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Abstract. We consider n × n-matrices whose entries are scalar ordinary
differential operators of order 6 d over a constructive differential field K.
We show that to choose an algorithm to solve a problem related to such
matrices it is reasonable to take into account the complexity measured as
the number not only of arithmetic operations in K in the worst case but of
all operations including differentiation. The algorithms that have the same
complexity in terms of the number of arithmetic operations can though differ
in the context of the full algebraic complexity that includes the necessary
differentiations. Following this, we give a complexity analysis, first, of finding
a superset of the set of singular points for solutions of a system of linear
ordinary differential equations, and, second, of the unimodularity testing for
an operator matrix and of constructing the inverse matrix if it exists.

1 Introduction

In this paper, we discuss some algorithms which use operations on elements of a
differential field. A complexity analysis of such algorithms is based sometimes on
considering the complexity as the number of arithmetic operations in K in the worst
case (the arithmetic complexity). This approach is not always productive. First, the
differentiations are not for free, and there is no reason to believe that, e.g., a differ-
entiation is much cheaper than an addition or a multiplication when the differential
field isQ(x) with the standard differentiation by x. Second, we may face a situation
where two algorithms have the same arithmetic complexity. However, it may be that
the complexities of those two algorithms are different, if we compute the number of
differentiations in the worst case (the differential complexity). Therefore, consider-
ation of not only arithmetic but also differential complexity seems reasonable. This
is similar to the situation with sorting algorithms, when we consider separately the
complexity as the number of comparisons and, resp., the number of swaps. (For
example, in [19], an upper bound on the number of differentiations of equations in
a differential system sufficient for testing its compatibility is established. Actually,
such a bound is an estimate for the complexity of algorithms for the compatibility
testing.)

We will also consider the full complexity as the total number of all operations
in the basic differential field in the worst case, when differentiations are included.
This complexity will be considered in the context of algebraic complexity theory: the
complexity is measured as the number of operation in K in the worst case without
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taking into account the possible growth of “sizes” of the elements computed by
algorithms (similarly, say, to the complexity Θ(nlog2 7) of Strassen’s algorithm [27]
for multiplying square n× n-matrices).

Below, we discuss two well known algorithms for transforming operator matrices,
i.e., square matrices whose entries are scalar differential operators with coefficients
in the basic differential field. Earlier, only arithmetic complexity of those algorithms
was investigated, and it was established that asymptotically, their arithmetic com-
plexities agree. However, we show that their differential complexities are different.
Note that the functionalities of the algorithms are also slightly different.

In Section 4, we discuss two computational problems, for which the above-
mentioned algorithms for transforming operator matrices are useful. The first prob-
lem is related to finding singular points of solutions of the corresponding system of
linear ordinary differential equations. The second one is the problem of testing uni-
modularity (i.e., invertibility) of an operator matrix and of constructing the inverse
matrix if it exists. Invertibility testing is a classical mathematical problem, whose
specifics depend on a field or a ring containing the matrix entries. The question of
unimodularity of such operator matrices arises, in particular, in connection with the
existence problems for solutions of differential systems ([23]). The “binary” testing
(with the output yes or no, without constructing the inverse when it exists) can also
be considered as a problem which is of independent interest. A careful complexity
analysis allows one to make an informed choice of a transformation algorithm as an
adequate auxiliary tool for solving each of these problems.

2 Preliminaries

2.1 Operator Matrices

Let K be a differential field of characteristic 0 with a derivation ∂ =′. For a non-
negative integer n, the ring of n× n-matrices with entries belonging to a ring R is
denoted by Mat n(R). The ring of scalar differential operators with coefficients in
K is denoted by K[∂]; the order of an operator l ∈ K[∂] which is denoted by ord l is
equal to the degree of the corresponding non-commutative polynomial from K[∂].
Any non-zero operator matrix L ∈ Mat n(K[∂]) can be represented as a differential
operator with matrix coefficients in Mat n(K):

L = Ad∂
d +Ad−1∂

d−1 + · · ·+A0, (1)

where A0, A1, . . . , Ad ∈ Mat n(K), and the matrix Ad (the leading matrix of L) is
non-zero. The number d is the order of L; we write d = ordL. The order of a row of
L is the biggest order of operators from K[∂] belonging to the row. Thus, the order
of an operator matrix coincides with the biggest order of all rows of the operator
matrix. A matrix L ∈ Mat n(K[∂]) is of full rank if its rows are linearly independent
over K[∂].

An operator matrix L is invertible in Mat n(K[∂]) and M is its inverse, if LM =
ML = In where In is the identity n × n-matrix. We write L−1 for M . Invertible
operator matrices are also called unimodular matrices.

