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1. INTRODUCTION

Let K be a number field: � ⊆ K ⊆ �. The ring of
polynomials and the field of rational functions of x are
conventionally denoted as K[x] and K(x), respectively.
The ring of formal power series of x over K is denoted
as K[[x]], and the field of formal Laurent series, as
K((x)). If R is a ring (in particular, field), then Matm(R)
denotes the ring of square matrices of order m with
entries from R.

We consider systems of the form

(1)

where ξ ∈  and E is the shift operator: Ey(x) =

y(x + 1). Coefficients Ai(x), i = 0, …, r are square
matrices of order m with entries from K[x]: A0(x),
A1(x), …, Ar(x) ∈ Matm(K[x]), with Ar(x) and A0(x)
being nonzero leading and trailing matrices, and y(x) =
(y1(x), y2(x), …, ym(x))T is a column of unknown func�
tions (T denotes transposition). The number r is called
the order of the system.

Denoting the ith row of matrix Aj(x) as (x), we
can write equations in system (1) in the form

Ar x( )ξry x( ) … A1 x( )ξy x( ) A0 x( )y x( )+ + + 0,=

d
dx
���� E,
⎩ ⎭
⎨ ⎬
⎧ ⎫

Aj
i( )

Ar
i( ) x( )ξry x( ) … A1

i( ) x( )ξy x( ) A0
i( ) x( )y x( )+ + + 0,=

i = 1, 2, …, m. Unless stated otherwise, in what fol�
lows, these equations are assumed to be independent
over K[x, ξ] (in other words, system (1) has full rank):
let U1 = 0, U2 = 0, …, Um = 0 be equations composing
system (1) and L1, L2, …, Lm ∈ K[x, ξ], then L1(U1) +
L2(U2) + … + Lm(Um) = 0 is the equation 0 = 0 if and
only if L1 = L2 = … Lm = 0.

In the general case, the leading matrix is not invert�
ible (singular) in Matm(K(x)), which generates certain
difficulties in calculations. If m = 1 (scalar equation),
polynomial Ar(x) vanishes on a finite set of values of x,
and these values are of special interest when studying
and solving the equation. If m > 1, the similar role is
played by values of x for which the determinant of
matrix Ar(x) vanishes (assuming that the determinant
is not equal to zero identically). Algorithms EGδ and
EGσ make it possible to avoid difficulties of this kind.
For any system S of form (1), algorithms EGδ (in the
differential case) and EGσ (in the difference case)

construct an l�embracing system  of the same form

(1) with a nonsingular leading matrix (x). In this

case, the set of solutions of system  contains all solu�
tions of system S. (Notation δ and σ for the mappings
possessing differentiation and shift properties, respec�
tively, is used in the theory of the Ore polynomials [46].)
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The difference case turns out even more compliant,
which is explained by the fact that, for E, there exists a
uniquely determined inverse transform E–1y(x) = y(x –
1). For a difference system S of form (1), algorithm

EGσ constructs also a t�embracing system  of form

(1) with a nonsingular trailing matrix , with the set

of solutions of system  containing all solutions of
system S. Besides, algorithm EGσ finds a finite set of
linear constraints, i.e., linear relations with constant

coefficients for a finite set of values yi(α + j), α ∈ ,
i = 1, 2, …, m, j = 1, 2, …, r (α is fixed for any separate

linear constraint and  denotes the algebraic closure
of field K). The application of EGσ results in a system

( , C) that is equivalent to S, with the leading and

trailing matrices of system  being nonsingular.

It is well known that a system of form (1) can be
reduced to a first�order system M1(x)ξY(x) +
M0(x)Y(x) = 0, where M0(x), M1(x) ∈ Matrm(K(x)) and

This system can be rewritten as two systems. The
first system is

where B0(x), B1(x) ∈ Mats(K(x)), s ≤ rm, matrix B1(x)

is nonsingular, and vector (x) contains s unknown
functions from Y(x). The second system is a linear
algebraic system that allows us to express all compo�

nents of vector Y(x) that are not contained in (x) in

terms of the components of (x) (see, for example, [4,
Section 2.3; 48] for the differential case and [5, Sec�
tion 5] for the difference case). When ξ = E (i.e., in the
difference case), it is also possible to get a nonsingular
matrix B0. If m is fixed and r increases, then complex�
ity of EGδ and EGδ is O(r2). It is shown in [4, 5] that,
in this case, complexity of the transformation
described grows faster than r3. This transformation to
the first�order system is not considered in the paper.

In this paper, we have collected and discussed from
a unified point of view results published in [4, 5, 10,
12, 15, 16, 18, 23, 24]. In Sections 2 and 3, algorithms
EGδ and EGσ for constructing embracing systems are
described. The very fact of existence of the embracing
systems simplifies the proof of a number of important
properties of spaces of solutions of full�rank linear and
differential systems. This is discussed in Section 4.
Section 5 introduces the concept of an induced recur�
rent system. Such systems govern coefficients of
expansions (in appropriate bases) of solutions to orig�
inal systems. We show how to construct the indicial
equation for an original system by means of the
induced recurrent system and algorithms EGδ and
EGσ. Section 6 is devoted to meromorphic solutions of

S

A0

S

K

K

S̃

S̃

Y x( ) y x( )T ξy x( )( )T … ξr 1– y x( )( )
T

, , ,( )
T

.=

B1 x( )ξỸ x( ) B0 x( )Ỹ x( )+ 0,=

Ỹ

Ỹ

Ỹ

difference systems. In Section 7, we give examples of
algorithms for searching solutions of different kinds;
these algorithms use the induced recurrent systems.
In Section 8, it is shown that algorithms EGδ and EGσ

can be applied to nonhomogeneous systems and that,
if the system has no full rank, EGδ and EGσ allow us to
find the rank of the system and to reduce it to a conve�
nient form. Additionally, the case of q�difference sys�
tems is briefly discussed. In Section 9, randomization
and certain heuristics for EGδ and EGσ are suggested.
In Section 10, some other approaches to solving the
problems considered in the paper are briefly surveyed.
Finally, in Section 11, packages LinearFunctionalSys�
tems and EG, which implement the algorithms dis�
cussed in the computer algebra system Maple [49], are
described.

2. LINEAR DIFFERENTIAL SYSTEMS

In the differential case, the original system S has
the form

(2)

We will show how, for a system S of form (2), to con�

struct an l�embracing system  of the form

(3)

with a nonsingular leading matrix, such that the set of
solutions of this system contains all solutions of system S.

The matrix  is allowed to be zero.

Let the ith row of matrix As(x), 0 ≤ s ≤ r, be nonzero
and the ith rows of matrices As – 1(x), As – 2(x), …, A0(x) be
zero. Let the t�th entry, 1 ≤ t ≤ m, be the last nonzero entry
of the i�th row of As(x). Then, the number (r – s)m + t is
called the length of the ith equation of the system, and
the entry of matrix As(x) with indices i, t is called the last
nonzero coefficient of the ith equation of the system.

2.1. EGδ: Reduction

Algorithm EGδ is based on alternation of reduc�
tions and shifts. Let us explain how the reduction
works.

It is checked whether rows of the leading matrix are
linearly dependent over K(x). If they are, coefficients
v1(x), v2(x), …, vm(x) ∈ K[x] of the dependence are
found. From the equations of the system correspond�
ing to nonzero coefficients, we select the equation of
the greatest length. Let it be the ith equation. This
equation is replaced with the linear combination of the
equations with the coefficients v1(x), v2(x), …, vm(x).
As a result, the ith row of the leading matrix vanishes.
This step is called reduction. It is important that the
reduction does not increase lengths of the equations.

Ar x( )y r( ) x( ) … A1 x( )y ' x( ) A0 x( )y x( )+ + + 0.=

S

Ar x( )y r( ) x( ) … A1 x( )y ' x( ) A0 x( )y x( )+ + + 0,=

A0
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2.2. EGδ: Differential Shift of the Equation
with Zero Leading Part

Let the ith row of the leading matrix be zero, and let
a(x) be the last nonzero coefficient of the ith equation.
Let us divide this equation by a(x), differentiate it, and
clear the denominators. This operation is called differ�
ential shift of the ith equation of the system. The word
“shift” indicates that, owing to the performed division
by the last nonzero coefficient, this operation reduces
the length of the ith equation in the system ([4]).

2.3. EGδ: Sequence of Steps
“Reduction + Differential Shift”

The scheme of algorithm EGδ is as follows. If rows
of the leading matrix are linearly dependent over K(x),
then the reduction is performed. Suppose that this
makes the ith row of the leading matrix zero. Then, we
perform the differential shift of the ith row and con�
tinue the process of alternated reductions and differ�
ential shifts until the leading matrix becomes nonsin�
gular. (Note that we will never obtain equation 0 = 0,
since, by the assumption, the equations of the original

system are independent over K .)

