \ldots, L_{2} f_{r}$ are still linearly independent, and L_{1} annihilates them all because $L=L_{1} \circ L_{2}$. But this is impossible because ord $L_{1}<r$.

Lemma 3 Let L be an m-sparse differential operator with polynomial coefficients. Let the equation $L y=0$ have a local solution at 0 . Then it has an m-sparse local solution at 0 .

Proof: If $L y=0$ has a local solution at 0 then by Lemma 1 there is such a local solution whose initial segment is of the form (11). The operator $\mathcal{R} L$ is an m-sparse difference operator. Using this operator the initial segments (11) can be extended to m-sparse local solutions.

We can prove the following lemma on the possible values of m.
Lemma 4 Let L be of the form (2). Let $R=\mathcal{R} L$ and let $L y=0$ have a non-polynomial solution $f(x)=c_{0}+c_{1} x+\cdots \in \mathcal{S}^{(m)}$. Then $m \leq \omega(R)$.

Proof: If $m>\omega(R)$ then there is $k>\max \left\{\omega(R), \iota^{*}(R)\right\}$ such that $c_{k}=\cdots=c_{k+\omega(R)-1}=$ 0 . But then $c_{n}=0$ for all $n \geq k$, i.e., $f(x) \in \mathbb{C}[x]$. Contradiction.

From now on we will deal only with non-polynomial solutions. Polynomial solutions can be found by the algorithm described in [2]. Furthermore we will suppose that L is of the form (2), $R=\mathcal{R} L$ is of the form (4) and m is a fixed integer ≥ 2.

First we discuss the existence in $\mathcal{S}^{(m)}$ of solutions of $L y=0$ (i.e., $L^{0} y=0$). Section 3 will be devoted to the search for all a such that the equation $L^{a} y=0$ has solutions in $\mathcal{S}^{(m)}$.

We will consider along with operators L and $R=\mathcal{R} L$ the set of m-sparse differential operators L_{0}, \ldots, L_{m-1} and the set of m-sparse difference operators R_{0}, \ldots, R_{m-1} which are called an m-splitting of the operators L and resp. R :

$$
\begin{equation*}
L_{\tau}=\sum_{\substack{x^{j} D^{j} \in L \\ j-i-t=\tau(\bmod m)}} p_{j i} x^{i} D^{j}, \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
R_{\tau}=\sum_{\substack{t \leq j \leq l \\ j-t \equiv \tau \\(\bmod m)}} q_{j}(n) E^{j} \tag{13}
\end{equation*}
$$

$\mathcal{R} L_{\tau}=R_{\tau}, \tau=0, \ldots, m-1$.
Lemma 5 Let R_{0}, \ldots, R_{m-1} be the m-splitting of R. Let $c \in \mathcal{C}^{(m)}$. Then

$$
\begin{equation*}
R(c)_{\geq t}=0 \Leftrightarrow\left(R_{i}(c)_{\geq t}=0, \quad i=0, \ldots, m-1\right) \tag{14}
\end{equation*}
$$

Proof: a direct check.
The lemma allows one to write down a necessary condition for the existence in $\mathcal{S}^{(m)}$ of solutions of $L y=0$.

Theorem 1 Let R_{0}, \ldots, R_{m-1} be the m-splitting of R. Let Ly $=0$ have a solution in $\mathcal{S}^{(m)}$. Then the greatest common right divisor (GCD) of the operators R_{0}, \ldots, R_{m-1} has positive ω :

$$
\begin{equation*}
\omega\left(\operatorname{GCD}\left(R_{0}, \ldots, R_{m-1}\right)\right) \geq 1 \tag{15}
\end{equation*}
$$

(We suppose as usual that R has the form (4) and that t is the lowest exponent of E in $\operatorname{GCD}\left(R_{0}, \ldots, R_{m-1}\right)$.)

