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Abstract. Infinite power series may appear as inputs for certain mathe-
matical problems. This paper examines two possible solutions to the prob-
lem of representation of infinite power series: the algorithmic representation
(for each series, an algorithm is specified that, given an integer i, finds the
coefficient of xi, — any such algorithm defines a so called computable, or
constructive, series) and a representation in an approximate form, namely,
in a truncated form.

1 Introduction

Infinite power series play an important role in mathematical studies. Those series
may appear as inputs for certain mathematical problems. In order to be able to
discuss the corresponding algorithms, we must agree on representation of the infi-
nite series (algorithm inputs are always objects represented by specific finite words
in some alphabet). This paper examines two possible solutions to the problem of
representation of power series.

In Section 2, we consider the algorithmic representation. For each series in x, an
algorithm is specified that, given an integer i, finds the coefficient of xi. Any deter-
ministic algorithms are allowed (any such algorithm defines a so called computable,
or constructive series). Here there is a dissimilarity with the publications [14], [15,
Ch. 10], where some specific case of input (mainly the hypergeometric type) is
considered, and the coefficients of the power series which are returned by the cor-
responding algorithms can be given “in closed form”.

For example, suppose that a linear ordinary differential system S of arbitrary or-
der with infinite formal power series coefficients is given, decide whether the system
has non-zero Laurent series, regular, or formal exponential-logarithmic solutions,
and find all such solutions if they exist. If the coefficients of the original systems
are arbitrary formal power series represented algorithmically (thus, we are not able,
in general, to recognize whether a given series is equal to zero or not) then these
three problems are algorithmically undecidable, and this can be deduced from the
classical results of A. Turing [21]. But, it turns out that the first two problems
are decidable in the case when we know in advance that a given system S is of
full rank [5]. However, the third problem (finding formal exponential-logarithmic
solutions) is not decidable even in this case [3]. It is shown that, despite the fact
that such a system has a basis of formal exponential-logarithmic solutions involving
only computable (i.e., algorithmically represented) series, there is no algorithm to
construct such a basis. But, it is possible to specify a limited version of the third
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problem, for which there is an algorithm of the desired type: namely, if S and a
positive integer d are such that for the system S the existence of at least d linearly
independent solutions is guaranteed, then we can construct such d solutions [20].

It is shown also that the algorithmic problems connected with the ramification
indices of irregular formal solutions of a given system are mostly undecidable even if
we fix a conjectural value ρ of the ramification index [2]. However, there is nearby an
algorithmically decidable problem: if a system S of full rank and positive integers ρ, d
are such that for S the existence at least of d linearly independent formal solutions
of ramification index ρ is guaranteed then one can compute such d solutions of S.

Thus, when we use the algorithmic way of power series representation, a neigh-
borhood of algorithmically solvable and unsolvable problems is observed.

For the solvable problems mentioned above, a Maple implementation is pro-
posed [9]. In Section 2.2, we report some experiments.

Note that the ring of computable formal power series is smaller than the ring of
all formal power series because not every sequence of coefficients can be represented
algorithmically. Indeed, the set of elements of the constructive formal power series
is countable (each of the algorithms is a finite word in some fixed alphabet) while
the set of all power series is uncountable.

In Section 3, we consider an “approximate” representation. A well-known exam-
ple is the results [16] related to the number of terms of entries in A that can influence
some components of formal exponential-logarithmic solutions of a differential sys-
tem xsy′ = Ay, where s is a given non-negative integer, A is a matrix whose entries
are power series. As a further example we consider matrices with infinite power
series entries and suppose that those series are represented in an approximate form,
namely, in a truncated form. Thus, it is assumed that a polynomial matrix P which
is the l-truncation (l is a non-negative integer, degP = l) of a power series matrix A
is given, and P is non-singular, i.e., detP 6= 0. In [4], it is proven that the question
of strong non-singularity, i.e., the question whether P is not the l-truncation of a
singular matrix having power series entries, is algorithmically decidable. Assuming
that a non-singular power series matrix A (which is not known to us) is represented
by a strongly non-singular polynomial matrix P , we give a tight lower bound for
the number of initial terms of A−1 which can be determined from P−1.

We discuss the possibility of applying the proposed approach to “approximate”
linear higher-order differential systems: if a system is given in the approximate
truncated form and the leading matrix is strongly non-singular then the results [16,
18] and their generalization can be used, and the number of reliable terms of Laurent
series solution can be estimated by the algorithm proposed in [6].