Theorem 1 ([4]). Algorithm EGδ always terminates.
Thus, for a differential system S of form (2) algo�

rithm EGδ constructs an l�embracing system , with

the leading matrix (x) being nonsingular and the set
of solutions of system S being a subset of the set of

solutions of system .
Example 1. Consider the system

(4)

Rows of the leading matrix are dependent with the
coefficients v1(x) = –1 and v2(x) = x + 1. The equa�
tions are of the same length. Let us replace the second
equation:

x d
dx
����,

S

Ar

S

2x2 x 2+( ) x 1+( ) x x 2+( ) x 1+( )–

2x2 x 2+( ) x x 2+( )–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

y ''

+ 2x x 1+( ) x 4–( ) x2–

2x x 4–( ) x x 4+( )–⎝ ⎠
⎜ ⎟
⎛ ⎞

y '

+ 2 x 1+( ) x 4–( )– 2–

2x– 8+ 2⎝ ⎠
⎜ ⎟
⎛ ⎞

y 0.=

2x2 x 2+( ) x 1+( ) x x 2+( ) x 1+( )–

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y ''

+ 2x x 1+( ) x 4–( ) x2–

0 x x 2+( )2–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

y '

The differential shift of the second equation yields:

(5)

This system has the nonsingular leading matrix and
is the result of application of EGδ to system (4). It is an
l�embracing system of the original system.

Remark 1. If, after a reduction, the ith rows of
matrices Ar(x), Ar – 1(x), …, Au + 1(x) are zero, the ith
row of matrix Au(x) is nonzero, and u < r – 1, then the
equation corresponding to the ith row can be differen�
tiated r – u – 1 times without dividing it by the last
nonzero coefficient, and only the last, (r – u)�th, dif�
ferentiation needs preliminary division followed by the
elimination of the denominators (this idea was put for�
ward by M. Barkatou). Note also that the length of the
equation replaced by a linear combination of other
equations can be reduced after the reduction. In this
case, is not necessary to divide the equation by the last
nonzero coefficient before the differentiation.

Remark 2. Theoretically, algorithm EGδ can be
applied to differential systems with arbitrary analytical
coefficients. However, in this case, it will be required
to recognize whether the entries of the leading matrix
are equal to zero, which is not possible in the general
case. At the same time, the above reasoning proves
existence of an l�embracing system for the general dif�
ferential full�rank system with analytical coefficients.

2.4. On Linear Dependence on the Reduction Step

Search for coefficients v1(x), v2(x), …, vm(x) of the
linear dependence (Section 2.1) is equivalent to solv�
ing a homogeneous system of linear algebraic equa�
tions with polynomial coefficients. This problem is
efficiently solved by a number of algorithms, in partic�
ular, by modular ones, which successfully cope with
the coefficient growth in intermediate calculations
(see, e.g., [15, Section 6; 16, Section 4.2; 44; 45]. If s
independent solutions of this system are found, then it
is possible to obtain s zero rows in the leading matrix.
These s solutions are first written as rows of matrix V of
dimension s × m. The first row of matrix V is used for
nullifying the ith row of the leading matrix and differ�
ential shift of the ith equation. Then, by means of the
first row, the ith entries in the rows with numbers from 2
to s are eliminated in matrix V. As a result, all rows of

+ 2 x 1+( ) x 4–( )– 2–

0 2x 4+⎝ ⎠
⎜ ⎟
⎛ ⎞

y 0.=

2x2 x 2+( ) x 1+( ) x x 2+( ) x 1+( )–

0 x x 2+( )–⎝ ⎠
⎜ ⎟
⎛ ⎞

y ''

+ 2x x 1+( ) x 4–( ) x2–

0 2x–⎝ ⎠
⎜ ⎟
⎛ ⎞

y '

+ 2 x 1+( ) x 4–( )– 2–

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y 0.=
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matrix V, starting from the second row, contain coeffi�
cients of the linear dependences of rows of the leading
matrix with numbers 1, …, i – 1, i + 1, …, m. Continu�
ing this process, we can perform s steps “reduction +
differential shift.” Heuristic strategies of selection of
rows in matrix V can also be applied (see Section 9.3).

2.5. EGδ: Complexity

Suppose that complexity of the reductions of a
leading matrix of order m is O(mω), 2 < ω ≤ 3, in terms
of the number of operations over elements of ring K[x].
The number of steps “reduction + differential shift” of
algorithm EGδ does not exceed rm2, and the cost of
each step is estimated as O(rm2 + mω). Then, complex�
ity of EGδ in terms of the number of operations in K[x]
is O(r2m4 + rmω + 2).

It seems likely that the estimate rm2 of the number
of steps of algorithm EGδ is too high (which is justified
by results of experiments). Anyway, if every differential
shift results in the appearance of an additional solu�
tion, then the number of steps cannot exceed rm (see
Section 4.1 below), and, in this case, the total asymp�
totic estimate of complexity is O(r2m3 + rmω + 1).

3. LINEAR DIFFERENCE SYSTEMS

In the difference case, system S has the form

(6)

We will discuss how to construct an l�embracing system

(7)

for this system such that its trailing matrix is invertible
and the set of solutions contains all solutions of system
S. Similarly, one can construct a t�embracing system

 given by

(8)

with a nonsingular trailing matrix and the set of solu�
tions containing all solutions of system S. The case

where matrices (x) and (x) are equal to zero
(either one of them or both) is not excluded.

The concept of the equation length introduced for
the differential case is naturally extended to the differ�
ence case as well.

3.1. EGσ: Reduction

The reduction for the leading matrix coincides with
that for the differential case described in Section 2.1.
However, in the difference case, we also construct the

Ar x( )y x r+( ) … A1 x( )y x 1+( )+ +

+ A0 x( )y x( ) 0.=

Ar x( )y x r+( ) … A1 x( )y x 1+( )+ +

+ A0 x( )y x( ) 0=

S

Ar x( )y x r+( ) … A1 x( )y x 1+( )+ +

+ A0 x( )y x( ) 0=

A0 Ar

so�called linear constraints corresponding to the roots
of polynomial vi(x) (see Section 3.4 for detail).

3.2. EGσ: Shift of the Row with the Zero Leading Part

Suppose that the ith row of the leading matrix con�
sists completely of zeros. Then, the shift operator E is
applied to the ith equation of the system.

3.3. EGσ: Sequence of Steps “Reduction + Shift”

The scheme of algorithm EGσ is similar to that for
algorithm EGδ presented in Section 2.3. However,
instead of the differential shifts, the shifts described in
Section 3.2 are used. Perform the sequence of steps
“reduction + shift” until the leading matrix becomes
nonsingular (we will never obtain equation 0 = 0, since
the equations of the original system are independent
over K[x, E]). The discussion in Section 2.4 is valid for
the difference case as well.

Theorem 2 ([12]). Algorithm EGσ always terminates.
Thus, for a difference system S of form (6) algo�

rithm EGσ constructs an l�embracing system , with

the leading matrix  of system  being nonsingular
and the set of solutions of system S being a subset of

the set of solutions of system .

Algorithm EGσ can also be used for constructing a

t�embracing system  with a nonsingular trailing
matrix and the set of solutions that is a subset of the set

of solutions of system . In this case, the reduction is
applied to the trailing matrix A0(x), and the shift is the
application of E–1 to the ith equation of the system.
The definition of the equation length is changed
accordingly. Let the ith row of matrix As(x), 0 ≤ s ≤ r,
be nonzero and the ith rows of matrices Ar(x), Ar – 1(x),
…, As + 1(x) be zero. Let the lth entry, 1 ≤ l ≤ m, be the
first nonzero entry of the ith row of As(x). Then, the
number m(s + 1) – l + 1 is called the length of the ith
equation of the system.

The discussion in Remark 2 can accordingly be
extended to the difference case.

3.4. Linear Constraints

If, at some reduction step, the ith equation of the
system is replaced with the combination of the equa�
tions with the coefficients v1(x), v2(x), …, vm(x), then
the linear constraints arise by virtue of the fact that
vi(x) vanish at some values of x. Each value α of this
kind is substituted for x into the ith equation before it
is replaced. Such linear constraint has the form of a
linear relation for

with constant coefficients.

S

Ar S

S

S

S

yi α j+( ), i 1 2 … m, j, , , 0 1 … r,, , ,= =
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Let S and  be difference systems of form (1) and

C and  be finite sets of linear constraints. Systems

(S, C) and ( , ) are said to be equivalent if the set of
solutions of system S satisfying C coincides with the set

of solutions of system  satisfying . Both l� and
t�variants of algorithm EGσ construct system (S ', C)
that is equivalent to (S, ∅), such that its leading or,
accordingly, trailing matrix is nonsingular.

Example 2. System S

is equivalent to the system

with the empty set of linear constraints.
System S is also equivalent to the system

with the linear constraint 2y1(5) – y2(3) = 0.

3.5. Double�Sided Embracing

Let the l� and t�embracing systems  and  of an
original system have forms (7) and (8), respectively.
Any solution of the original system will also be a solu�
tion to the system

(9)

with the nonsingular leading and trailing matrices.

If  and  are sets of linear constraints for  and ,

then  ∪  is a set of linear constraints for (9). How�
ever, it is not excluded that, even with regard to these
linear constraints, system (9) may have solutions that
are not solutions to the original system (note that the
order of the system has been increased).

