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Abstract

We introduce the notion of m-sparse power series (e.g. expanding sin x and
cos x at x = 0 gives 2-sparse power series: a coefficient an of the series can be
nonzero only if remainder(n, 2) is equal to a fixed number). Then we consider the
problem of finding all m-points of a linear ordinary differential equation Ly = 0
with polynomial coefficients (i.e., the points at which the equation has a solution
in the form of an m-sparse series). It is easy to find an upper bound for m. We
prove that if m is fixed then either there exists a finite number of m-points and all
of them can be found or all points are m-points and L can be factored as L = L̃◦C

where C is an operator of a special kind with constant coefficients. Additionally we
formulate simple necessary and sufficient conditions for the existence of m-points
for an irreducible L.

Résumé

On introduit la notion de série de puissances m-creuse. (Les dévéloppements de
sin x et de cos x autour de x = 0 sont des exemples de séries 2-creuses: on demande
que le coefficient an de la série soit non-nul seulement si n appartient à une classe
fixée de residus modulo 2). On considère le problème de déterminer tous les m-
points d’une équation différentielle linéaire Ly = 0 à coefficients polynomiaux (i.e.
les points où l’équation admet une solution sous forme m-creuse). Il est facile de
trouver une borne supérieure pour m. Pour m fixé on démontre qu’ou bien il existe
un nombre fini de m-points et on peut les déterminer, ou bien tous les points sont
des m-points et L peut se factoriser en L = L̃ ◦C où C est un opérateur d’un type
particulier à coefficients constants. En plus, on donne des critères nécessaires et
suffisants simples pour l’existence de m-points lorsque l’opérateur L est irréductible.

Keywords: Linear differential equations, Formal solutions, Recurrences for coefficients,
Sparse power series.
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1 Preliminaries

Let C be the set of infinite sequences (c0, c1, . . .) ∈ C∞, S the set of formal power series
c0 + c1x + · · · with (c0, c1, . . .) ∈ C and m an integer ≥ 2. Call c = (c0, c1, . . .) ∈ C an
m-sparse sequence if there exists an integer N such that

(cn 6= 0) ⇒ (n ≡ N (mod m)). (1)

Call c0 + c1x + · · · ∈ S an m-sparse power series if (c0, c1, . . .) is an m-sparse sequence.
For example, the series x + x4 + x7 + · · · + x3n+1 + · · · is 3-sparse with N = 1. Denote
by C(m) (resp. S(m)) the set of all m-sparse elements of C (resp. of S). It is obvious that

(m1|m2) ⇒ (C(m2) ⊂ C(m1),S(m2) ⊂ S(m1)).

Consider a linear ordinary differential equation Ly = 0 with

L = pr(x)Dr + · · ·+ p1(x)D + p0(x), (2)

p0(x), . . . , pr(x) ∈ C[x], pr(x) 6= 0. It is well known that the coefficients (c0, c1, . . .) of
a power series solution c0 + c1x + · · · of a linear differential equation with polynomial
coefficients satisfy a linear recurrence (a difference equation) Rc = 0:

ql(n)cn+l + ql−1(n)cn+l−1 + · · ·+ qt(n)cn+t = 0, (3)

qt(n), qt+1(n), . . . , ql(n) ∈ C[n]; ql(n), qt(n) 6= 0. The operator R which is equal to

ql(n)El + ql−1(n)El−1 + · · ·+ qt(n)Et (4)

is the R-image of L where R is the isomorphism of C[x, x−1, D] onto C[n, E, E−1]:

RD = (n + 1)E, Rx = E−1, Rx−1 = E; (5)

resp.
R−1E = x−1, R−1E−1 = x, R−1n = xD

(see [4]). Note that it is possible that t < 0 in (3), (4). For R of the form (4) we denote
ω(R) = l − t. If the coefficient of xi in the polynomial pj(x) is not equal to zero in (2)
then we write xiDj ∈ L. It is easy to check that if L is of the form (2) and R = RL then

l = max
xiDj∈L

{j − i}, t = min
xiDj∈L

{j − i}; (6)

and therefore
ω(R) = max

xiDj∈L
{j − i} − min

xiDj∈L
{j − i}.