In [23], the following example of a unimodular matrix and the inverse is given
(K = Q(x), ∂ = d

dx ):(
x2/2 −(x/2)∂ + 1

−x∂ − 3 ∂2

)−1

=

(
∂2 (x/2)∂

x∂ + 1 x2/2

)
. (2)
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2.2 The Dimension of the Solutions Space

Let the constant field Const(K) = {c ∈ K | ∂c = 0} of K be algebraically closed.
We denote by Λ a fixed universal Picard–Vessiot differential extension field ofK (see
[25, Sect. 3.2]). This is a differential extension Λ of K with Const(Λ) = Const(K)
such that any differential system ∂y = Ay with A ∈ Mat n(K[∂]) has a solution
space of dimension n over the constants. For arbitrary operator matrix L of the
form (1), we denote by VL the linear space over Const(Λ) of solutions of L (i.e.,
solutions of the equation L(y) = 0) belonging to Λn. Its dimension will be denoted
by dimVL.

Suppose that Const (K) is not algebraically closed. It is not difficult to see that
for any differential field K of characteristic 0 there exists a differential extension
whose constant field is algebraically closed. Indeed, this is the algebraic closure K̄
with the derivation obtained by extending the derivation of K in the natural way. In
this case, Const (K̄) = Const (K) (see [25, Exercises 1.5, 2:(c),(d)], [26, Sect. 3]). In
this case, VL is the linear space over Const(K̄) of solutions of L whose components
belong to the the universal differential extension of K̄.

We use the notation Mi,∗, 1 6 i 6 n, for the 1× n-matrix which is the ith row
of an n × n-matrix M . Let a full rank operator matrix L be of the form (1). If
1 6 i 6 n then define αi(L) as the maximal integer k, 1 6 k 6 d, such that (Ak)i,∗
is a nonzero row. So, αi(L) = ordLi,∗.

The matrix F ∈ Mat n(K) such that Fi,∗ = (Aαi(L))i,∗ , i = 1, . . . , n, is the
frontal matrix of L.

The group of unimodular matrices from Mat n(K[∂]) will be denoted by Υn.
We formulate a theorem which is a consequence of statements proven in [2, 3]

(the equivalence (iii) can also be proven using [23, Thm III]).

Theorem 1 Let L ∈ Mat n(K[∂]) be of full rank. In this case
(i) If L′ is the result of differentiating of a row of L then dimVL′ = dimVL +1.
(ii) If the frontal matrix of L ∈ Mat n(K[∂]) is invertible then

dimVL =
n∑

i=1

αi(L).

(iii) L ∈ Υn ⇐⇒ VL = 0.

We suppose in the sequel that the field K is constructive, in particular that
there exists a procedure for recognizing whether a given element of K is equal to 0.

2.3 Algorithm EG (EG-Eliminations)

Given L ∈ Mat n(K[∂]) of full rank, algorithm EG ([4–6, 2]) constructs an embracing
operator L

⌢ ∈ Mat n(K[∂]) such that

– ordL
⌢

= ordL,
– the leading matrix of L

⌢

is invertible,
– L

⌢

= QL for some Q ∈ Mat n(K[∂]), thus VL ⊆ VL⌢ .

If L is not of full rank then this algorithm reports this.
This algorithm is based on alternation of reductions and differentiations. First,

explain how the reduction works. It is checked whether the rows of the leading
matrix are linearly dependent over K. If they are, coefficients of the dependence
p1, . . . , pn ∈ K are found. From the rows of L corresponding to nonzero coefficients,
we select one. Let it be the ith row. This row is replaced by the linear combination
of the rows of L with the coefficients p1, . . . , pn. As a result, the ith row of the
leading matrix vanishes. This operation is called reduction.
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Let the ith row of the leading matrix be zero. Then we differentiate the ith row
of the operator matrix, i.e., replace each entry Lij ∈ K[∂] by the composition of ∂
and Lij , j = 1, . . . , n (this operation is called row differentiation).

A version of algorithm EG is as follows.

If the rows of the leading matrix of L are linearly dependent over K then the
reduction is performed. Suppose that this makes the ith row of the leading matrix
zero. Then, we perform the differentiation of the ith row of the operator matrix and
continue the process of alternated reductions and differentiations until the leading
matrix becomes nonsingular, and, therefore, we get the output matrix L

⌢

.
If at some moment a zero row appears in the operator matrix or the number of

row differentiations becomes bigger than nd then L is not of full rank.

2.4 Algorithm RR

This algorithm is based originally on the algorithm FF [11]. A simplified version of
FF is RowReduction [9]; for short, we will use the abbreviation RR in the sequel.

For a given L ∈ Mat n(K[∂]) of full rank, algorithm RR constructs L̆ ∈ Mat n(K[∂])
such that

– ord L̆ 6 ordL,
– the frontal matrix of L̆ is invertible,
– L̆ = UL for some U ∈ Υn, thus VL = VL̆.

A comment on the matrix U will be given later in this section. A version of algorithm
RR is as follows.

Let the rows of the frontal matrix of L be linearly dependent over K and coef-
ficients of the dependence be p1, . . . , pn ∈ K. From the rows of L corresponding to
nonzero coefficients, we select one having the highest order (if there are few such
rows then take any of them). Let it be the ith row. Then we replace Li,∗ of the
operator matrix by

n∑
j=1

pj∂
αi(L)−αj(L)Lj,∗ (3)

and continue this process until the frontal matrix becomes nonsingular, and, there-
fore, we get the output matrix L̆.

If at some moment, a zero row appears in the operator matrix then L is not of
full rank.