S

C̃

S̃ C̃

S̃ C̃

x 1– 0

2– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y x 2+( ) 0 0

0 x 2–⎝ ⎠
⎜ ⎟
⎛ ⎞

y x 1+( )+

+ 0 1–

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y x( ) 0=

0 x x 1–( )
2– 0⎝ ⎠

⎜ ⎟
⎛ ⎞

y x 2+( ) 0 2–

0 x 2–⎝ ⎠
⎜ ⎟
⎛ ⎞

y x 1+( )+

+ 0 0

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y x( ) 0=

0 0

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y x 2+( ) x 4–( ) x 2–( ) 0

2– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y x 1+( )+

+ 2– 0

0 x 3–⎝ ⎠
⎜ ⎟
⎛ ⎞

y x( ) 0=

S S

Ar x 1+( )y x r 1+ +( ) Ar 1– x 1+( )(+

+ Ar x( ) )y x r+( ) … A0 x 1+( )(+ +

+ A1 x( ) )y x 1+( ) A0 x( )y x( )+ 0=

C C S S

C C

3.6. EGσ: Complexity

As in the case of EGδ, we assume that complexity of
the reduction of the leading matrix of order m in terms
of the number of operations in K[x] is O(mω), 2 < ω ≤ 3.
The number of steps “reduction + shift” of algorithm
EGσ does not exceed rm (unlike in the differential
case, each shift here is by the entire row of the matrix).
Complexity of each step is O(rm2 + mω). This brings us
to the asymptotic estimate O(r2m3 + rmω + 1) of the
EGσ complexity in terms of the number of operations
in K[x].

4. POSSIBILITY TO PROVE PROPERTIES 
OF SYSTEM SOLUTIONS

The very fact of existence of the embracing systems
makes it possible to prove certain important properties
of solutions to systems of form (1). To consider exam�
ples of such properties (some of them might have
already been known), we need some definitions.

For a nonzero element a(x) =  from K((x)),

its valuation valxa(x) is defined by the equality

(10)

Additionally, valx0 = ∞. In a similar way, we can define
valx – αψ(x) for a meromorphic function ψ(x) and α ∈ �.

The notation f(x) ⊥ g(x) denotes that polynomials
f(x), g(x) ∈ K[x] are relatively prime; if F(x) ∈ K(x),
then denF(x) is a monic (with the leading coefficient

equal to 1) polynomial such that F(x) =  for

some f(x) ∈ K[x], f(x) ⊥ denF(x). The set of monic irre�
ducible polynomials from K[x] is denoted as Irr(K[x]).
If p(x) ∈ Irr(K[x]), f(x) ∈ K[x], then valp(x) f(x) is
defined to be the maximum n ∈ � = {0, 1, 2, …} such
that pn(x) | f(x) (valp(x)0 = ∞) and

(11)

for F(x) = , f(x), g(x) ∈ K[x]. The expansion of

F(x) into a formal Laurent series and the use of (10)
yields the same value of valuation as (11) for p(x) = x.

For two arbitrary nonzero rational functions R(x),
S(x) and p(x) ∈ Irr(K[x]), the relations similar to those
for the valuations of the Laurent series hold:

If F(x) = (F1(x), F2(x), …, Fm(x))T ∈ K(x)m, then

denF(x) = denFi(x) and valp(x)F(x) =

valp(x)Fi(x), where lcm denotes the least com�
mon multiple of the polynomials.

For A(x) = (aij(x)) ∈ Matm(K(x)), we set denA(x) =

denaij(x) and valp(x)A(x) = mini, jvalp(x)aij(x).

aix
i

∑

valxa x( ) min i: ai 0≠{ }.=

f x( )
denF x( )
����������������

valp x( )F x( ) valp x( ) f x( ) valp x( )g x( )–=

f x( )
g x( )
��������

valp x( ) R x( )S x( )( ) valp x( )R x( ) valp x( )S x( ),+=

valp x( ) R x( ) S x( )+( ) min valp x( )R x( ) valp x( )S x( ),{ }.≥

lcmi 1=
m

mini 1=
m

lcmi 1=
m

lcmj 1=
m
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4.1. Dimension of the Space of Solutions
of Differential Systems

As it is known (see, for example, [9, Chapter 3,
Section 7]), if a matrix of order m is defined and ana�
lytical in a one�connected domain D of the complex

plane, then, for any α ∈ D and w ∈ �
m

, the first�order
normal system y'(x) = A(x)y(x) has only one analytical
solution in D for which y(α) = w and, thus, the space
of analytical solutions defined in domain D has
dimension m. Let A(x) ∈ Matm(K(x)) and detA(x) ≠ 0
in a neighborhood of point α. Then, it follows that the
dimension of the space of analytical solutions of the
system defined in this neighborhood has dimension m.

If S is a system of form (2) with a nonsingular lead�
ing matrix, then it can be rewritten in the equivalent
form Y '(x) = A(x)Y(x) by taking

(12)

where Im is the identity matrix of order m, (x) =

⎯ (x)Ak(x), k = 0, 1, …, r – 1, and

Hence, we arrive at the following theorem.

Theorem 3. Let  be an l�embracing system for sys�

tem S of form (2), and let (x) be the leading matrix of

system . Let det (x) do not vanish at some point α ∈ �.
Then, analytical solutions of system S have no singular�
ities at α, and the dimension of the space of such solu�
tions does not exceed rm; if the leading matrix of system

S is not singular (  coincides with S), then the dimen�
sion is equal to rm.

If the leading matrix of the system is singular, then
this dimension may be less than rm (see Example 3
below). In this case, the number of solutions of system

 constructed by algorithm EGσ is greater than that of S.

Example 3. System

(13)

has the one�dimensional space of solutions y = (c, 0)T.
The application of EGδ to this system results in the

construction of the following system :

A x( )

0 Im … 0

… … … …
0 0 … Im

Â0 x( ) Â1 x( ) … Âr 1– x( )⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

Âk

Ar
1–

Y x( ) y ' x( )T y '' x( )T … y r 1–( ) x( )T, , ,( ).=

S

Ar

S Ar

S

S

1 0

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y ' 0 1–

0 1⎝ ⎠
⎜ ⎟
⎛ ⎞

y+ 0=

S

1 0

0 1⎝ ⎠
⎜ ⎟
⎛ ⎞

y ' 0 1–

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y+ 0,=

which has the two�dimensional space of solutions y =
(c1x + c2, c1)

T. Note that the equations of system (13)

are independent over K .

Thus, the fact of existence of an l�embracing sys�
tem in the differential case allows us to prove that the
set of points where an analytical solution to the system
may have singularity is finite and that the dimension of
the space of solutions does not exceed rm.

Remark 3. If K is an arbitrary field of characteristic
0, then the dimension of the space of solutions of sys�

tems of form (2) belonging to [[x – α]] is equal to rm

for all α ∈ , except for, possibly, a finite set of values
α where this dimension is reduced.

If the equations of the original differential system

are not independent over K , the set of singular

points of solutions of the system may be infinite.

Example 4. For the system y' +

y = 0, any point is singular for some solution

with equal components y1 and y2 (note that the equa�
tions of the system are still independent over K).

4.2. Dimension of the Space of Solutions
of Difference Systems

In the difference case, finite dimensionality can be
proved, for example, for the space of solutions that are
sequences. A sequence c: �  Km, c = , is
called a sequential solution (or a solution in the form of
a double�sided sequence) to system (6) if

for all n ∈ �.

Let Ar(x) and A0(x) be invertible in Matm(K(x)).
A segment of the set of integers

is called an essential segment for (6) if the polynomial
Ar(x – r) has no integer roots that are greater than w,
the polynomial detA0(x) has no integer roots that are
less than v, and w – v + 1 ≥ 1.

Let I be an essential segment for (6). Then, any
sequential solution c is uniquely determined by vectors
cn, n ∈ I. Hence, in order to describe the linear space
of sequential solutions over K, it is sufficient to find its
restriction to I. This restriction consists of all sets of
vectors (c

v
, c

v + 1, …, cw) that satisfy the equations

x d
dx
����,

K

K

x d
dx
����,

1 1–

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

0 0

1 1–⎝ ⎠
⎜ ⎟
⎛ ⎞

cn{ }n �∈

Ar n( )cn d+ … A1 n( )cn 1+ A0 n( )cn+ + + 0=

I v v, 1+ … w, ,{ }, v w, �, v w,≤∈=



PROGRAMMING AND COMPUTER SOFTWARE  Vol. 39  No. 2  2013

LINEAR DIFFERENTIAL AND DIFFERENCE SYSTEMS 97

This gives us the system of linear algebraic equations
that the components of vectors c

v
, c

v + 1, …, cw must
satisfy. The dimension of the space of sequential solu�
tions of the considered difference system coincides
with the dimension of the space of solutions to this
algebraic system.

If the leading, or trailing, matrix is singular, we may
turn to system (9), which does not reduce the dimen�
sion of the space of sequential solutions.

Hence, we have the following theorem.
Theorem 4. The space of sequential solutions of a

system of form (6) is finite�dimensional.
In the scalar case, additional properties of the space

of sequential solutions are proved in [14, Section 2].
Some of them hold for systems.