We will call any solution of the form

∞∑

n=0

cn(x − a)n (7)
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of a differential equation local at the point a. Local solutions at a fixed point a form a
linear space over C. We will consider points a ∈ C and formal power series solutions
ya(x) of the form (7) such that

Lya(x) = 0 (8)

and (c0, c1, . . .) ∈ C(m) for an integer m > 1. Observe that ya(x) satisfies (8) iff

y(x) =
∞∑

n=0

cnxn

satisfies Lay(x) = 0 where

La = pr(x + a)Dr + · · ·+ p1(x + a)D + p0(x + a). (9)

In this paper we propose an algorithm for finding all m and a such that the equation
Lay = 0 has a solution in S(m). A preliminary version of this paper has appeared as [1].

2 m-Points

We call a difference operator of the form (4) m-sparse if for some N

(qj(n) 6= 0) ⇒ (j ≡ N (mod m))

and we call a differential operator L m-sparse if for some N

(xiDj ∈ L) ⇒ (j − i ≡ N (mod m)).

It is easy to check that L is an m-sparse differential operator iff RL is an m-sparse
difference operator.

Let c = (c0, c1, . . .) ∈ C. Denote by (c, x) the formal series c0 + c1x + · · · and by (c)≥k

the sequence (ck, ck+1, . . .) ∈ C with ck = ck+1 = · · · = c−1 = 0 if k < 0. It can be shown
that if R = RL and R has the form (4) then

L(c, x) = 0 ⇔ R(c)≥t = 0 (10)

(see [2, 4]). Let R be of the form (4) and let r0 be the maximal nonnegative integer root
of ql(n) if such roots exist, and −1 otherwise. Set

ι∗(R) = l + r0.

If L ∈ C[x, D] and R = RL, then we set ι∗(L) = ι∗(R). For any (c0, c1, . . .) ∈ C
such that L(c, x) = 0 the values c0, . . . , cι∗(L) allow one to compute (by means of RL)
the values cι∗(L)+1, cι∗(L)+2, . . . (these cι∗(L)+1, cι∗(L)+2, . . . are uniquely determined because
the leading coefficient of the operator RL does not vanish when we compute cn with
n > ι∗(L)).

Lemma 1 The equation Ly = 0 has a nonzero local solution at 0 iff ι∗(L) ≥ 0.
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Proof: Thanks to (10) and to the mentioned property of ι∗(L) we have that if ι∗(L) < 0
then Ly = 0 has only the zero local solution.

Let ι∗(L) ≥ 0. Then set s = ι∗(L), take the initial segment

0 + 0x + · · ·+ 0xs−1 + xs (11)

and extend it to a local solution using the mentioned property of the value ι∗(L). ✷

Lemma 2 Let L be an operator of the form (2) which can be factored as L1 ◦ L2, where
L2 is an operator with polynomial coefficients such that ord L2 ≥ 1 and L2 has no local
solution at 0. Then 0 is a singularity of L.

Proof: If 0 is an ordinary point of L then L has r = ord L linearly independent local
solutions f1, f2, . . . , fr at 0. If the equation L2y = 0 has no nonzero local solution then it
is injective on the space of formal power series. Then L2f1, L2f2, . . . , L2fr are still linearly
independent, and L1 annihilates them all because L = L1 ◦ L2. But this is impossible
because ordL1 < r. ✷

Lemma 3 Let L be an m-sparse differential operator with polynomial coefficients. Let
the equation Ly = 0 have a local solution at 0. Then it has an m-sparse local solution at
0.

Proof: If Ly = 0 has a local solution at 0 then by Lemma 1 there is such a local solution
whose initial segment is of the form (11). The operator RL is an m-sparse difference
operator. Using this operator the initial segments (11) can be extended to m-sparse local
solutions. ✷

We can prove the following lemma on the possible values of m.

Lemma 4 Let L be of the form (2). Let R = RL and let Ly = 0 have a non-polynomial
solution f(x) = c0 + c1x + · · · ∈ S(m). Then m ≤ ω(R).

Proof: If m > ω(R) then there is k > max{ω(R), ι∗(R)} such that ck = · · · = ck+ω(R)−1 =
0. But then cn = 0 for all n ≥ k, i.e., f(x) ∈ C[x]. Contradiction. ✷

From now on we will deal only with non-polynomial solutions. Polynomial solutions
can be found by the algorithm described in [2]. Furthermore we will suppose that L is of
the form (2), R = RL is of the form (4) and m is a fixed integer ≥ 2.

First we discuss the existence in S(m) of solutions of Ly = 0 (i.e., L0y = 0). Section
3 will be devoted to the search for all a such that the equation Lay = 0 has solutions in
S(m).