Proof: Due to (10) and Lemma 5.
The operator

$$
\begin{equation*}
V=\operatorname{GCD}\left(R_{0}, \ldots, R_{m-1}\right) \tag{16}
\end{equation*}
$$

can be found by the (right) Euclidean algorithm. We can assume V to be an operator with polynomial coefficients. If we apply the Euclidean algorithm to m-sparse difference operators then we obviously obtain again an m-sparse operator. Hence, $V \in \mathbb{C}[n, E]$ is an m-sparse operator. By $R=R_{0}+\cdots+R_{m-1}$ we have that R is right-divisible by V, but the coefficients of the quotient can be in $\mathbb{C}(n)$. For some $w(n) \in \mathbb{C}[n]$ we have

$$
\begin{equation*}
w(n) R=Q \circ V, \tag{17}
\end{equation*}
$$

where $Q \in \mathbb{C}[n, E]$.
It is useful to define ι_{*} which will work together with ι^{*}. Let R be of the form (4). Let r_{1} be the maximal nonnegative integer root of $q_{t}(n)$ if such roots exist, and -1 otherwise. Set

$$
\iota_{*}(R)=\max \left\{t+r_{1},-1\right\} .
$$

Let $L \in \mathbb{C}[x, D]$ and $R=\mathcal{R} L$, then we set $\iota_{*}(L)=\iota_{*}(R)$. For any (c_{0}, c_{1}, \ldots) such that $L(c, x)=0$ the values c_{k}, c_{k+1}, \ldots with $k>\iota_{*}(L)+1$ let one compute (by means of $\mathcal{R} L$) the values $c_{\iota_{*}(L)+1}, c_{\iota_{*}(L)+2}, \ldots, c_{k-1}$ (these $c_{\iota_{*}(L)+1}, c_{\iota_{*}(L)+2}, \ldots, c_{k-1}$ are uniquely determined because the lowest coefficient of the operator $\mathcal{R} L$ does not vanish when we compute c_{n} with $\left.n>\iota_{*}(L)\right)$.

Going back to (16), (17) assume $\omega(V) \geq 1$ in (16). Set

$$
u=\max \left\{\iota_{*}(V), \iota_{*}(w(n) R), \iota^{*}(V), \iota^{*}(w(n) R)\right\},
$$

$$
v=u+\omega(R) .
$$

Using an algorithm proposed in [2] we can find a basis for the space \mathcal{B} of vectors $\left(c_{0}, \ldots, c_{v}\right) \in \mathbb{C}^{v+1}$ which can be extended to infinite sequences $c=\left(c_{0}, c_{1}, \ldots\right) \in \mathcal{C}$ which satisfy the equation $R(c)_{\geq l}=0$. After a basis $d_{0}, \ldots, d_{w}, w \leq v$, for \mathcal{B} is found one can check (a linear problem) whether there exist $\alpha_{0}, \ldots, \alpha_{w} \in \mathbb{C}$ such that $\alpha_{0} d_{0}+\cdots+\alpha_{w} d_{w}$ is an m-sparse vector whose last $\omega(R)$ components satisfy the recurrence $V c=0$. If such $\alpha_{0}, \ldots, \alpha_{w}$ exist then we can extend the corresponding initial values using the recurrence $V c=0$. It will give us an infinite m-sparse sequence c which satisfies $R(c)_{\geq t}=0$.

Later we will need the following theorem:
Theorem 2 Let L_{0}, \ldots, L_{m-1} be the m-splitting of L. Let the equation $L y=0$ have a solution in $\mathcal{S}^{(m)}$. Then

$$
\begin{equation*}
\text { ord } \operatorname{GCD}\left(L_{0}, \ldots, L_{m-1}\right) \geq 1 \tag{18}
\end{equation*}
$$

Proof: Let $f(x)=c_{0}+c_{1} x+\cdots \in \mathcal{S}^{(m)}, L f=0$. Then $R(c)_{\geq t}=0$ where $c=\left(c_{0}, c_{1}, \ldots\right)$. Let R_{0}, \ldots, R_{m-1} be the m-splitting of R. By Lemma 5 we have $R_{i}(c)_{\geq t}=0, i=$ $0, \ldots, m-1$. By (10) we get $L_{i} f=0, i=0, \ldots, m-1$.

Now for the last remark of this section. Suppose we know that for a fixed m the equation $L y=0$ has a solution in $\mathcal{S}^{(m)}$. Then the next step could be, for example, the attempt to find an m-sparse series solution which is at the same time m-hypergeometric [8] (a power series is m-hypergeometric if its sequence of coefficients $\left(c_{0}, c_{1}, \ldots\right)$ is m-hypergeometric, i.e., $c_{n+m}=r(n) c_{n}, n=0,1, \ldots$, for a rational function $\left.r(n)\right)$.