As stated above, singular points of solutions of the
considered differential systems form finite sets. The
situation is different in the difference case, even for
scalar equations: just recall that the gamma�function,
which satisfies the scalar equation y(x + 1) – xy(x) = 0,
has poles at all integer nonpositive values of x.

The solution spaces of linear differential and differ�
ence systems also differ considerably: solutions of dif�
ference systems can be multiplied not only by con�
stants but also by functions of period 1 (i.e., functions
f such that f(x + 1) = f(x)). Together with a meromor�
phic solution y(x), the system will also has, for exam�
ple, solutions

(14)
for any β ∈ �. Assuming that K = �, let us consider
the space of meromorphic solutions of a system of
form (6) over field �(e2πix). All elements of this field
are meromorphic functions of period 1, including, for
example, functions sin2π(x + β) and (sin2π(x + β))–1.
For the scalar equations of order r, it is shown in [28]
that such space of meromorphic solutions has dimen�
sion r. In the same work, it is proved that, for the first�
order normal systems consisting of m equations

(15)
A(x) ∈ Matm(K(x)), such a solution space has dimen�
sion m, since, by means of an appropriate cyclic vector
[28, 36], system (15) can be rewritten as a scalar equa�
tion of the order not greater than m.

Let us turn to system (6). If the leading matrix Ar(x)
is invertible in Matm(K(x)), then (6) can be rewritten as
the system

(16)
where A(x) has form (12) and

(transition from (6) to (16) is possible, of course, not
only in the case of K = �, but also in the case of an
arbitrary K). Hence, if matrix Ar(x) is not singular, then

Ai n( )cn i+

i 0=

r

∑ 0, n v v 1+ … w r.–, , ,= =

2π x β+( )sin( )y x( ) and 2π x β+( )sin( ) 1– y x( )

y x 1+( ) A x( )y x( ),=

Y x 1+( ) A x( )Y x( ),=

Y x( ) y x( )T y x 1+( )T … y x r 1–+( )T, , ,( )
T

=

the dimension of the space of meromorphic solutions
over �(e2πix) is not greater than rm. Note also that the
transition from field � to K ⊆ � does not increase
dimension of the space of meromorphic solutions.
We may return to the original assumption about field K.

Theorem 5. The dimension of the space of meromor�
phic solutions of system (6) over the field K(e2πix) does
not exceed rm.

Additionally, it can be shown that, if both the lead�
ing and trailing matrices for an original system S of

form (6) are not singular for K = � (i.e., systems S, ,

and  coincide), then the discussed dimension is
equal to rm.

4.3. Boundedness of Valuations of Meromorphic 
Solutions to Difference Systems

In the difference case, existence of l� and t�
embracing systems allows us, for example, to prove
that, for a meromorphic solution y(x) and a fixed α ∈ �,
the values valx – α – ny(x) are bounded from below for
n ∈ �. This assertion is formulated in the following
theorem.

Theorem 6 ([24, Proposition 1]). Let y(x) be a mer�
omorphic solution of system (6). Let (7) and (8) be the
l� and t�embracing systems for this system. Let

(17)
Then, (i) if N0 is such that V(α + n0)W(α + n0) ≠ 0

for all integer n0 ≥ N0, then

(ii) if N1 is such that V(α + n1)W(α + n1) ≠ 0 for all
integer n1 ≤ N1, then

5. INDUCED RECURRENCE SYSTEMS

In this and the next sections, we describe algo�
rithms for constructing certain basic objects (recur�
rence systems, polynomials, and numeric quantities)
that play an important role in finding various solutions
of a given system.

5.1. Construction of Induced Systems

We will use double�sided sequences of rational
functions

(18)
and

(19)

S

S

V x( ) detAr x r–( ), W x( ) detA0 x( ).= =

∃λ �∈ ∀n0 N0≥ valx α– n– y x( ) = λ
n  = n0

min( );
n0 + r – 1

∃μ �∈ ∀n1 N1≤ valx α– n– y x( ) = μ
n  = n1

min( ).
n1 + r – 1

xn{ }n �∈

x
n
, if n 0≥

1/x n
, if n 0<⎩ ⎭

⎨ ⎬
⎧ ⎫

n �∈
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(  = ,  = ) as

bases for expanding certain solutions of systems. Basis
(18) will be used in the differential case, and basis (19)
will be used in the difference case. Let coefficients of
the expansion of a solution in the corresponding basis
be z(n), n ∈ �, where z(n) = (z1(n), …, zm(n))T is the
column vector of number sequences. Then, the
sequence of the column vectors  satisfies
the induced recurrence system

(20)

where l and t are integers such that l ≥ t and Bt(n), …,
Bl(n) ∈ Matm(K[n]). We use the term “induced recur�
rence system,” rather than the “induced difference
system,” in order to emphasize the special role of the
induced systems.

To describe the method for constructing an
induced recurrence system, it is convenient to rewrite
the original system (1) by using the matrix whose
entries are scalar operators:

(21)

Lij ∈ [x, ξ], i, j = 1, 2, …, m. (The transformation to
such system representation and the inverse transfor�
mation present no difficulties.) Then, the induced
recurrence system takes the form

(22)

where  ∈ K[x, En, ], i, j = 1, 2, …, m, and En is
the shift operator by n: Enz(n) = z(n + 1). Each opera�

tor  is obtained from Lij through the transformation
described in the following theorem.

Theorem 7 ([17; 12, Section 3; 26; 25]). In the dif�
ferential case, the induced recurrence system is con�
structed by system (21) by means of the transformation

and, in the difference case, by the transformation

(23)

Example 5. Rewriting the difference system

x
n

x k– 1+( )
k 1=
n

∏ xn x k+( )
k 1=
n

∏

z n( ){ }n �∈

Bl n( )z n l+( ) Bl 1– n( )z n l 1–+( ) …+ +

+ Bt n( )z n t+( ) 0,=

L11 … L1m

… … …
Lm1 … Lmm⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

y x( ) 0,=

L̃11 … L̃1m

… … …

L̃m1 … L̃mm⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

z n( ) 0,=

L̃ij En
1–

L̃ij

x En
1–
, d

dx
���� n 1+( )En,

x n En
1–
, E 1 n 1+( )En.+ +

(24)

in form (21), we obtain

Transformation (23) results in the system of form
(22) with m = 2 in which

The induced recurrence system for system (24) is
rewritten in form (20) as

(25)

For example, if system (24) has a polynomial solu�
tion, this solution can be written in basis (19) as

Then, the double�sided sequence

must satisfy system (25). We will return to the discus�
sion of this in Example 8.

Remark 4. In fact, a stronger assertion than just ful�
fillment of Eq. (20) for the expansion coefficients
holds. Let y = (y1, y2, …, ym)T be a vector whose entries
admit expansions in terms of basis (18) or (19), and let

(here, y(x) is not necessarily a solution to the original
system). Let z(n) and z*(n) be vectors whose compo�
nents are sequences of the expansion coefficients for

x2 x+ 0

1 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y x 1+( )

+ 2x2– 4x– x2 3x 2+ +

1– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y x( ) 0=

x2 x+( )E 2x2– 4– x2
3x 2+ +

1– E⎝ ⎠
⎜ ⎟
⎛ ⎞

y x( ) 0.=

L̃11 n3 2n2 n+ +( )En n2 3n– n 3+( )En
1–– En

2–
,–+=

L̃12 n2 3n 2 2n 2+( )En
1– En

2–
,+ + + +=

L̃21 1,–=

L̃22 n 1+( )En 1,+=

n3 2n2 n+ + 0

0 n 1+⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 1+( )

+ n2 3n– n2 3n 2+ +

1– 1⎝ ⎠
⎜ ⎟
⎛ ⎞

z n( )

+ n– 3– 2n 2+

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 1–( )

+ 1– 1

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 2–( ) 0.=

a0x
0

a1x
1
… akx

k
, ai Km

.∈+ + +

z n( )
an, if 0 n k,≤ ≤

0, otherwise⎩
⎨
⎧

=

y* x( ) Ar x( )ξry x( ) … A1 x( )ξy x( ) A0 x( )y x( )+ + +=
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components y1, y2, …, ym and , , …, , respec�
tively, in terms of basis (18) or (19). Then,

It is not difficult to show that the equations of the
induced recurrence system are independent over K[n, En]
if and only if the equations of the original system are

independent over K , or, accordingly, K[x, E].

At the same time, the fact that leading matrix of the
original differential system is nonsingular does not
guarantee that the leading matrix of the induced
recurrence system is also nonsingular, and vice versa.

Example 6. The differential system

has the singular leading matrix, whereas the leading
matrix of the induced recurrence system

is nonsingular [4, Section 3.2]. On the other hand, for
the differential system

the induced recurrence system

has singular leading matrix [12, Example 8].
There also exist simple examples where the leading

matrices of the differential and induced recurrence
systems are both (non)singular. In the difference case,
similar examples can be presented for the trailing
matrices.