Theorems are known that if a system has a solution in the form of a series,
then this system also has a solution in the form of a series with some specific
properties such that the initial terms of these series coincide (and estimates of the
number of coinciding terms are given), see, e.g., [13]. To avoid misunderstandings,
note that this is a different type of task. We are considering a situation where a
truncated system is initially given, and we do not know the original system. We are
trying to establish, whether it is possible to get from the solutions of this system an
information on solutions of any system obtained from this system by a prolongation
of the polynomial coefficients to series.

The information that can be extracted from truncated series, matrices, systems,
etc. may be sufficient to obtain certain characteristics of the original (untruncated)
objects. Naturally, these characteristics are incomplete, but may suffice for some
purposes.

In Section 4, we discuss the fact that the width of a given full-rank system S
with computable formal power series coefficients can be found, where the width of
S is the smallest non-negative integer w such that any l-truncation of S with l > w
is a full-rank system. It is shown also that the above-mentioned value w exists for
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any full-rank system [5]. We introduce also the notion of the s-width. This is done
on the base of the notion of the strong non-singularity.

2 Algorithmic Representation

Definition 1 We suppose that for each series a(x) =
∑∞
i=0 aix

i under considera-
tion, an algorithm Ξa (a procedure, terminating in finitely many steps) such that
a(x) =

∑∞
i=0Ξa(i)xi, i.e., such that ai = Ξa(i) ∀i is given. We will call such series

computable (or constructive).

2.1 Computable Infinite Power Series in the Role of Coefficients of
Linear Differential Systems

Let K be a field of characteristic 0. We will use the standard notation K[x] for
the ring of polynomials in x and K(x) for the field of rational functions of x with
coefficients in K. Similarly, we denote by K[[x]] the ring of formal power series
and K((x)) = K[[x]][x−1] its quotient field (the field of formal Laurent series) with
coefficients in K. The ring of n × n-matrices with entries belonging to a ring (a
field) R is denoted by Mat n(R).

Definition 2 A ring (field) is said to be constructive if there exist algorithms for
performing the ring (field) operations and an algorithm for zero testing in the ring
(field).

We suppose that the ground field K is a constructive field of characteristic 0.
We write θ for x d

dx and consider differential systems of the form

Ar(x)θry +Ar−1(x)θr−1y + · · ·+A0(x)y = 0 (1)

where y = (y1, . . . , ym)T is a column vector of unknown functions, and y1, . . . , ym
are the components of y.

For the matrices
A0(x), A1(x), . . . , Ar(x) (2)

we have Ai(x) ∈ Matm(K[[x]]), i = 0, 1, . . . , r, and Ar(x) (the leading matrix of the
system) is non-zero.

We call elements of the matrices Ai(x) system coefficients. As the system coef-
ficients will appear computable series.

It can be deduced from the classical results of A. Turing [21] that

We are not able, in general, to test whether a given computable series is equal to zero
or not; for a square matrix whose entries are computable series - to test, whether
this matrix is non-singular or not.

However, it turns out that the problems of finding solutions of some types are
decidable in the case when we know in advance that a given differential system S
is of full rank, i.e., that the equations of the system are linearly independent over
K[θ]. Algorithms for constructing local solutions of certain types can be proposed
(the components of local solutions either are series in x, or contain such series as
constituents). All the involved series are supposed to be formal.

Definition 3 The solutions whose components are formal Laurent series are Lau-
rent solutions. The components of a regular solution are of the form

yi(x) =

u∑
i=1

xλi

ki∑
s=0

gi,s(x)
lns x

s!
, (3)
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where u, ki ∈ N, λi ∈ K̄ and gi,s(x) ∈ K̄((x))m (K̄ denotes the algebraic closure
for K.)

Definition 4 A proper formal (exponential-logarithmic) solution of a system is a
solution of the form

eQ( 1
t )tλΦ(t), x = tρ, (4)

where
λ ∈ K̄;
Q( 1

t ) is a polynomial in 1
t over K̄ and the constant term of this polynomial is

equal to zero;
ρ is a positive integer;
Φ(t) is a column vector with components in the form

∑k
i=0 gi(t) logi(t), and all

gi(t) are power series over K̄.
If ρ has the minimal possible value in representation (4) of a proper formal

solution then ρ is the ramification index of that solution.