Let the operator from (16) have the form

$$
V=v_{t+k m}(n) E^{t+k m}+v_{t+(k-1) m}(n) E^{t+(k-1) m}+\cdots+v_{t}(n) E^{t}
$$

and let an m-hypergeometric sequence c satisfy $V c=0$. Let c be m-sparse, and assume that equality (1) holds for some $N, 0 \leq N \leq m-1$. It is evident that the sequence

$$
c_{N}^{\prime}=c_{N}, c_{N+1}^{\prime}=c_{N+m}, \ldots, c_{N+k}^{\prime}=c_{N+k m}, \ldots
$$

is hypergeometric. The sequence satisfies the recurrence $V^{\prime} c^{\prime}=0$ with

$$
V^{\prime}=v_{t+k m}(n) E^{t+k}+v_{t+(k-1) m}(n) E^{t+k-1}+\cdots+v_{t}(n) E^{t}
$$

Algorithm Hyper [7] allows one to find hypergeometric solutions of linear recurrences whose coefficients are rational functions.

If we are only interested in m-hypergeometric m-sparse series solutions then there is no need to compute $\operatorname{GCD}\left(R_{0}, \ldots, R_{m-1}\right)$. We can find solutions in the form of m hypergeometric elements of \mathcal{S} and then select the m-sparse ones among them. Using an algorithm proposed in [8] we can find all m-hypergeometric solutions of the recurrence $V c=0$ and then answer the question about m-hypergeometric m-sparse solutions of the original differential equation. Note that the mentioned algorithm from [8] allows one to find only primitive m-hypergeometric solutions of a recurrence (an m-hypergeometric sequence $\left(c_{k}, c_{k+1}, \ldots\right)$ is primitive if it satisfies no linear homogeneous recurrence with
rational coefficients of order $<m$). But it is obvious that an m-sparse m-hypergeometric solution having $c_{i} \neq 0$ with arbitrary large i is primitive m-hypergeometric. Thus the algorithm from [8] is sufficient for our goal.

However the usage of (18) is convenient when we solve the problem of searching for the points a at which there exist solutions of the form (7) with $\left(c_{0}, c_{1}, \ldots\right) \in \mathcal{C}^{(m)}$. We will call these points the m-points both of the operator L and of the equation $L y=0$.

3 The search for m-points

Let again $L y=0$ be an equation with operator of the form (2) and m be a fixed nonnegative integer ≥ 2. We formulate the problem of the search for m-points as follows: to find all complex values of a such that the equation $L^{a} y=0$, with L^{a} of the form (9), has a solution in $\mathcal{S}^{(m)}$. Consider the operator L^{a} regarding a as an indeterminate over \mathbb{C}. We can find the m-splitting of L^{a}, i.e., $L_{0}^{a}, \ldots, L_{m-1}^{a}$. We can also construct $R^{a}=\mathcal{R} L^{a}$ and $R_{0}^{a}, \ldots, R_{m-1}^{a}$ (the m-splitting of R^{a}). The coefficients of the operators

$$
\begin{equation*}
L^{a}, L_{0}^{a}, \ldots, L_{m-1}^{a} \tag{19}
\end{equation*}
$$

are polynomials in x over $\mathbb{C}[a]$. In turn the coefficients of the operators

$$
\begin{equation*}
R^{a}, R_{0}^{a}, \ldots, R_{m-1}^{a} \tag{20}
\end{equation*}
$$

are polynomials in n over $\mathbb{C}[a]$. If a_{0} is a value of the parameter a then we can consider, on the one hand

$$
\begin{equation*}
L^{a_{0}}, L_{0}^{a_{0}}, \ldots, L_{m-1}^{a_{0}} \text { and } R^{a_{0}}, R_{0}^{a_{0}}, \ldots, R_{m-1}^{a_{0}} \tag{21}
\end{equation*}
$$

and, on the other hand, the specialization of the operators (19), (20) for $a=a_{0}$:

$$
\begin{equation*}
\left.L^{a}\right|_{a=a_{0}},\left.L_{0}^{a}\right|_{a=a_{0}}, \ldots,\left.L_{m-1}^{a}\right|_{a=a_{0}} \text { and }\left.R^{a}\right|_{a=a_{0}},\left.R_{0}^{a}\right|_{a=a_{0}}, \ldots,\left.R_{m-1}^{a}\right|_{a=a_{0}} \tag{22}
\end{equation*}
$$

as the result of substitution of a_{0} for a in (21). Operators (21) and (22) are equal. This equivalence takes place due to the fact that evaluation of coefficients at $a=a_{0}$ commutes both with m-splitting and with \mathcal{R}.