5.2. Indicial Equations

In the classical theory of ordinary differential equa�
tions, the so�called indicial (algebraic) equations are
used for finding valuations of analytical solutions in
the scalar case (see, for example, [9, Chapter IV]). To
find upper bounds for degrees of polynomial solutions
of systems of form (1) in the differential and difference
cases and lower bounds for valuations of such solutions
at a given point in the differential case, we need ana�
logues of the indicial equations. The induced recur�

y1* y2* ym*

z* n( ) Bl n( )z n l+( ) Bl 1– n( )z n l 1–+( ) …++=

+ Bt n( )z n t+( ).

x d
dx
����,

x 0

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y ' 0 x

1 1⎝ ⎠
⎜ ⎟
⎛ ⎞

y+ 0=

n 0

1 1⎝ ⎠
⎜ ⎟
⎛ ⎞

z n( ) 0 1

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 1–( )+ 0=

x 0

0 x2⎝ ⎠
⎜ ⎟
⎛ ⎞

y ' 1– x3–

2– x–⎝ ⎠
⎜ ⎟
⎛ ⎞

y+ 0,=

n 1– 0

2– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

z n( ) 0 0

0 n 2–⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 1–( )+

+ 0 1–

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 3–( ) 0=

rence systems, which were introduced in Section 5.1,
make it possible to construct such equations.

If the leading matrix Bl(n) of system (20) is singular,
one can construct the l�embracing system

for (20) with the help of EGδ. In a similar way, one can
construct the t�embracing system

The fact that the value of t in (20) is not necessarily
equal to zero and even can be negative (and the value
of l is not necessarily positive) does not prohibit the
application of algorithm EGδ.

Theorem 8. (i) Let y(x) ∈ K((x))m be a solution of the
differential system for which (20) is the induced recur�
rence system. Then, the value n = valxy(x) satisfies the
equation

(26)

(ii) Let y(x) ∈ K[x]m be a solution of the differential
or difference system for which (20) is the induced recur�
rence system. Then, the value n = degy(x) satisfies the
equation

(27)

(here, degy(x) = degyi(x) for y(x) = (y1(x),

y2(x), …, ym(x))T ∈ K[x]m).

Equation (27) may be viewed as an indicial equa�
tion for the original system at point ∞. The greatest
integer nonnegative root of this equation yields the
upper bound for the degree of polynomial solutions.
If Eq. (27) has no integer nonnegative roots, then the
original system has no polynomial solutions. Similarly,
in the differential case, Eq. (26) can be used for finding
lower bounds of valuations of solutions at point 0.
(Substitution of x + α for x in the original system turns
point α to 0.)

Example 7. For the differential system

(28)

the induced recurrence system is given by

The application of EGσ to the leading matrix yields

Bl n( )z n l+( ) Bl 1– n( )z n l 1–+( ) …+ +

+ Bt n( )z n t+( ) 0=

Bl n( )z n l+( ) Bl 1– n( )z n l 1–+( ) …+ +

+ Bt n( )z n t+( ) 0.=

detBl n l–( ) 0.=

detBt n t–( ) 0=

maxi 1=
m

x x

x x⎝ ⎠
⎜ ⎟
⎛ ⎞

y ' 1 1 x2+

x– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y+ 0,=

n 1+ n 1+

n n⎝ ⎠
⎜ ⎟
⎛ ⎞

z n( ) 0 0

1– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 1–( )+

+ 0 1

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 2–( ) 0.=
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(29)

and the linear constraint
(30)

The determinant of the leading matrix of system (29)
has roots 0 and –2. Therefore, the differential system
(28) cannot have solutions from K((x))m at point x = 0
with valuations different from 0 and –2. Whether it has
solutions with these valuations we do not know yet.
The answer to this question will be given in Example 9.

We see that, in the differential case, algorithms EGδ

and EGσ work jointly: the first algorithm is used to find
the set of possible solution singularities, and the sec�
ond one is used to compute the bounds of solution val�
uations at these points.

In what follows, we will call (26) and (27) “indicial
equations.’’ This is a provisional name, since, for
example, the equations obtained in this way depend on
the constructed l� and t�embracing systems and, thus,
are not unique.

6. CALCULATION OF LOWER BOUNDS
OF VALUATIONS OF COMPONENTS

OF MEROMORPHIC SOLUTIONS
TO DIFFERENCE SYSTEMS

We continue study of meromorphic solutions of
difference systems started at the end of Section 4.1.
The question is the lower bound for valx – αy(x), where
y(x) is a meromorphic solution to system (6) and α is a
point in the complex plane.

6.1. Bounds of Solution Valuations

Consider the problem of calculating the lower
bound for valx – αy(x), assuming that

(31)

for some nonnegative integer n0 and integer v, or, sim�
ilarly,

(32)

for some nonnegative integer n1 and integer w. The fol�
lowing theorem and remark are borrowed from [24,
Section 3.2].

Theorem 9. Let y(x) be a meromorphic solution to
system (6), α ∈ �, and p(α) = 0 for p(x) ∈ Irr(K[x]).
Let V(x) and W(x) be defined by (17), and let a nonne�
gative n0 and integer v satisfy inequality (31). Then,

Similarly, let a nonnegative n1 and integer w satisfy ine�
quality (32). Then,

n 2+ 0

n n⎝ ⎠
⎜ ⎟
⎛ ⎞

z n( ) 0 n 1+

1– 0⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 1–( )+ 0=

z1 0( ) z2 0( ) z2 2–( )+ + 0.=

valx α– n+ y x( )
n  = n0

min v≥
n0 + r – 1

valx α– n– y x( )
n  = n1

min w≥
n1 + r – 1

valx α– y x( ) v≥ valp x n+( )V x( ).
n 0=

n0 1–

∑–

Remark 5. Let λ and μ be defined like in Theorem
6. If v ≤ λ and w ≤ μ, then the following inequality
holds for any mutual location of point α and the roots
of the polynomials W(x) and V(x):

(33)

(the sums on the right�hand side of the inequality are
finite).

Theorem 9 and Remark 5 yield algorithms for solv�
ing the problem under consideration.

6.2. Bounds for Valuations of Solution Components

It is also possible to consider the problem of calcu�
lation of lower bounds for valuations valx – αyi(x), i = 1,
2, …, m, assuming that, for some nonnegative integer
n0, lower bounds for valuations

are separately given, or, for some nonnegative integer
n1, lower bounds for valuations

are separately given. In [24], an algorithm is presented
that, in the general case, finds more accurate bounds,
compared to the previous algorithm, but has greater
complexity. This algorithm is based on the so�called
tropical calculations [6, Section 2]. Here, we will not
go in detail of this algorithm.

7. SOLUTION CONSTRUCTION

In this section, we give examples of algorithms for
searching solutions of various types. The algorithms
use induced recurrence systems and indicial equa�
tions.

7.1. Polynomial Solutions

Polynomial and rational solutions are of interest by
themselves. Besides, finding of such solutions may
serve as an intermediate stage in the construction of
more complex solutions.

After the upper bound of degrees of all polynomial
solutions has been found with the help of (27), the
solutions themselves can be found by the method of
undetermined coefficients. However, there are more
efficient methods for computing coefficients of poly�

valx α– y x( ) w valp x n–( )W x( ).
n 0=

n1 1–

∑–≥

valx α– y x( ) max v valp x n+( )V x( ),
n �∈

∑–
⎩
⎨
⎧

≥

w valp x n–( )W x( )
n �∈

∑–
⎭
⎬
⎫

valx α– n+ yi x( ), n n0 n0 1+ … n0 r 1,–+, , ,=

i 1 2 … m,, , ,=

valx α– n– yi x( ), n n1, n1 1 … n1 r 1,–+, ,+=

i 1 2 … m,, , ,=
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nomial solutions with the help of the induced recur�
rence system (see, for example, [10]).

Example 8. Let us return to consideration of system
(24). The induced recurrence system (25) has the sin�
gular trailing matrix. Algorithm EGσ constructs the t�
embracing recurrence system

with the empty set C of linear constraints. The roots of
Eq. (27) are equal to 1 and 2. This yields the upper
bound 2 for the degrees of possible polynomial solu�
tions.

By means of the t�embracing recurrence system
obtained, we successively find coefficients of the
desired polynomial solution, starting from the leading
coefficients to the lower ones. In doing so, we take into
account the fact that the coefficients with indices
greater than 2 and less than 0 are necessarily equal to
zero. Here, this system is used for n varying from 4 to
–1. The solution contains arbitrary constants:

7.2. Rational Solutions

Let us describe how the search of rational solutions
can be reduced to that of polynomial solutions. Con�
sider first the differential case. As noted in Section 4.1,
for a differential system S of the considered form, one
can find a polynomial d(x) such that d(α) = 0 at the
point α where system S has singularity. The fact that we
can find the lower bound eα for the valuation at point α
for an arbitrary solution of system S allows us to con�

struct a rational function F(x) = 

such that any rational solution y(x) of system S has the
form

(34)
where z(x) ∈ K[x]m. Substitution (34) transforms S to
a system in z(x), and it remains to find polynomial
solutions of the system obtained [12, Example 10].
If the indicial equation corresponding to some α has
no integer roots, then S has no rational solutions.