We will consider along with operators L and R = RL the set of m-sparse differential
operators L0, . . . , Lm−1 and the set of m-sparse difference operators R0, . . . , Rm−1 which
are called an m-splitting of the operators L and resp. R:

Lτ =
∑

xiDj∈L

j−i−t≡τ (mod m)

pjix
iDj, (12)
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Rτ =
∑

t≤j≤l

j−t≡τ (mod m)

qj(n)Ej, (13)

RLτ = Rτ , τ = 0, . . . , m − 1.

Lemma 5 Let R0, . . . , Rm−1 be the m-splitting of R. Let c ∈ C(m). Then

R(c)≥t = 0 ⇔ (Ri(c)≥t = 0, i = 0, . . . , m − 1). (14)

Proof: a direct check. ✷

The lemma allows one to write down a necessary condition for the existence in S(m)

of solutions of Ly = 0.

Theorem 1 Let R0, . . . , Rm−1 be the m-splitting of R. Let Ly = 0 have a solution in
S(m). Then the greatest common right divisor (GCD) of the operators R0, . . . , Rm−1 has
positive ω:

ω(GCD(R0, . . . , Rm−1)) ≥ 1. (15)

(We suppose as usual that R has the form (4) and that t is the lowest exponent of E in
GCD(R0, . . . , Rm−1).)

Proof: Due to (10) and Lemma 5. ✷

The operator
V = GCD(R0, . . . , Rm−1) (16)

can be found by the (right) Euclidean algorithm. We can assume V to be an operator
with polynomial coefficients. If we apply the Euclidean algorithm to m-sparse difference
operators then we obviously obtain again an m-sparse operator. Hence, V ∈ C[n, E] is
an m-sparse operator. By R = R0 + · · · + Rm−1 we have that R is right-divisible by V ,
but the coefficients of the quotient can be in C(n). For some w(n) ∈ C[n] we have

w(n)R = Q ◦ V, (17)

where Q ∈ C[n, E].
It is useful to define ι∗ which will work together with ι∗. Let R be of the form (4). Let

r1 be the maximal nonnegative integer root of qt(n) if such roots exist, and −1 otherwise.
Set

ι∗(R) = max{t + r1,−1}.

Let L ∈ C[x, D] and R = RL, then we set ι∗(L) = ι∗(R). For any (c0, c1, . . .) such
that L(c, x) = 0 the values ck, ck+1, . . . with k > ι∗(L) + 1 let one compute (by means
of RL) the values cι∗(L)+1, cι∗(L)+2, . . . , ck−1 (these cι∗(L)+1, cι∗(L)+2, . . . , ck−1 are uniquely
determined because the lowest coefficient of the operator RL does not vanish when we
compute cn with n > ι∗(L)).

Going back to (16), (17) assume ω(V ) ≥ 1 in (16). Set

u = max{ι∗(V ), ι∗(w(n)R), ι∗(V ), ι∗(w(n)R)},
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v = u + ω(R).

Using an algorithm proposed in [2] we can find a basis for the space B of vectors
(c0, . . . , cv) ∈ Cv+1 which can be extended to infinite sequences c = (c0, c1, . . .) ∈ C which
satisfy the equation R(c)≥l = 0. After a basis d0, . . . , dw, w ≤ v, for B is found one can
check (a linear problem) whether there exist α0, . . . , αw ∈ C such that α0d0 + · · ·+ αwdw

is an m-sparse vector whose last ω(R) components satisfy the recurrence V c = 0. If such
α0, . . . , αw exist then we can extend the corresponding initial values using the recurrence
V c = 0. It will give us an infinite m-sparse sequence c which satisfies R(c)≥t = 0.

Later we will need the following theorem:

Theorem 2 Let L0, . . . , Lm−1 be the m-splitting of L. Let the equation Ly = 0 have a
solution in S(m). Then

ord GCD(L0, . . . , Lm−1) ≥ 1. (18)

Proof: Let f(x) = c0 + c1x + · · · ∈ S(m), Lf = 0. Then R(c)≥t = 0 where c = (c0, c1, . . .).
Let R0, . . . , Rm−1 be the m-splitting of R. By Lemma 5 we have Ri(c)≥t = 0, i =
0, . . . , m − 1. By (10) we get Lif = 0, i = 0, . . . , m − 1. ✷

Now for the last remark of this section. Suppose we know that for a fixed m the equa-
tion Ly = 0 has a solution in S(m). Then the next step could be, for example, the attempt
to find an m-sparse series solution which is at the same time m-hypergeometric [8] (a power
series is m-hypergeometric if its sequence of coefficients (c0, c1, . . .) is m-hypergeometric,
i.e., cn+m = r(n)cn, n = 0, 1, . . ., for a rational function r(n)).