A formal (exponential-logarithmic) solution is a finite linear combination with
coefficients from K̄ of proper formal solutions.

Formal exponential-logarithmicis solutions are of a special interest since, e.g.,
any system of the form y′ = Ay, where A is an m × m-matrix whose entries are
formal Laurent series, has m linearly independent (over K̄) formal solutions [19].

The main problems which are considered in this section are the following. Sup-
pose that a linear ordinary differential system S of arbitrary order having the form
(1) with computable formal power series coefficients (entries of the matrices Ai(x))
is given, test whether the system has

1) non-zero Laurent series,
2) regular, or
3) formal exponential-logarithmic solutions,

and find all such solutions if they exist.

Theorem 1 (i) ([5, 8]) The first two problems are decidable in the case when we
know in advance that a given system S is of full rank, i.e., in the case where the
equations of the given system are linearly independent over the ring K[θ].

(ii) ([3]) Despite the fact that such a system has a basis of formal exponential-
logarithmic solutions involving only computable series, there is no algorithm to con-
struct such a basis.

However, it is possible to specify a limited version of the third problem, for which
there is an algorithm of the desired type:

Theorem 2 ([20]) If S and a positive integer d are such that for the system S the
existence of at least d linearly independent solutions is guaranteed, we can construct
such d solutions.

It is shown also that the algorithmic problems connected with the ramification
indices of irregular formal solutions of a given system are mostly undecidable even
if we fix a conjectural value of the ramification index:

Theorem 3 ([2]) There exists no algorithm which, given a system S with com-
putable power series coefficients and a positive integer ρ, tests the existence of a
proper formal solution of ramification index ρ for the system S

Thus,

When we use the algorithmic way of power series representation, a neighborhood of
algorithmically solvable and unsolvable problems is observed.
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2.2 Procedures for Constructing Local Solutions

For the solvable problems mentioned above, a Maple [17] implementation as proce-
dures of the package EG was proposed [9]. The package is available from

http://www.ccas.ru/ca/eg

We report some experiments (Figures 1 – 3). The degree of the truncation of the
series involved in the solutions returned by our procedures is not less than it is
required by the user. That degree can be even bigger: in any case, it is big enough
to represent the dimension of the space of the solutions under consideration.

Let m = 3 and the system be of the form presented in Fig. 1.

Fig. 1.

Suppose that we define the procedure for computing coefficients of the series∑∞
k=0 f(k)xk as presented in Fig. 2

Fig. 2.

(Thus,
∑∞
k=0 f(k)xk = −1− x+ x2 +

∑∞
k=3(−k2 + k)xk.) The results of the search

for Laurent, regular and formal solutions are presented on Fig. 3.
The procedure of construction of all formal solutions constructs also all regular,

in particular, Laurent solutions. Actually, one procedure EG[FormalSolution] is
sufficient in order to obtain solutions of all three types. However, if it is required
to construct, say, only Laurent solutions, then it is advantageous to use procedure
EG[LaurentSolution], because it will construct them considerably faster, even if
the original system has no formal solutions but the Laurent ones. For this reason,
we propose three procedures for searching solutions of various types.

In conclusion of this section note that the ring of computable formal power
series is smaller than the ring of all formal power series because not every sequence
of coefficients can be represented algorithmically. Indeed, the set of elements of the
computable formal power series is countable (each of the algorithms is a finite word
in some fixed alphabet) while the set of all power series is uncountable.
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Fig. 3.

3 Approximate (Truncated) Representation

Now, we consider an “approximate” representation of series.
A well-known example [16] is the result by Lutz and Schäfke. It is related to the

number of terms of entries of a power series matrix A that can influence initial terms
of some constituents of formal exponential-logarithmic solutions of a differential
system xsy′ = Ay, where s is a non-negative integer.

As a further example ([4]), we consider matrices with infinite power series entries
and suppose that those series are represented in an approximate form, namely, in a
truncated form.

We start with introducing some notions.
If l ∈ Z, a ∈ K((x)) then we define the l-truncation a〈l〉 which is obtained

by omitting all the terms of degree larger than l in a. For a non-zero element
a =

∑
aix

i of K((x)), we denote by val a the valuation of a defined by val a =
min {i such that ai 6= 0}; by convention, val 0 =∞.