In addition to the above�said, we note that the
bounds ei are identical for all roots αi of each irreduc�
ible polynomial d(x). Therefore, F(x) can be written as

n 1–( )2 n 1–( )3– 0

0 n 1–⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 1–( )

+ n 1–( )2– 5n 9–+  2–

1– 1⎝ ⎠
⎜ ⎟
⎛ ⎞

z n 2–( ) 0=

y1

y2⎝ ⎠
⎜ ⎟
⎛ ⎞ c2 2c1 c2+( )x

1
c1x

2
+ +

c2x
1
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=
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.

x α–( )
eα

d α( ) 0=∏

y x( ) F x( )z x( ),=

where d '(x) is the polynomial obtained from d(x) after
the elimination of the squares. When degp(x) > 1 the
exponents ep(x) are found by the calculation over the
field K(α), p(α) = 0.

Now, let us consider the difference case. When
searching denominators of rational solutions, the a
priori known lower bounds v and w of valuations are
set equal to zero in (33). Let us consider an algorithm
for finding a universal denominator of rational solu�
tions of the original system, or, for brevity, the univer�
sal denominator for the original system, i.e., a polyno�
mial U(x) ∈ K[x] such that, if the system has a rational
solution y(x) ∈ K(x)m, then the solution may be repre�
sented as

(35)

where z(x) ∈ K[x]m. If the universal denominator is
known, we can make substitution (35), transform the
original system to a system in z(x), and apply one of
the algorithms for searching polynomial solutions (see
Section 7.1).

For p(x) ∈ Irr(K[x]) and f(x) ∈ K[x]\{0}, we define
the finite set

If ( f(x)) = ∅, we set ( f(x)) = –∞ and

min ( f(x)) = +∞.

One of the practical algorithms for constructing the
universal denominators consists of two steps. On the
first step, the finite set of irreducible polynomials

where V(x) and W(x) are defined by (17), is con�
structed. To construct set M, complete factorization of
V(x) and W(x) is used. On the second step, the universal
denominator is calculated in the form of the product

(36)

where, in accordance with (33),

(37)

In [39], an algorithm for finding the universal
denominator based on formulas (36) and (37) was sug�
gested. Then, it was shown that, if we take into
account that the exponents γp(x) for different (some�
times, many) p(x) that differ from one another by a

p x( )
ep x( ),
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∏

y x( ) 1
U x( )
���������z x( ),=
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⎨
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shift on an integer number may coincide, the calcula�
tions can significantly be sped up [3, 20].

Remark 6. In [5, Theorem 1], it was proved that, if
an algorithm for constructing a universal denominator
U(x) uses, like the earlier proposed algorithm, only
V(x) and W(x), then U(x) is also a universal denomina�
tor for any nonhomogeneous system with the same
left�hand side and an arbitrary polynomial right�hand
side (b1(x), b2(x), …, bm(x))T ∈ K[x]m.

Given V(x) and W(x), U(x) can also be found by
algorithms that calculate the so�called dispersion of
polynomials [1; 2, Section 8]. Originally, these algo�
rithms were designed for the scalar case. Later, in [13],
an algorithm for normal systems (15) was proposed,
with V(x) = denA(x – 1) and W(x) = denA–1(x).
(These dispersion algorithms are used, in particular, in
Maple.) A similar approach was used in [29] for solv�
ing a more general problem.

However, complexity of the algorithm based on
formulas (36) and (37) that takes into account the pos�
sibility of identical γp(x) for different p(x) is less than
that of the dispersion algorithm [20, Section 4.2].

7.3. Solutions with Series Components

Here, we discuss, in particular, how to search for
solutions of differential systems whose components
are Laurent series. These solutions will be referred to
as Laurent solutions. The convergence is not consid�
ered here.

In the case of a singular leading matrix of the
induced system, we apply EGσ. The finite set C of lin�
ear constraints arising in this case will allow us to dis�
card those roots of the denominator of the leading
matrix that are certainly not valuations of the Laurent
solutions (this root separation can also be used in
searching for rational solutions). Series solutions are
represented by initial terms. The number of the initial
terms is selected in such a way that, first, the computa�
tion of the following terms does not already require to
take into account the linear constraints and, second,
the determinant of the leading matrix of the l�embrac�
ing recurrence system does not vanish in the course of
the computation. Having found the lower bound of the
solution valuation (Theorem 8 (i)), we can write down
and solve a system of linear algebraic equations for the
initial terms. The following terms may be obtained
with the help of the l�embracing recurrence system. 

Example 9. Let us return to the differential system
(28) from Example 7. The determinant of the leading
matrix of system (29) has roots 0 and –2. However, no
Laurent solution of (28) corresponds to the larger root:
constraint (30) and the first equation of system (29)
show that, if z(–1) = z(–2) = 0, then z(0) = 0 as well.
As for the root –2, the corresponding Laurent solu�
tions are easily constructed. We select z(–2) that satis�
fies the equation

For the basis solution of this linear system of algebraic
equations, we may take, for example, z1(–2) = (1, –1)T.
From (29), we obtain

which yields z1(–1) = (0, –1)T. For n = 0, system (29)
takes the form

and, together with (30), yields z1(0) = (1/2, 1/2)T.
Using (29), we obtain

for n ≥ 1.
We see that, at point x = 0, the differential system

(28) has one�dimensional space of the Laurent solu�
tions with the basis given by the series

where

and

(38)

for n ≥ 1.
Remark 7. It was noted in [31, Section 6] that the

transformations performed by algorithm EGσ on the
induced recurrence system are associated with certain
transformations of the original differential system.
The authors of the paper [31] refers to this as a differ�
ential variant of EGσ, which works without transform�
ing to the recurrence system. Such an approach may
be helpful when it is required to find a very few terms
of the Laurent series. However, when the desired num�
ber of terms is great, the induced recurrence system is
more efficient (in Example 9, we obtained convenient
recurrent formula (38)). Besides, the original variant
of EGσ additionally yields a finite set C of linear con�
straints, which, in certain cases, allows us not to con�
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sider some roots of the determinant of the corresponding
matrix (in Example 9, this set consists of only one rela�
tion (30), which allows us not to consider the root 0).

In a similar way, in the difference case, one can apply
the induced recurrence systems for constructing solu�
tions in the form of Newton’s series [7, Chapter II].
At point 0, such a solution is given by

These series are of interest; however, they are more dif�
ficult to deal with compared to the Laurent series.
For example, even in the case of an entire function, its
representation in terms of the Newton series is gener�
ally not unique (however, there are sufficient condi�
tions of uniqueness [7, Chapter II, Section 2.3]).

7.4. Regular Solutions of Differential Systems

Regular solutions of systems of differential equa�
tions are solutions of the form

(39)
where λ ∈ K and v(x) ∈ K((x))m[logx]. Any regular
solution is written as

where k ∈ � and gs(x) ∈ K((x))m, s = 0, 1, …, k. If

(40)

then λ is called exponent of solution (39).
In the scalar case, the problem of finding regular

solutions can be solved by means of algorithms of the
theory of differential equations. The Frobenius algo�
rithm is based on studying roots of the indicial equa�
tion [9, Chapter IV; 38; 47, Chapter V]. When con�
structing a solution, not only values of roots of the
indicial equation but also their multiplicities are taken
into account, as well as the existence of roots that dif�
fer by an integer. The Heffter algorithm [40, Chapters
II and VIII; 47, Chapter V] constructs a basis (possibly,
empty) of regular solutions with multiplier xλ not using
multiplicity of root λ or existence of other roots that
differ from λ by an integer.

The application of the Frobenius and Heffter algo�
rithms requires transformation of the system to a sca�
lar equation (for example, by means of the cyclic vec�
tor method [36]), which is not convenient from the
point of view of practice. There is a need in algorithms
that can directly be applied to the system. In [30, 33],
the Heffter algorithm was extended to the case of first�
order normal systems of form (15) with the help of the
approach based on super�irreducibility [41]. On the
other hand, the Heffter algorithm can be generalized by
means of the approach based on the construction of the
induced recurrence systems and the corresponding
embracing systems [19, 22]. This variant is already appli�
cable to systems of arbitrary order. To describe it, it is

a0x
0

a1x
1

a2x
2
…, ai Km

.∈+ + +

y x( ) xλ
v x( ),=

xλ gs x( ) x( ),log
s

s 0=

k

∑

valxgs s( )
s  = 0

min 0,=
k

convenient to write system (2) as L(y) = 0, where L is a
differential operator with matrix coefficients of the form

For an arbitrary integer i ≥ 0, the application of L to
g(x)logi(x)/i! yields

where the coefficients of the differential operators Li, j

belong to Matm(K[x, x–1]) and L0, 0 = L and  =
Li, 0 for all i, j ≥ 0 [40; 43, Section 3.2.1]. Let us intro�
duce the notation Li = Li, 0 (=  for all j ≥ 0).

Generalization of the Heffter algorithm to the case
of systems of arbitrary order relies on the consider�
ation of a sequence of systems S0, S1, …, where Sk is a
system of the form

(41)

Similar to the result proved by Heffter in the scalar
case, the following assertion holds.