Let the operator from (16) have the form

V = vt+km(n)Et+km + vt+(k−1)m(n)Et+(k−1)m + · · · + vt(n)Et

and let an m-hypergeometric sequence c satisfy V c = 0. Let c be m-sparse, and assume
that equality (1) holds for some N , 0 ≤ N ≤ m − 1. It is evident that the sequence

c′N = cN , c′N+1 = cN+m, . . . , c′N+k = cN+km, . . .

is hypergeometric. The sequence satisfies the recurrence V ′c′ = 0 with

V ′ = vt+km(n)Et+k + vt+(k−1)m(n)Et+k−1 + · · · + vt(n)Et.

Algorithm Hyper [7] allows one to find hypergeometric solutions of linear recurrences
whose coefficients are rational functions.

If we are only interested in m-hypergeometric m-sparse series solutions then there
is no need to compute GCD(R0, . . . , Rm−1). We can find solutions in the form of m-
hypergeometric elements of S and then select the m-sparse ones among them. Using an
algorithm proposed in [8] we can find all m-hypergeometric solutions of the recurrence
V c = 0 and then answer the question about m-hypergeometric m-sparse solutions of the
original differential equation. Note that the mentioned algorithm from [8] allows one
to find only primitive m-hypergeometric solutions of a recurrence (an m-hypergeometric
sequence (ck, ck+1, . . .) is primitive if it satisfies no linear homogeneous recurrence with
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rational coefficients of order < m). But it is obvious that an m-sparse m-hypergeometric
solution having ci 6= 0 with arbitrary large i is primitive m-hypergeometric. Thus the
algorithm from [8] is sufficient for our goal.

However the usage of (18) is convenient when we solve the problem of searching for
the points a at which there exist solutions of the form (7) with (c0, c1, . . .) ∈ C(m). We
will call these points the m-points both of the operator L and of the equation Ly = 0.

3 The search for m-points

Let again Ly = 0 be an equation with operator of the form (2) and m be a fixed non-
negative integer ≥ 2. We formulate the problem of the search for m-points as follows: to
find all complex values of a such that the equation Lay = 0, with La of the form (9), has
a solution in S(m). Consider the operator La regarding a as an indeterminate over C. We
can find the m-splitting of La, i.e., La

0, . . . , L
a
m−1. We can also construct Ra = RLa and

Ra
0, . . . , R

a
m−1 (the m-splitting of Ra). The coefficients of the operators

La, La
0, . . . , L

a
m−1. (19)

are polynomials in x over C[a]. In turn the coefficients of the operators

Ra, Ra
0, . . . , R

a
m−1 (20)

are polynomials in n over C[a]. If a0 is a value of the parameter a then we can consider,
on the one hand

La0 , La0
0 , . . . , La0

m−1 and Ra0 , Ra0
0 , . . . , Ra0

m−1 (21)

and, on the other hand, the specialization of the operators (19), (20) for a = a0:

La|a=a0 , L
a
0|a=a0 , . . . , L

a
m−1|a=a0 and Ra|a=a0 , R

a
0|a=a0 , . . . , R

a
m−1|a=a0 (22)

as the result of substitution of a0 for a in (21). Operators (21) and (22) are equal. This
equivalence takes place due to the fact that evaluation of coefficients at a = a0 commutes
both with m-splitting and with R.

This equivalence leads to the construction of a set including all m-points. We will
show how one can gather together all a0 such that

ordGCD(La0
0 , . . . , La0

m−1) ≥ 1. (23)

Observe that (18) is a particular version of (23) with a0 = 0.
We will denote below by a a parameter while a0, a1, . . . denote concrete values of a

(a0, a1, . . . ∈ C).