For A ∈ Mat n(K((x))), we define valA as the minimum of the valuations
of the entries of A. We define the leading coefficient of a non-zero matrix A ∈
Mat n(K((x))) as lcA = (x−valAA)|x=0. For A ∈ Mat n(K[x]), we define degA as
the maximum of the degrees of the entries of A.

The notation AT is used for the transpose of a matrix (vector) A. In is the
identity n× n-matrix.

Given A ∈ Mat n(K((x))), we define the matrix A〈l〉 ∈ Mat n(K[x, x−1]) ob-
tained by replacing the entries of A by their l-truncations (if A ∈ Mat n(K[[x]])
then A〈l〉 ∈ Mat n(K[x])).

If P ∈ Mat n(K[x]) then any P̂ ∈ Mat n(K[[x]]) such that (P̂ )〈degP 〉 = P is a
prolongation of P .

3.1 Strongly Non-singular Matrices

Definition 5 A polynomial matrix P which is non-singular, i.e., detP 6= 0, is
strongly non-singular if P is not the l-truncation (l = degP ) of a singular matrix
having power series entries; in other words, P is strongly non-singular if det P̂ 6= 0
for any prolongation P̂ of P .

It is proven that the question of strong non-singularity is algorithmically decid-
able. For the answer to this question, the number

h = degP + valP−1 (5)
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plays the key role.

Theorem 4 ([4]) P is strongly non-singular if and only if

degP + valP−1 > 0, (6)

i.e., h > 0.

Example 1 If P is a non-singular constant matrix then P is a strongly non-singular
due to the latter proposition. However, the matrix(

x 0
1 x

)
, (7)

is not strongly non-singular:

det

(
x x2

1 x

)
= 0. (8)

This could be recognized in advance: for (7) we have degP = 1, valP−1 = −2 (since
detP = x2), and the inequality h > 0 does not hold: 1− 2 = −1. �

Assuming that a non-singular power series matrix A (which is not known to us)
is represented by a strongly non-singular polynomial matrix P , we give a tight lower
bound for the number of initial terms of entries of A−1 which can be determined
from P−1.

Theorem 5 ([4]) Let P be a polynomial matrix. If the inequality h > 0 holds then
first, for any prolongation P̂ , the valuations of the determinant and the inverse
matrix of the approximate matrix and, resp., of the determinant and the inverse
of the prolonged matrix coincide. Second, in the determinants of the approximate
and prolonged matrices, the coefficients coincide for xval detP , as well as h subse-
quent coefficients (for larger degrees of x). A similar statement holds for the inverse
matrix. The bound h is tight.

Example 2 Let

P =

(
1 + x 0

1 1− x

)
.

Here h = 1. The matrix P is strongly non-singular.
Let

P̂ =

(
1 + x+ x2 + . . . 0

1 1− x

)
.

We have

detP = 1− x2 = 1 + 0 · x− 1 · x2, det P̂ = 1 + 0 · x+ 0 · x2 + . . .

We have also:

P−1 =

(
1/(1 + x) 0
−1/(1− x2) 1/(1− x)

)
=

(
1− x+ x2 + . . . 0 + 0 · x

−1 + 0 · x− x2 − . . . 1 + x+ x2 + . . .

)
,

P̂−1 =

(
1− x 0
−1 1/1− x

)
=

(
1− x 0 + 0 · x
−1 + 0 · x 1 + x+ x2 + . . .

)
.

�

As a consequence of Theorem 5, if val detP = e then val det P̂ = e and

detP − det P̂ = O(xe+h+1).

Similarly, if valP−1 = e then val (P̂ )−1 = e and

P−1 − P̂−1 = O(xe+h+1).
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3.2 When Only a Truncated System is Known

In this section, we are interested in the following question. Suppose that for a system
S of the form (1) only a finite number of terms of the entries ofA0(x), A1(x), . . . , Ar(x)
is known, i.e., we know not the system S itself but the system S〈l〉 for some non-
negative integer l. Suppose that we also know that

– ordS〈l〉 = ordS,
– Ar(x) is invertible.

How many terms of Laurent series solutions of S can be determined from the
given “approximate” system S〈l〉?

We first recall the following result:

Proposition 1 ([6, Prop. 6]) Let S be a system of the form (1) and

γ = min
i

val
(
A−1r (x)Ai(x)

)
, q = max{−γ, 0}.