Theorem 10 ([19, 22]). The set of nonnegative inte�
gers k for which system Sk has a Laurent solution

is finite; if it is empty, then the equation L(y) = 0 has no
nonzero solutions in K((x))m[logx]. If this set is not

empty and  is its greatest element, then any solution of
system L(y) = 0 belonging to K((x))m[logx] has the form

(42)

where

(43)

is a Laurent solution of system . At the same time, any

Laurent solution of form (43) of system  generates

solution (42) of system L(y) = 0.
If the value λ is known, then the search of the reg�

ular solution (39) reduces to the search of solution
yλ(x) ∈ K((x))m[logx] by means of the substitution
y(x) = xλyλ(x).

For the possible candidates for the role of λ in (39),
roots of the indicial equation (26) of the original sys�
tem are used. If necessary, EGσ is applied; the set C of
arising linear constraints, in certain cases, allows us to
eliminate some candidates for the role of the exponent
λ. The linear constraints with noninteger values of n
can help to discard wrong noninteger values of λ.
If λ1 – λ2 ∈ �, then the sets of regular solutions with

the multipliers  and  will, clearly, be identical.
Therefore, among all values of λ differing by integers,
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it is sufficient to consider the least one. If a regular
solution with such λ exists, then, by adding (if neces�
sary) an integer to λ, it is easy to fulfill (40), having
found, thus, the desired solution exponent.

Remark 8. Possible values of λ belong either to field
K or to its extension. In the latter case, coefficients of
the Laurent series in (42) belong to the same extension.

Example 10. For the differential system

the induced recurrence system has the singular leading
matrix. Applying EGσ, we obtain the recurrence sys�
tem with the leading matrix

(44)

and, additionally, the linear constraints

(45)

(46)

The set  of roots of the determinant

of matrix (n) is divided into three classes with the

least elements – , – , and 0. The linear constraint

(45) helps to eliminate the root – . The linear con�

straint (46) eliminates nothing, so that it is required to

consider two values of λ: –  and 0. Calculations

yield the resulting solution

The expansions of all gs(x) into series are repre�
sented by initial terms (see Section 7.3).

The representation of series in the form of their ini�
tial segments is a tricky part of the algorithm. In the
course of the calculations, it is required to determine
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the length of the initial segments on the right�hand
side of (41) and, accordingly, to enlarge the initial seg�
ments of solutions of the previous systems, when
needed, upon the calculation of the right�hand side of
the next system in the sequence S0, S1, …. Our algo�
rithm overcomes this difficulty (see [19, 22] for detail).

It is easy to see that systems of form (41) differ by
only their right�hand sides, whereas the left�hand side
is always the result of application of L0 (i.e., L) to the
vector of unknown functions. Such systems are effi�
ciently solved by successive application of EGσ to non�
homogeneous systems, which is briefly discussed in
Section 8.1.

Remark 9. The problem of construction of regular
solutions of an arbitrary�order differential systems was
completely solved by means of EGσ in [19, 22]. The
problem of construction of such solutions is also
solved in [31] for the case where the leading matrix of
the original differential system is nonsingular. Since
the set of relations C is not considered in [31], the
redundant solutions are eliminated by substituting
them into the equations of the original system. If the
induced recurrence system and the set C have been
constructed, such elimination, in our opinion, is more
expensive than that where the relations similar to (30)
are taken into account. (In [31], all power series in a
regular solution are given in a truncated form, which
makes the eliminating substitution–check even more
complicated.)

7.5. Rational Logarithmic Solutions
of Differential Systems

Rational logarithmic solutions of differential sys�
tems are solutions belonging to K(x)m[logx]. Their
components are written as

(47)

where k ∈ � and gs(x) ∈ K(x), s = 0, 1, …, k. Whereas
the search of regular solutions is a local problem, i.e.,
the problem solved at some point, the search of ratio�
nal logarithmic solutions is a similar global problem

The algorithm for searching regular solutions that
was discussed in Section 7.4 constructs initial seg�
ments of the Laurent series. It can easily be adapted to
searching solutions in K[x]m[logx]. To this end, instead
of dynamical calculation of the required number of the
initial terms of the series, the upper bound for the
powers of the corresponding polynomial solutions is
immediately calculated, and just this number of terms
is found. Moreover, the necessity of calculation of pos�
sible values of λ is also eliminated.

Like the search of rational solutions described in
Section 7.1, the search of rational logarithmic solu�
tions relies on the construction of a function F(x) ∈
K(x) such that any rational logarithmic solution y(x) of
system S has form (34); i.e., y(x) = F(x)z(x), but z(x) ∈

gs x( ) x( ),log
s

s 0=

k

∑
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K[x]m[logx]. Substitution (34) reduces the search of a
solution in K(x)m[logx] to that in K[x]m[logx]. It is
shown in [30] that, for searching rational and rational
logarithmic solutions, one and the same function F(x)
can be used.

Example 11. For the differential system

we find F(x) =  and obtain the corresponding

rational logarithmic solution

with the rational solution of the same system having
the form

The rational logarithmic solution found coincides
with this rational solution when c2 = 0.

8. ADDITIONAL POSSIBILITIES

8.1. Nonhomogeneous Systems

Given a nonhomogeneous system S whose left�
hand side coincides with the left�hand side of (1) and
the right�hand side has the form

by adding component ym + 1 equal to 1 into y(x), we
transform this system to the homogeneous system S1

of order m + 1 in m + 1 unknown functions. The dif�
ference system

is transformed to system S1 of the form

where
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Ãr x( )y x r+( ) … Ã1 x( )y x 1+( )+ +
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,=

…

and

i = 2, 3, …, r. In a similar way, the transition to system
S1 in the differential case can be described, with the

additional equation being (x) = 0 instead of
ym + 1(x + 1) – ym + 1(x) = 0.

Let a homogeneous system S2 be obtained by dis�
carding the right�hand sides in the equations of the
original system. If the equations in S2 are independent

over K , then the equations in S1 are also indepen�

dent. Taking this into account, we may confine ourselves
to the consideration of only homogeneous systems for
many problems in hand. For example, to find the poly�
nomial whose roots contain all singular points of the
solutions of the differential system S, it is sufficient to find
the corresponding polynomial for S1. Besides, it happens
that the right�hand side can be ignored on some step of
calculations (see, for example, Remark 6).

Algorithms EGδ and EGσ can be applied directly to
nonhomogeneous systems (for EGσ, this was shown in
[12]) to obtain the embracing nonhomogeneous sys�
tems. The components of the column consisting of the
components of the right�hand side do not leave their
places (never are shifted to other columns) in the
course of the application of EGδ and EGσ. This makes
it possible to achieve certain efficiency in the algo�
rithm for constructing regular solutions, which was
mentioned in Section 7.4. Solution g0(x) of system
L0(g0) = 0 contains arbitrary constants. We use g0(x) as
the right�hand side of system L0(g1) = –L1(g0), so that
this right�hand side is a linear function of the above�
mentioned arbitrary constants. Applying the same
technique as in the case of the scalar equation with a
parameterized right�hand side (see, for example,
[17]), we find, together with g1(x), linear relations for
the constants occurring in g0(x) and g1(x). Continuing
this process, on each step, we obtain g0(x), …, gi(x)
containing unknown constants and a linear algebraic
system in these constants. To guarantee termination of
this process, we impose condition g0(x) ≠ 0; in this
case, we necessarily reach a k such that (41) has no
Laurent solutions. All these systems have one and the
same left�hand side, but their right�hand sides are dif�
ferent. In order to perform transformations of EGσ
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Ãi x( )

0

Ai x( )

0

0 … 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

…

ym 1+'

x d
dx
����,



106

PROGRAMMING AND COMPUTER SOFTWARE  Vol. 39  No. 2  2013

ABRAMOV, KHMELNOV

only once, EGσ is applied to the system with the right�
hand side of the general form. This yields an l�embrac�
ing recurrence system with a nonsingular leading
matrix, a finite set of linear constraints, and a trans�
formed right�hand side. Each component of this
transformed right�hand side is a linear combination of
the components (possibly, shifted) of the original
right�hand side. Hence, the same l�embracing recur�
rence system can be used for solving any system of
form (41) after the substitution of the components of
the right�hand side of the particular system into the
transformed right�hand side.

8.2. EGδ and EGσ 
as Rank�Revealing Transformations

Throughout this paper, we assumed that the equa�
tions of the original system S of form (1) are indepen�
dent over K[x, ξ], in other words, the system has rank
m (i.e., full rank). If this assumption is not fulfilled,
then algorithms EGδ and EGσ find the rank of the sys�
tem, since the transformations performed preserve the
number of the equations that are independent over
K[x, ξ]. If the rank is m0 ≤ m, then, by means of EGδ

(or, respectively, EGσ), it is possible to construct a sys�
tem S ' of m0 equations independent over K[x, ξ] such
that its leading matrix (of size m0 × m) has rank m0 over
K[x], with each solution of system S being a solution of
system S ' [4, Section 2.1; 16, Section 2].