Theorem 3 Let Ra = RLa. Let Ra be

gl′(n, a)El′ + · · ·+ gt′(n, a)Et′ . (24)
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Then
r = l′ ≥ l, t′ = t, dega gt′(n, a) = 0, (25)

i.e., (24) can be written as

gr(n, a)Er + · · ·+ gt+1(n, a)Et+1 + gt(n)Et. (26)

Proof: We prove r = l′ using (6) and x0Dr ∈ La (this follows from the fact that a is
an indeterminate). If x0Dr ∈ L then r = l else r > l. The equality t = t′ is obvious. The
equality dega gt′(n, a) = 0 (i.e., dega gt(n, a) = 0) is a consequence of dega lcx pj(x+a) = 0.
✷

The last theorem allows one to assume that

2 ≤ m ≤ ω(Ra) = l′ − t′ = r − t = ord L − min
xiDj∈L

{j − i}.

Lemma 6 Let L be an m-sparse operator and 0 be an ordinary point of it (i.e., pr(0) 6=
0). Then the equation Ly = 0 has r = ord L linearly independent solutions in S(m).

Proof: At an ordinary point, any r initial coefficients c0, . . . , cr−1 determine a series which
satisfies the equation Ly = 0. We can take ci = δij in the j-th element of the basis for
the space of vectors (c0, . . . , cr−1) ∈ Cr, j = 0, . . . , r − 1. Let us extend every element of
the basis by elements c−1 = 0, c−2 = 0, . . . , ct = 0. Applying m-sparse recurrence Rc = 0
to any of the extended vectors as to a vector of initial elements, we obtain an infinite
m-sparse sequence. ✷

Lemma 7 The operator GCD(La
0, . . . , L

a
m−1) is an m-sparse differential operator.

Proof: Indeed, if M1 = vr(x)Dr + · · · + v0(x), M2 = ws(x)Ds + · · · + w0(x) are two
m-sparse differential operators, r ≥ s, then the operators ws(x)M1, vr(x)Dr−s ◦ M2 are
m-sparse. The number N mentioned in the definition of an m-sparse differential operator
is the same for both operators, thereby the difference of these operators is an m-sparse
operator. The order of the difference is < r. ✷

Observe that the operator GCD(La
0, . . . , L

a
m−1) is defined up to a factor from C(a, x),

and a more precise statement is that one can assume this operator to be an m-sparse
differential operator.

Now the question is: for which values of the parameter a do the operators La
0, . . . , L

a
m−1

have a nontrivial right common divisor? If one has two differential operators with co-
efficients which are polynomials in x over C[a] then the answer can be obtained, for
example, by applying the Euclidean algorithm to them. There is a finite set of values
of the parameter a for which the value of the leading coefficient of some remainder van-
ishes. The actual implementation would instead use differential subresultants for reasons
of efficiency [5, 6]. One way or the other, we can construct a pair (Sm(L),Tm(L)), where

• Sm(L) is an m-sparse differential operator whose coefficients are polynomials over
C[a],

8



• Tm(L) is a finite subset of C,

such that the substitution of any a0 /∈ Tm(L) into Sm(L) for a gives the operator
Sa0 = GCD(La0

0 , . . . , La0
m−1) with ordSa0 = ordSm(L). If a0 ∈ Tm(L) then either

Sa0 6= GCD(La0
0 , . . . , La0

m−1) or the leading coefficient of Sm(L) vanishes at a = a0.

Theorem 4 Either the operator L has only a finite set of m-points, or any ordinary
point of L which does not belong to Tm(L) is an m-point.

Proof: Let
S = Sm(L), T = Tm(L). (27)

If ordS = 0 then there exists only a finite set of a0 which satisfy (23) and there is
nothing to prove.

Let ordS > 0. Let Sa0 = S|a=a0 . For a0 /∈ T the operator La0 is right divisible by
Sa0 . If for some a0 the equation Sa0y = 0 has no local solution at 0 then by Lemma 2 a0

is a singularity of L. If this equation has a local solution at 0 then by Lemma 3 it has a
solution in S(m). ✷

The last theorem provides us with an algorithm to find all m-points of the given
equation since all elements of Tm(L) and the singular points of L can be investigated by
the approach described in Section 2.

But we will show in the next section that Theorem 4 may be strengthened. This will
allow improving the algorithm.

4 The case of an infinite set of m-points

The purpose of this section is proving the following theorem:

Theorem 5 If L has an infinite set of m-points, then L = L̃◦C where C is an m-sparse
differential operator with constant coefficients, and ordC > 0.

Let S be as in (27). The operator S belongs to the ring C(a)[x, D], and we write
S(a, x, D) for S.

Lemma 8 The operators S(a + 1, x, D) and S(a, x− 1, D) are equal up to a factor from
C(a, x).