There exists an algorithm that uses only the terms of degree less than

rmq + γ + val detAr(x) + 1 (9)

of the entries of the matrices A0(x), A1(x), . . . , Ar(x), and computes a non-zero
polynomial (the so called indicial polynomial [12, Ch. 4, §8], [10, Def. 2.1], [6, Sect.
3.2]) I(λ) such that:

– if I(λ) has no integer root then (1) has no solution in K((x))m \ {0},
– otherwise, let e∗, e

∗ be the minimal and maximal integer roots of I(λ); then the
sequence

ak = rmq + γ + val detAr(x) + max{e∗ − e∗ + 1, k + (rm− 1)q}, (10)

k = 1, 2, . . . , is such that for any e ∈ Z, k ∈ Z+
and column vectors

ce, ce+1, . . . , ce+k−1 ∈ Km,

the system S possesses a solution y(x) ∈ K((x))m of the form

y(x) = cex
e + ce+1x

e+1 + · · ·+ ce+k−1x
e+k−1 +O(xe+k),

if and only if, the system S〈al〉 possesses a solution ỹ(x) ∈ K((x))m such that
ỹ(x)− y(x) = O(xe+k).

Using the latter proposition we prove

Theorem 6 ([4]) Let Σ be a system of the form

Pr(x)θry + Pr−1(x)θr−1y + · · ·+ P0(x)y = 0

with polynomial matrices P0(x), P1(x), . . . , Pr(x). Let its leading matrix Pr(x) be
strongly non-singular. Let

d = degPr, p = −valP−1r , h = d− p, γ = min
06i6r−1

(val (P−1r Pi))

be such that the inequality

h− p− γ > 0
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holds. Let I(λ) be the indicial polynomial of Σ. Let the set of integer roots of I(λ)
be non-empty, and e∗, e

∗ be the minimal and maximal integer roots of I(λ). Let a
non-negative integer k satisfy the equality

max{e∗ − e∗ + 1, k + (rm− 1)q} = l − rmq − γ − val detPr(x). (11)

Let Σ̂ be an arbitrary system of the form (1) such that Σ̂〈l〉 = Σ for l = degΣ (i.e.,
Σ̂ is an arbitrary prolongation of Σ). Then for any e ∈ Z, the system Σ̂ possesses
a solution

ŷ(x) ∈ K((x))m, val ŷ(x) = e,

if and only if, the system Σ possesses a solution y(x) ∈ K((x))m such that

y(x)− ŷ(x) = O(xe+k+1) (12)

(evidently, the equalities val ŷ(x) = e and (12) imply that val y(x) = e).

Example 3 Let

P1 =

(
1 0

0 1− x

)
, P0 =

(
0 −1

−x+ 2x2 + 2x3 + 2x4 −2 + 4x

)
.

For the first-order differential system Σ

P1(x)θy + P0(x)y = 0

we have

d = 1, p = 0, h = 1, γ = 0, I(λ) = λ(λ− 2), e∗ − e∗ + 1 = 3.

The conditions of Theorem 6 are satisfied.
The general solution of Σ is

y1 = C1 − C1x+ C2x
2 − C2x

3 + 0x4 +
2C1

15
x5 +

C1

30
x6 +

(
C1

210
+

2C2

35

)
x7 + . . . ,

y2 = −C1x+ 2C2x
2 − 3C2x

3 + 0x4 +
2C1

3
x5 +

C1

5
x6 +

(
C1

30
+

2C2

5

)
x7 + . . . ,

where C1 and C2 are arbitrary constants.
Equation (11) has the form max{3, k} = 4, thus

k = 4.

This means that all Laurent series solutions of any system Σ̂ of the form

A1(x)θy +A0(x)y = 0 (13)

with non-singular matrix A1 and such that Σ̂〈4〉 = Σ (we have degΣ = 4) are
power series solutions having the form

ŷ1 = C1 − C1x+ C2x
2 − C2x

3 +O(x5),

ŷ2 = − C1x+ 2C2x
2 − 3C2x

3 +O(x5),

where C1, C2 are arbitrary constants. Consider, e.g., the first-order differential sys-
tem Σ̂ of the form (13) with

A1 =

(
1 0

0 1− x

)
,
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A0 =

(
0 −1

−x+ 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7 + x8 + . . . −2 + 4x

)
.