This equivalence leads to the construction of a set including all m-points. We will show how one can gather together all a_{0} such that

$$
\begin{equation*}
\operatorname{ord} \operatorname{GCD}\left(L_{0}^{a_{0}}, \ldots, L_{m-1}^{a_{0}}\right) \geq 1 \tag{23}
\end{equation*}
$$

Observe that (18) is a particular version of (23) with $a_{0}=0$.
We will denote below by a a parameter while a_{0}, a_{1}, \ldots denote concrete values of a $\left(a_{0}, a_{1}, \ldots \in \mathbb{C}\right)$.

Theorem 3 Let $R^{a}=\mathcal{R} L^{a}$. Let R^{a} be

$$
\begin{equation*}
g_{l^{\prime}}(n, a) E^{l^{\prime}}+\cdots+g_{t^{\prime}}(n, a) E^{t^{\prime}} \tag{24}
\end{equation*}
$$

Then

$$
\begin{equation*}
r=l^{\prime} \geq l, t^{\prime}=t, \operatorname{deg}_{a} g_{t^{\prime}}(n, a)=0 \tag{25}
\end{equation*}
$$

i.e., (24) can be written as

$$
\begin{equation*}
g_{r}(n, a) E^{r}+\cdots+g_{t+1}(n, a) E^{t+1}+g_{t}(n) E^{t} . \tag{26}
\end{equation*}
$$

Proof: We prove $r=l^{\prime}$ using (6) and $x^{0} D^{r} \in L^{a}$ (this follows from the fact that a is an indeterminate). If $x^{0} D^{r} \in L$ then $r=l$ else $r>l$. The equality $t=t^{\prime}$ is obvious. The equality $\operatorname{deg}_{a} g_{t^{\prime}}(n, a)=0$ (i.e., $\operatorname{deg}_{a} g_{t}(n, a)=0$) is a consequence of $\operatorname{deg}_{a} \operatorname{lc}_{x} p_{j}(x+a)=0$.

The last theorem allows one to assume that

$$
2 \leq m \leq \omega\left(R^{a}\right)=l^{\prime}-t^{\prime}=r-t=\text { ord } L-\min _{x^{i} D^{j} \in L}\{j-i\} .
$$

Lemma 6 Let L be an m-sparse operator and 0 be an ordinary point of it (i.e., $p_{r}(0) \neq$ $0)$. Then the equation $L y=0$ has $r=\operatorname{ord} L$ linearly independent solutions in $\mathcal{S}^{(m)}$.

Proof: At an ordinary point, any r initial coefficients c_{0}, \ldots, c_{r-1} determine a series which satisfies the equation $L y=0$. We can take $c_{i}=\delta_{i j}$ in the j-th element of the basis for the space of vectors $\left(c_{0}, \ldots, c_{r-1}\right) \in \mathbb{C}^{r}, j=0, \ldots, r-1$. Let us extend every element of the basis by elements $c_{-1}=0, c_{-2}=0, \ldots, c_{t}=0$. Applying m-sparse recurrence $R c=0$ to any of the extended vectors as to a vector of initial elements, we obtain an infinite m-sparse sequence.

Lemma 7 The operator $\operatorname{GCD}\left(L_{0}^{a}, \ldots, L_{m-1}^{a}\right)$ is an m-sparse differential operator.
Proof: Indeed, if $M_{1}=v_{r}(x) D^{r}+\cdots+v_{0}(x), M_{2}=w_{s}(x) D^{s}+\cdots+w_{0}(x)$ are two m-sparse differential operators, $r \geq s$, then the operators $w_{s}(x) M_{1}, v_{r}(x) D^{r-s} \circ M_{2}$ are m-sparse. The number N mentioned in the definition of an m-sparse differential operator is the same for both operators, thereby the difference of these operators is an m-sparse operator. The order of the difference is $<r$.