Proof: Let a0 ∈ C be such that
a0 + 1 /∈ Tm(L). (28)

Set S ′ = S(a0 + 1, x, D), S ′′ = S(a0, x − 1, D). Then

S ′f = 0 ⇔ S ′′f = 0 (29)

for any f ∈ S(m) since both equalities are equivalent to La0+1f = 0. If a0 is an ordinary
point of both S ′ and S ′′ then by Lemma 6 these operators become equal after making
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them monic (i.e., S ′/(lc S ′) = S ′′/(lc S ′′)). Thus those two monic operators are equal for
all a0 ∈ C except for a finite set of values. Therefore the operators S(a + 1, x, D) and
S(a, x − 1, D) taken in the monic form are equal which proves the lemma. ✷

Call a differential operator L of the form (2) primitive if

gcd(p0(x), . . . , pr(x)) = 1, (30)

where gcd denotes the polynomial greatest common divisor. It is easy to see that La (as
an operator whose coefficients are polynomials in x over C(a)) and La0 are primitive iff
L is primitive.

The operator S(a, x, D) can be constructed in the form of a primitive m-sparse opera-
tor, whose coefficients are polynomials over C(a) (this is due to Lemma 7, as well as to the
fact that the greatest common divisor of polynomials of the form xsf(xm), f(x) ∈ C(a)[x],
and the quotient of such polynomials are polynomials of the same form). Then operators
S(a + 1, x, D) and S(a, x − 1, D) are also primitive and by Lemma 8 should be equal
up to a factor from C(a) (due to the primitivity). But if the operator S(a, x, D) has at
least one coefficient which belongs to C(a, x) \C(a), then S(a, x− 1, D) is not m-sparse.
At the same time any operator of the form r(a)S(a + 1, x, D), r(a) ∈ C(a), is m-sparse.
Therefore all the coefficients of S(a, x, D) are in C(a). But the operators S(a + 1, x, D)
and S(a, x− 1, D) are equal after putting them in the monic form, and this implies that
the coefficients of S(a, x, D)/(lcS(a, x, D)) do not depend on a, i.e., these coefficients are
constants. Thus Theorem 5 is proven.

Theorem 6 If S = Sm(L) then C = S/(lc S) is the maximal m-sparse differential oper-
ator with constant coefficient which divides L.

Proof: If ordS > 0 then L has an infinite set of m-points and by Theorem 5, the operators
L, La, S are right-divisible by an m-sparse operator with constant coefficients. Let C be
the maximal m-sparse operator with constant coefficients dividing S. Then C divides L
and La. Similarly to Lemma 7 it can be shown that the m-splitting of La/C is equal to
La

0/C, . . . , La
m−1/C. Observe that S/C = GCD(La

0/C, . . . , La
m−1/C) and that S/C has no

positive-order right divisor with constant coefficients. Hence ord(S/C) = 0. ✷

Note that if L is right-divisible by an m-sparse operator C, ord C > 0, with constant
coefficients, then all points are m-points. But the points of Tm(L) are of special inter-
est because the number of m-sparse linearly independent solutions can increase at those
points (each of them can be investigated by the approach described in Section 2).

Example 1 L = (−x6 + 9x4 − 7x2 − 1)D3 + (−2x5 + 28x3 + 22x)D2 + (x6 − 9x4 + 7x2 +
1)D + (2x5 − 28x3 − 22x). Take m = 2. We have

La
0 = (−x6 + (−15a2 + 9)x4 + (−15a4 + 54a2 − 7)x2 − a6 − 7a2 + 9a4)D3 + (−2x5 +

(−20a2 + 28)x3 + (−10a4 + 84a2 + 22)x)D2(+x6 + (15a2 − 9)x4 + (15a4 − 54a2 + 7)x2 +
a6 + 7a2 − 9a4)D + 2x5 − (20a2 − 28)x3 + (10a4 − 84a2 − 22)x,
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La
1 = (−6ax5 + (−20a3 + 36a)x3 + (−6a5 + 36a3 − 14a)x)D3 + (−10ax4 + (−20a3 +

84a)x2 − 2a5 + 28a3 + 22a)D2 + (+6ax5 + (20a3 − 36a)x3 + (6a5 − 36a3 + 14a)x)D1 +
10ax4 + (20a3 − 84a)x2 + 2a5 − 28a3 − 22a.