8.3. q�Difference Systems

Let us briefly discuss the q�difference case. While
differential equations are constructed on the basis of

the differentiation operation  and difference equa�

tions, on the basis of the shift operation E, the q�dif�
ference equations are based on the q�shift Q:

where q is either a fixed number or an additional vari�
able (indefinite quantity). We will assume that K =
K0(q), where K0 is a subfield of field K and that q is
transcendent over K0. Accordingly, f(x) may be an ana�
lytical function (as a rule, of two variables x and q), or
a formal series, or, for example, a sequence f(qn), n ∈
� (in this case, x denotes qn). The q�difference equa�
tions are met, for example, in the subfield of number
theory, partitioning theory [11, Section 8.4], and com�
binatorics [27]; besides, the q�difference differential
and integral calculus has been constructed [8].

All discussed in Sections 2, 3, and 5 is transferred
(with appropriate revisions) to the q�difference case
(ξ = Q in (1)), see [12, 15] for detail. For the construc�
tion of the induced recurrence system, it is convenient
to assume that the solution is written in the basis

. Then, the induced recurrence system is

d
dx
����

Q f x( )( ) f qx( ),=

xn{ }n �∈

obtained from the original system by the transforma�

tion Q  qn, x  .

9. RANDOMIZATION AMD HEURISTICS

9.1. Singular Points of Differential Systems:
Singsys Algorithm

In Section 4.1, from the existence of the l�embrac�
ing system, we derived that the set of points in which
analytical solutions of a differential system may have
singularities is finite. Given a differential system S,

algorithm Singsys1 finds polynomial d(x) ∈ K[x]\{0}

that satisfies the equation d(α) = 0 at the point α ∈ 
where S has an analytical solution with a singularity of
any kind. The operation of the algorithm consists in
the application of algorithm EGδ to the given system
and subsequent calculation of the determinant of the
leading matrix of the l�embracing system obtained.
The polynomial found is then made square�free.

9.2. Randomization of EGδ and Singsys

Algorithms EGδ and Singsys can be randomized.
Let 0 < p ≤ 1. Let the probability of performing the dif�
ferential shift (as described in Section 2.2) be p and
that of the differentiation without division by the last
nonzero coefficient be 1 – p. We will call this p�shift
(if p = 1, then the p�shift is the differential shift).

After each step “reduction + p�shift,” the total
length of all equations reduces by a quantity the aver�
age of which is not less than p. Since p > 0, the average
time of waiting for termination of the transformations
based on the steps “reduction + p�shift” is finite.
Thus, we arrived at the randomized variant of algo�
rithm EGδ.

Further, we can use the following scheme for Sing�
sys. The first time, algorithm EGδ is applied in the way
described in Section 2.2. Then, without changing the
selected value of p, the randomized version of EGδ is
applied several times. Each such application can give
us a new leading matrix and a new polynomial. The
greatest common divisor of the polynomials obtained
will, possibly, have a lesser degree. The process is ter�
minated when a current application did not give rise to
the reduction of the degree of the result or when the
result is a zero�degree polynomial. This gives us the
randomized variant of the Singsys algorithm.

Example 12. Consider the system

1 Singsys stands for singularities of solutions of linear ordinary dif�
ferential systems.

En
1–

K
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Applying EGδ, we obtain

The polynomial d1(x) = x(x + 2)(x – 2) is the result of
operation of algorithm Singsys. The application of the

randomized variant of algorithm EGδ with p =  addi�

tionally yields other systems, in particular,

(48)

Then, the result of operation of the randomized vari�
ant of algorithm Singsys is polynomial d(x) = x(x + 2),
which is equal to the greatest common divisor of the
polynomial d1(x) and polynomial d2(x) = x(x + 2)(x – 1)
corresponding to (48), since other transformations of
the system obtained by applying the randomized vari�
ant of EGδ do not result in the reduction of the degree
of the revealing polynomial (polynomials d3(x) = x(x +
2)(x – 1)(x2 + 4x – 2) and d4(x) = x(x + 2) correspond
to these transformed systems, with d4(x) being in this
case the final result of operation of the randomized
variant of algorithm Singsys).

9.3. Heuristics on the Reduction Step

The rows of the matrix V of linear dependencies
considered in Section 2.4 are selected in arbitrary
order; therefore, various heuristic strategies of such
selection on each reduction step are possible. In the
implementation presented in Section 11, we applied

x 0

x x 2–( ) 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y '' 0 0

x– 1+ 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y '+

+ 0 x 2–

0 5x– 6+⎝ ⎠
⎜ ⎟
⎛ ⎞

y 0.=

x x 2+( ) x 2–( ) x x 2+( )3 x 2–( )–

x 2+ 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y ''

+ x2– 4– 8 x 2+( )2

1– x 2+( )2
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

y '

+ 0 0

0 0⎝ ⎠
⎜ ⎟
⎛ ⎞

y 0.=

1
2
��

x 0

x– x x 2+( ) x 1–( )–⎝ ⎠
⎜ ⎟
⎛ ⎞

y ''

+ 0 0

1– 2 x 2+( ) 2x 1–( )–⎝ ⎠
⎜ ⎟
⎛ ⎞

y '

+ 0 x 2–

0 2x– 4–⎝ ⎠
⎜ ⎟
⎛ ⎞

y 0.=

the following heuristic aimed at the reduction of the
number of eliminations to be performed in the system:

1. Among the rows of matrix V that have not been
used yet, a row is selected that will be used for the
elimination in the equation of the greatest length.

2. If the number of such rows is greater than one,
the row with the least number of nonzero entries is
selected.

This heuristics makes it possible to slow down the
growth of degrees of system coefficients when apply�
ing EGδ and EGσ.

10. OTHER APPROACHES

There exist other approaches to transforming a
given differential or difference system to a form that is
convenient for subsequent finding solutions of one or
another kind. Such approaches were proposed, for
example, by Barkatou, Cluzeau, Pflügel, El Bacha,
and Stan in [28–33]. Transformations of systems were
considered also by Beckermann, Cheng, and Labahn
in [34, 35].

Different approaches have their advantages and dis�
advantages depending on a particular system. A user
may apply algorithms based on different approaches,
which improves chances to obtain a solution in compli�
cated cases: sometimes, with one approach, sometimes
with another one.

11. PACKAGES
LINEARFUNCTIONALSYSTEMS AND EG

The discussed algorithms were implemented in the
computer algebra system Maple [49]. Its standard ver�
sion includes package LinearFunctionalSys-
tems, which contains earlier implementations of
many of the above�described algorithms, such as, for
example, EGσ and algorithms for searching various
kinds of solutions of differential, difference, and q�dif�
ference systems. These algorithms are based on the
construction of the induced recurrence systems and
the corresponding embracing systems with the help of
algorithm EGσ (at the time of the implementation,
this algorithm was called EG'). In particular, the
Maple user can invoke the following procedures:

• Starting from version Maple 7,
SeriesSolution finds a solution in a series

form (initial terms),
ExtendSeries extends the solution in the series

form the initial terms of which were calculated by
means of SeriesSolution,

PolynomialSolution finds a polynomial
solution,

RationalSolution finds a rational solution,
UniversalDenominator finds a universal

denominator.
• Starting from version Maple 10,
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RegularSolution finds a regular solution (ini�
tial terms),

ExtendRegularSolution extends the regular
solution the initial terms of which were found by Reg-
ularSolution,

LogarithmicSolution finds a logarithmic
solution.

Note that the finding of a solution of some kind (for
example, a polynomial solution) here implies the find�
ing of a general solution of this kind, which may con�
tain arbitrary constants.

Further development (implementation of new
algorithms and improvement of the earlier developed
implementations) is carried out in the framework of
the new package EG. Its code and examples of using
the package are available at the address:

http://www.ccas.ru/ca/doku.php/eg.
This package includes implementations of algo�

rithms EGδ and Singsys, which were not included in
LinearFunctionalSystems, as well as algo�
rithms for finding lower bounds for valuations of com�
ponents of meromorphic solutions of difference sys�
tems and rational and logarithmic solutions of differ�
ential systems of arbitrary order.

11.1. Experiments

Efficiency of algorithms EGσ and EGδ, as well as
algorithms for searching various solutions of differen�
tial, difference, and q�difference systems based on
them, was substantiated by a number of experiments
[18, 19, 22, 24], which compared them with the
known alternative programs. These experiments dem�
onstrated that our algorithms are able to work with
quite large systems.

As an example, we mention two series of experi�
ments for algorithm Singsys. For each series, seven sets
consisting of ten differential systems each have been
generated. For each set, m = 10 and r = 5, 10, 20, 40,
100, 250, 500. Coefficients of all systems were random
polynomials (the standard Maple command rand-
poly(x) was used; i.e., coefficients of the polynomi�
als were selected from the interval [–99, 99], and their
degrees did not exceed 5). The systems were generated
such that the number of nonzero coefficients consti�

tuted 30% in the first series and 50% in the second
series. Results of the experiments are presented in the
table. Each cell contains the total time (in seconds)
spent on the construction of the resulting polynomials
(including the time of the execution of EGδ) for all
systems in the corresponding set of the series.
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