Observe that the operator $\operatorname{GCD}\left(L_{0}^{a}, \ldots, L_{m-1}^{a}\right)$ is defined up to a factor from $\mathbb{C}(a, x)$, and a more precise statement is that one can assume this operator to be an m-sparse differential operator.

Now the question is: for which values of the parameter a do the operators $L_{0}^{a}, \ldots, L_{m-1}^{a}$ have a nontrivial right common divisor? If one has two differential operators with coefficients which are polynomials in x over $\mathbb{C}[a]$ then the answer can be obtained, for example, by applying the Euclidean algorithm to them. There is a finite set of values of the parameter a for which the value of the leading coefficient of some remainder vanishes. The actual implementation would instead use differential subresultants for reasons of efficiency $[5,6]$. One way or the other, we can construct a pair $\left(\mathbf{S}_{m}(L), \mathbf{T}_{m}(L)\right)$, where

- $\mathbf{S}_{m}(L)$ is an m-sparse differential operator whose coefficients are polynomials over $\mathbb{C}[a]$,
- $\mathbf{T}_{m}(L)$ is a finite subset of \mathbb{C},
such that the substitution of any $a_{0} \notin \mathbf{T}_{m}(L)$ into $\mathbf{S}_{m}(L)$ for a gives the operator $S_{a_{0}}=\operatorname{GCD}\left(L_{0}^{a_{0}}, \ldots, L_{m-1}^{a_{0}}\right)$ with ord $S_{a_{0}}=$ ord $\mathbf{S}_{m}(L)$. If $a_{0} \in \mathbf{T}_{m}(L)$ then either $S_{a_{0}} \neq \operatorname{GCD}\left(L_{0}^{a_{0}}, \ldots, L_{m-1}^{a_{0}}\right)$ or the leading coefficient of $\mathbf{S}_{m}(L)$ vanishes at $a=a_{0}$.

Theorem 4 Either the operator L has only a finite set of m-points, or any ordinary point of L which does not belong to $\mathbf{T}_{m}(L)$ is an m-point.

Proof: Let

$$
\begin{equation*}
S=\mathbf{S}_{m}(L), T=\mathbf{T}_{m}(L) \tag{27}
\end{equation*}
$$

If ord $S=0$ then there exists only a finite set of a_{0} which satisfy (23) and there is nothing to prove.

Let ord $S>0$. Let $S_{a_{0}}=\left.S\right|_{a=a_{0}}$. For $a_{0} \notin T$ the operator $L^{a_{0}}$ is right divisible by $S_{a_{0}}$. If for some a_{0} the equation $S_{a_{0}} y=0$ has no local solution at 0 then by Lemma $2 a_{0}$ is a singularity of L. If this equation has a local solution at 0 then by Lemma 3 it has a solution in $\mathcal{S}^{(m)}$.

The last theorem provides us with an algorithm to find all m-points of the given equation since all elements of $\mathbf{T}_{m}(L)$ and the singular points of L can be investigated by the approach described in Section 2.

But we will show in the next section that Theorem 4 may be strengthened. This will allow improving the algorithm.

4 The case of an infinite set of m-points

The purpose of this section is proving the following theorem:
Theorem 5 If L has an infinite set of m-points, then $L=\tilde{L} \circ C$ where C is an m-sparse differential operator with constant coefficients, and $\operatorname{ord} C>0$.

Let S be as in (27). The operator S belongs to the ring $\mathbb{C}(a)[x, D]$, and we write $S(a, x, D)$ for S.

Lemma 8 The operators $S(a+1, x, D)$ and $S(a, x-1, D)$ are equal up to a factor from $\mathbb{C}(a, x)$.

Proof: Let $a_{0} \in \mathbb{C}$ be such that

$$
\begin{equation*}
a_{0}+1 \notin \mathbf{T}_{m}(L) . \tag{28}
\end{equation*}
$$

Set $S^{\prime}=S\left(a_{0}+1, x, D\right), S^{\prime \prime}=S\left(a_{0}, x-1, D\right)$. Then

$$
\begin{equation*}
S^{\prime} f=0 \Leftrightarrow S^{\prime \prime} f=0 \tag{29}
\end{equation*}
$$

for any $f \in \mathcal{S}^{(m)}$ since both equalities are equivalent to $L^{a_{0}+1} f=0$. If a_{0} is an ordinary point of both S^{\prime} and $S^{\prime \prime}$ then by Lemma 6 these operators become equal after making
them monic (i.e., $\left.S^{\prime} /\left(\operatorname{lc} S^{\prime}\right)=S^{\prime \prime} /\left(\operatorname{lc} S^{\prime \prime}\right)\right)$. Thus those two monic operators are equal for all $a_{0} \in \mathbb{C}$ except for a finite set of values. Therefore the operators $S(a+1, x, D)$ and $S(a, x-1, D)$ taken in the monic form are equal which proves the lemma.