The algorithm from [6] allows to determine that GCD(La0
0 , La0

1 ) is
(−x6+9x4−7x2−1)D3+(−2x5+28x3+22x)D2+(x6−9x4+7x2+1)D+2x5−28x3−22x
if a0 = 0, and D2 − 1 otherwise. The equation Ly = 0 has two linearly independent 2-
sparse solutions

∞∑

n=0

(x − a0)
2n

(2n)!
,

∞∑

n=0

(x − a0)
2n+1

(2n + 1)!

at any a0 6= 0. It has three linearly independent 2-sparse solutions

∞∑

n=0

x2n

(2n)!
,

∞∑

n=0

x2n+1

(2n + 1)!
,

∞∑

n=0

x2n

at x = 0.

5 When L is irreducible

An irreducible operator L cannot have a non-trivial right factor over C(x) of order < ordL
and we deduce the following theorem.

Theorem 7 Let L be a primitive irreducible operator. Then a0 ∈ C is an m-point of L
iff La0 is m-sparse and ι∗(La0) ≥ 0.

Proof: Since L is irreducible, it cannot have a factor S such that 0 < ordS < ordL.
Therefore if a0 is an m-point then GCD(La0

0 , . . . , La0
m−1) = La0 . In the case of a primitive

L it is possible only if one of La0
0 , . . . , La0

m−1 is equal to La0 and all others are equal to zero.
Then La0 is m-sparse. Together with Lemma 1 this proves the necessity. The sufficiency
follows from Lemmas 1, 3. ✷

We have as a consequence that if L is an irreducible primitive operator and a0 is an
ordinary point of L then a0 is an m-point of L iff La0 is m-sparse. By Lemma 6 we get
also that if an irreducible primitive operator L is such that La0 is m-sparse for a0 ∈ C,
then the equation Ly = 0 has r = ord L linearly independent local solutions at a0.

Additionally we can prove the following simple necessary condition.

Theorem 8 Let L be a primitive irreducible operator of the form (2). Let ps1(x), . . . ,
psk

(x) be all the nonzero coefficients of L and let t1, . . . , tk be their degrees. Let there exist
an m-point of L. Then

s1 − t1 ≡ . . . ≡ sk − tk (mod m). (31)

Proof: If a0 is an m-point of L then by the previous theorem La0 is m-sparse. But the
leading coefficients of the polynomial coefficients of La0 do not depend on the value of
a0. ✷
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Theorem 9 An irreducible operator L has no more than one m-point.

Proof: Without loss of generality we can assume L to be a primitive operator (otherwise
we can divide L by the gcd of its coefficients). If L is an operator with constant coefficients
then ordL = 1 due to its irreducibility and there is no a0 ∈ C such that La0 is m-sparse.
If L is not an operator with constant coefficients and La0 is m-sparse then for any a1 ∈ C,
a1 6= a0, the operator La1 is not m-sparse. Due to Theorem 7 we obtain what was claimed.
✷

Let L be again a primitive irreducible operator of the form (2). Does there exist a0

such that La
0 is m-sparse and, if yes, how to construct such a0? First check condition

(31) and, if it is satisfied, set N = remainder(s1 − t1, m). Construct La and, using the
condition

(xiDj ∈ La0) ⇒ (j − i ≡ N (mod m)),

we get algebraic equations for a that allow getting a0.

Example 2 y′′ + (x − 1)y = 0. We have 2 ≤ m ≤ 3. The operator L = D2 + (x − 1) is
irreducible over C(x); La = D2 + (x + a − 1).

m = 2. Necessary conditions (31) is not satisfied: 2 − 0 6≡ 0 − 1 (mod 2). The
equation has no 2-points.

m = 3. Necessary conditions (31) is satisfied: 2− 0 ≡ 0 − 1 (mod 3). The equation
a − 1 = 0 gives us the value a0 = 1. This is an ordinary point, hence it is a 3-point. By
Lemma 6 the given equation has two linearly independent 3-sparse solutions. In this case
they can be taken as 3-hypergeometric:

1 +
∞∑

n=1

(−1)n(x − 1)3n

2 · 3 · 5 · 6 · · · (3n − 1) · 3n
,

(x − 1) +
∞∑

n=1

(−1)n(x − 1)3n+1

3 · 4 · 6 · 7 · · ·3n · (3n + 1)
.
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[7] M. Petkovšek, Hypergeometric solutions of linear recurrences with polynomial coef-
ficients, J. Symb. Comput. 14, 1992, pp. 243–264.
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