Its general solution is

ŷ1 = C1 − C1x+ C2x
2 − C2x

3 + 0x4 + 0x5 + 0x6 +
C1

35
x7 + . . . ,

ŷ2 = −C1x+ 2C2x
2 − 3C2x

3 + 0x4 + 0x5 + 0x6 +
C1

5
x7 + . . . ,

what corresponds to the forecast and expectations. �

Remark 1 The latter example shows that Theorem 6 gives a tight bound for pos-
sible value of k: in that example that we cannot take k + 1 instead of k. Indeed, y1
contains the term 2C1

15 x
5, while ŷ1 has factually no term of degree 5.

We see that the information that can be extracted from truncated series, matrices,
systems, etc. may be sufficient to obtain certain characteristics of the original (un-
truncated) objects. Naturally, these characteristics are incomplete, but may suffice
for some purposes.

In the context of truncated systems we considered only the problem of testing the
existence and constructing Laurent series solutions, but we did not discuss similar
problems related to regular and formal exponential-logarithmic solutions. We will
continue to investigate this line of enquiry.

4 The Width

In conclusion, we discuss a plot which connects both thematic lines of the paper.

Definition 6 ([4, 5]) Let S be a system of full rank over K[[x]][θ]. The minimal
integer w such that S〈l〉 is of full rank for all l > w is called the width of S The
minimal integer ws such that any system S1 having power series coefficients and

satisfying the condition S
〈ws〉
1 = S〈ws〉, is of full rank, is called the s-width (the

strong width) of S.
We will use the notations w(S), ws(S) when it is convenient.

Any linear algebraic system can be considered as a linear differential system
of zero order. This lets us state using the following example that for an arbitrary
differential system S we have ws(M) 6= w(M) in general, however, the inequality

ws(S) > w(S)

holds.

Example 4 Let A be (
x x3

1 x

)
, (14)

then
w(A) = 1,

since detA〈0〉 = 0 and

A〈1〉 = A〈2〉 =

(
x 0
1 x

)
, det

(
x 0
1 x

)
6= 0,

and A〈l〉 = A when l > 3, detA 6= 0. However, ws(A) > 1, due to det

(
x x2

1 x

)
= 0.

It is easy to check that ws(A) = 2. �
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It was proven in [5, Thm 2] that if a system S of the form (1) is of full rank then
there exists the width w of S. The value w may be computed if the coefficients of
S are represented algorithmically.

As for the idea of the proof from [5], it is shown that the rank-preserving EG-
eliminations [1, 7] give a confirmation for the fact that S is of full rank. That confir-
mation uses only a finite number of the terms of power series which are coefficients
of S. For this, the induced recurrent system R is considered (such R is a specific
recurrent system for the coefficients of Laurent series solutions of S). This system
has polynomial coefficients of degree less than or equal to r = ordS. The system S
is of full rank if and only if R is of full rank as a recurrent system. A recurrent sys-
tem of this kind can be transformed by a special version of the EG-eliminations ([5,
Sect.3]) into a recurrent system R̃ whose leading matrix is non-singular. This gives
the confirmation mentioned above. It is important that only a finite number of the
coefficients of R are involved in the obtained leading matrix of R̃ (due to some char-
acteristic properties of the used version of the EG-eliminations). Each of polynomial
coefficients of R is determined from a finite number (bounded by a non-negative
integer N) of the coefficients of the power series involved in S. This proves the
existence of the width and of the s-width as well. The mentioned number N can
be computed algorithmically when all power series are represented algorithmically;
thus, in this case we can compute the width of S since we can test ([1, 7, 11]) whether
a finite order differential system with polynomial coefficients is of full rank or not.
From this point we can consider step-by-step S〈N−1〉, S〈N−2〉, . . . , S〈1〉, S〈0〉 until
appearing the first which is not of full rank. If all the truncated systems are of full
rank then w = 0.

Concerning the s-width, we get the following theorem

Theorem 7 ([4]) Let S be a full rank system of the form (1). Then the s-width
ws(S) is defined. If the power series coefficients of S are represented algorithmically
then we can compute algorithmically a non-negative integer N such that ws(S) 6 N .

However, it is not exactly clear how to find the minimal value N , i.e., ws(S). Is this
problem algorithmically solvable? The question is still open.
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