Call a differential operator L of the form (2) primitive if

$$
\begin{equation*}
\operatorname{gcd}\left(p_{0}(x), \ldots, p_{r}(x)\right)=1 \tag{30}
\end{equation*}
$$

where gcd denotes the polynomial greatest common divisor. It is easy to see that L^{a} (as an operator whose coefficients are polynomials in x over $\mathbb{C}(a))$ and $L^{a_{0}}$ are primitive iff L is primitive.

The operator $S(a, x, D)$ can be constructed in the form of a primitive m-sparse operator, whose coefficients are polynomials over $\mathbb{C}(a)$ (this is due to Lemma 7 , as well as to the fact that the greatest common divisor of polynomials of the form $x^{s} f\left(x^{m}\right), f(x) \in \mathbb{C}(a)[x]$, and the quotient of such polynomials are polynomials of the same form). Then operators $S(a+1, x, D)$ and $S(a, x-1, D)$ are also primitive and by Lemma 8 should be equal up to a factor from $\mathbb{C}(a)$ (due to the primitivity). But if the operator $S(a, x, D)$ has at least one coefficient which belongs to $\mathbb{C}(a, x) \backslash \mathbb{C}(a)$, then $S(a, x-1, D)$ is not m-sparse. At the same time any operator of the form $r(a) S(a+1, x, D), r(a) \in \mathbb{C}(a)$, is m-sparse. Therefore all the coefficients of $S(a, x, D)$ are in $\mathbb{C}(a)$. But the operators $S(a+1, x, D)$ and $S(a, x-1, D)$ are equal after putting them in the monic form, and this implies that the coefficients of $S(a, x, D) /(\operatorname{lc} S(a, x, D))$ do not depend on a, i.e., these coefficients are constants. Thus Theorem 5 is proven.

Theorem 6 If $S=\mathbf{S}_{m}(L)$ then $C=S /(\operatorname{lc} S)$ is the maximal m-sparse differential operator with constant coefficient which divides L.

Proof: If ord $S>0$ then L has an infinite set of m-points and by Theorem 5 , the operators L, L^{a}, S are right-divisible by an m-sparse operator with constant coefficients. Let C be the maximal m-sparse operator with constant coefficients dividing S. Then C divides L and L^{a}. Similarly to Lemma 7 it can be shown that the m-splitting of L^{a} / C is equal to $L_{0}^{a} / C, \ldots, L_{m-1}^{a} / C$. Observe that $S / C=\operatorname{GCD}\left(L_{0}^{a} / C, \ldots, L_{m-1}^{a} / C\right)$ and that S / C has no positive-order right divisor with constant coefficients. Hence $\operatorname{ord}(S / C)=0$.

Note that if L is right-divisible by an m-sparse operator C, ord $C>0$, with constant coefficients, then all points are m-points. But the points of $\mathbf{T}_{m}(L)$ are of special interest because the number of m-sparse linearly independent solutions can increase at those points (each of them can be investigated by the approach described in Section 2).

Example $1 L=\left(-x^{6}+9 x^{4}-7 x^{2}-1\right) D^{3}+\left(-2 x^{5}+28 x^{3}+22 x\right) D^{2}+\left(x^{6}-9 x^{4}+7 x^{2}+\right.$ 1) $D+\left(2 x^{5}-28 x^{3}-22 x\right)$. Take $m=2$. We have
$L_{0}^{a}=\left(-x^{6}+\left(-15 a^{2}+9\right) x^{4}+\left(-15 a^{4}+54 a^{2}-7\right) x^{2}-a^{6}-7 a^{2}+9 a^{4}\right) D^{3}+\left(-2 x^{5}+\right.$ $\left.\left(-20 a^{2}+28\right) x^{3}+\left(-10 a^{4}+84 a^{2}+22\right) x\right) D^{2}\left(+x^{6}+\left(15 a^{2}-9\right) x^{4}+\left(15 a^{4}-54 a^{2}+7\right) x^{2}+\right.$ $\left.a^{6}+7 a^{2}-9 a^{4}\right) D+2 x^{5}-\left(20 a^{2}-28\right) x^{3}+\left(10 a^{4}-84 a^{2}-22\right) x$,
$L_{1}^{a}=\left(-6 a x^{5}+\left(-20 a^{3}+36 a\right) x^{3}+\left(-6 a^{5}+36 a^{3}-14 a\right) x\right) D^{3}+\left(-10 a x^{4}+\left(-20 a^{3}+\right.\right.$ $\left.84 a) x^{2}-2 a^{5}+28 a^{3}+22 a\right) D^{2}+\left(+6 a x^{5}+\left(20 a^{3}-36 a\right) x^{3}+\left(6 a^{5}-36 a^{3}+14 a\right) x\right) D^{1}+$ $10 a x^{4}+\left(20 a^{3}-84 a\right) x^{2}+2 a^{5}-28 a^{3}-22 a$.

The algorithm from [6] allows to determine that $\operatorname{GCD}\left(L_{0}^{a_{0}}, L_{1}^{a_{0}}\right)$ is $\left(-x^{6}+9 x^{4}-7 x^{2}-1\right) D^{3}+\left(-2 x^{5}+28 x^{3}+22 x\right) D^{2}+\left(x^{6}-9 x^{4}+7 x^{2}+1\right) D+2 x^{5}-28 x^{3}-22 x$ if $a_{0}=0$, and $D^{2}-1$ otherwise. The equation $L y=0$ has two linearly independent 2 sparse solutions

$$
\sum_{n=0}^{\infty} \frac{\left(x-a_{0}\right)^{2 n}}{(2 n)!}, \quad \sum_{n=0}^{\infty} \frac{\left(x-a_{0}\right)^{2 n+1}}{(2 n+1)!}
$$

at any $a_{0} \neq 0$. It has three linearly independent 2 -sparse solutions

$$
\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}, \quad \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}, \quad \sum_{n=0}^{\infty} x^{2 n}
$$

at $x=0$.

5 When L is irreducible

An irreducible operator L cannot have a non-trivial right factor over $\mathbb{C}(x)$ of order $<$ ord L and we deduce the following theorem.

Theorem 7 Let L be a primitive irreducible operator. Then $a_{0} \in \mathbb{C}$ is an m-point of L iff $L^{a_{0}}$ is m-sparse and $\iota^{*}\left(L^{a_{0}}\right) \geq 0$.

Proof: Since L is irreducible, it cannot have a factor S such that $0<\operatorname{ord} S<\operatorname{ord} L$. Therefore if a_{0} is an m-point then $\operatorname{GCD}\left(L_{0}^{a_{0}}, \ldots, L_{m-1}^{a_{0}}\right)=L^{a_{0}}$. In the case of a primitive L it is possible only if one of $L_{0}^{a_{0}}, \ldots, L_{m-1}^{a_{0}}$ is equal to $L^{a_{0}}$ and all others are equal to zero. Then $L^{a_{0}}$ is m-sparse. Together with Lemma 1 this proves the necessity. The sufficiency follows from Lemmas 1, 3.

We have as a consequence that if L is an irreducible primitive operator and a_{0} is an ordinary point of L then a_{0} is an m-point of L iff $L^{a_{0}}$ is m-sparse. By Lemma 6 we get also that if an irreducible primitive operator L is such that $L^{a_{0}}$ is m-sparse for $a_{0} \in \mathbb{C}$, then the equation $L y=0$ has $r=$ ord L linearly independent local solutions at a_{0}.

Additionally we can prove the following simple necessary condition.
Theorem 8 Let L be a primitive irreducible operator of the form (2). Let $p_{s_{1}}(x), \ldots$, $p_{s_{k}}(x)$ be all the nonzero coefficients of L and let t_{1}, \ldots, t_{k} be their degrees. Let there exist an m-point of L. Then

$$
\begin{equation*}
s_{1}-t_{1} \equiv \ldots \equiv s_{k}-t_{k} \quad(\bmod m) \tag{31}
\end{equation*}
$$

Proof: If a_{0} is an m-point of L then by the previous theorem $L^{a_{0}}$ is m-sparse. But the leading coefficients of the polynomial coefficients of $L^{a_{0}}$ do not depend on the value of a_{0}.

Theorem 9 An irreducible operator L has no more than one m-point.
Proof: Without loss of generality we can assume L to be a primitive operator (otherwise we can divide L by the gcd of its coefficients). If L is an operator with constant coefficients then ord $L=1$ due to its irreducibility and there is no $a_{0} \in \mathbb{C}$ such that $L^{a_{0}}$ is m-sparse. If L is not an operator with constant coefficients and $L^{a_{0}}$ is m-sparse then for any $a_{1} \in \mathbb{C}$, $a_{1} \neq a_{0}$, the operator $L^{a_{1}}$ is not m-sparse. Due to Theorem 7 we obtain what was claimed.

Let L be again a primitive irreducible operator of the form (2). Does there exist a_{0} such that L_{0}^{a} is m-sparse and, if yes, how to construct such a_{0} ? First check condition (31) and, if it is satisfied, set $N=$ remainder $\left(s_{1}-t_{1}, m\right)$. Construct L^{a} and, using the condition

$$
\left(x^{i} D^{j} \in L^{a_{0}}\right) \Rightarrow(j-i \equiv N \quad(\bmod m)),
$$

we get algebraic equations for a that allow getting a_{0}.
Example $2 y^{\prime \prime}+(x-1) y=0$. We have $2 \leq m \leq 3$. The operator $L=D^{2}+(x-1)$ is irreducible over $\mathbb{C}(x) ; L^{a}=D^{2}+(x+a-1)$.
$m=2$. Necessary conditions (31) is not satisfied: $2-0 \not \equiv 0-1(\bmod 2)$. The equation has no 2-points.
$m=3$. Necessary conditions (31) is satisfied: $2-0 \equiv 0-1 \quad(\bmod 3)$. The equation $a-1=0$ gives us the value $a_{0}=1$. This is an ordinary point, hence it is a 3 -point. By Lemma 6 the given equation has two linearly independent 3 -sparse solutions. In this case they can be taken as 3 -hypergeometric:

$$
\begin{gathered}
1+\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{3 n}}{2 \cdot 3 \cdot 5 \cdot 6 \cdots(3 n-1) \cdot 3 n}, \\
(x-1)+\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{3 n+1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdots 3 n \cdot(3 n+1)} .
\end{gathered}
$$

Acknowledgement

I thank Prof. Marko Petkovšek for many valuable discussions.

References

[1] S. Abramov, Solutions of Linear Differential Equations in The Class of Sparse Power Series, in: Proc. FPSAC'97, Univ. of Wien, 1997, pp. 1-12.
[2] S. Abramov, M. Bronstein, M. Petkovšek, On Polynomial Solutions of Linear Operator Equations, in: T.Levelt (Ed.), Proc. ISSAC'95, ACM Press, New York, 1995, pp. 290-296.
[3] S. Abramov, M. Petkovšek, Special Power Series Solutions of Linear Differential Equations, in: D.Stanton (Ed.), Proc. FPSAC'96, Univ. of Minnesota, 1996, pp. 1-8.
[4] S. Abramov, M. Petkovšek, A. Ryabenko, Special Formal Series Solutions of Linear Operator Equations, Discrete Math., to appear.
[5] M. Chardin, Differential Resultants and Subresultants, In: Fundamentals of Computation Theory, Lecture Notes in Computer Science 529, Springer-Verlag, 1991, pp. 180-189.
[6] P. Glotov, On the Greatest Common Right Divisor of Ore Polynomials with Polynomial Coefficients which Depend on a Parameter, in: G.Labahn, M.O.Rayes (Eds.), Poster Session Abstracts of ISSAC'98, Univ. of Rostock, 1998, p. 20.
[7] M. Petkovšek, Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symb. Comput. 14, 1992, pp. 243-264.
[8] M. Petkovšek, B. Salvy, Finding All Hypergeometric Solutions of Linear Differential Equations, in: M.Bronstein (Ed.), Proc. ISSAC'93, ACM Press, New York, 1993, pp. 27-33.

[^0]: *Supported in part by the RFBR and INTAS under Grant 95-IN-RU-412.