Remark 1 In addition, algorithm RR allows (if it is required) to construct such
operator matrices U1, . . . , Ul ∈ Matm(K [∂]), that U1, . . . , Ul are unimodular and

L̆ = Ul . . . U1L. (4)

Each Uj is of the form

i :



1

. . .

1

p1∂
αi−α1 . . . pi−1∂

αi−αi−1 pi pi+1∂
αi−αi+1 . . . pn∂

αi−αn

1

. . .

1


(5)
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with 1 6 i 6 n, p1, . . . , pn ∈ K, pi ̸= 0 (this matrix corresponds to the replacement
Li,∗ by (3)).

A matrix of the form (5) will be called elementary. Each an elementary matrix
is unimodular: to obtain the inverse, one can replace in (5) its ith row by(

− p1
pi
∂αi−α1 . . . − pi−1

pi
∂αi−αi−1 1

pi
− pi+1

pi
∂αi−αi+1 . . . − pn

pi
∂αi−αn

)
.

The list
U1, . . . , Ul (6)

of the elementary matrices involved into (4) can be constructed in the course of
executing RR with no extra cost.

3 Differential and Full Complexities of Algorithms for
Operator Matrices Transformation

3.1 Diversity of Algebraic Complexities

Besides the complexity as the number of arithmetic operations (the arithmetic com-
plexity) one can consider the number of differentiations in the worst case (the dif-
ferential complexity).

We will also discuss the full complexity as the total number of all operations
(the differentiations are included) in the field K in the worst case. In [9, 3], when
the complexity of algorithms EG and RR was considered, the differentiations were
ignored (the same concerning algorithm which we will denote by ExtRR and will
discuss in Section 3.3). We will denote such a kind of complexity by Fxx(n, d), where
xx is the name of an algorithm under consideration, for example, xx ∈ {RR, EG}. It
is worthy to note that if we ignore the differentiations then the arithmetic complexity
can be in wrong values, since differentiating a scalar differential operator requires to
execute also arithmetic operations (additions). Therefore, Fxx(n, d) is only a visible
(apparent) complexity (F = “at First sight”). We will consider also the following
functions of n, d:

– Bxx(n, d) — the number of row differentiations in the worst case,
– T̃xx(n, d) — the number of differentiations of elements of K in the worst case

(the differential complexity),
– Txx(n, d) — the number of all operations in K in the worst case (the full

complexity).

Along with O-notation we use the Θ-notation which is very common in com-
plexity theory ([21]). Recall that f(n, d) = Θ(g(n, d)) is equivalent to

f(n, d) = O(g(n, d)) & g(n, d) = O(f(n, d)).

If f(n, d) = Θ(g(n, d)) then we call Θ(g(n, d)) a sharp bound for f(n, d).
If xx ∈ {RR, EG} then

T̃xx(n, d) = Θ(Bxx(n, d)nd) (7)

for the the differential complexity T̃ . We have also

Txx(n, d) = Θ(Fxx(n, d) +Bxx(n, d)nd) (8)

for the full complexity T , since the case of a big number of differentiations is con-
currently the case when the number of arithmetic operations is big and vice versa.
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Asymptotic relation similar to (8) holds for the arithmetic complexity since each
differentiation of a row of L uses in the worst case besides nd of differentiations of
elements of K also the same number of arithmetic operations (additions) in K.

Searching for coefficients p1, . . . , pn of a linear dependence for rows of a matrix
from Mat n(K) is equivalent to solving a homogeneous system of linear algebraic
equations with coefficients in K. The complexity of solving such a system is Θ(nω),
where ω is the matrix multiplication exponent, 2 < ω 6 3. We have FEG(n, d) =
Θ(nω+1d+ n3d2), BEG(n, d) = Θ(nd).

Proposition 1 The differential and the full complexity of EG allow the asymptotic
estimates

T̃EG(n, d) = Θ(n2d2), TEG(n, d) = Θ(nω+1d+ n3d2). (9)

Proof. We have mentioned that by Theorem 1(i, ii) each differentiation of a row
increases the dimension of the solutions space of an operator matrix by 1, and in
our case that dimension does not exceed nd. This implies the first estimate from
(9).

Each reduction step uses in the worst case Θ(nω + n2d) arithmetic operations.
The number of such steps is nd in the worst case. Together with the first estimate
from (9) this gives the second estimate. (The differentiation operations do not affect
significantly the full complexity of EG.)

Proposition 2 The differential and the full complexity of RR admit the asymptotic
estimates

T̃RR(n, d) = Θ(n3d3), TRR(n, d) = Θ(nω+1d+ n3d3). (10)

Proof. We have FRR(n, d) = Θ(nω+1d + n3d2) and BRR(n, d) = Θ(n2d2). This
implies the claim.

We see that BRR(n, d) grows faster than BEG(n, d). In the case of RR, the
differentiating operations increase the full complexity.

3.2 Algorithms △EG and △RR

Let the ith row r of the frontal matrix of L ∈ Mat n(K[∂]) have the form

(0, . . . , 0︸ ︷︷ ︸
k−1

, a, . . . , b),

1 6 k 6 n, a ̸= 0. Then k is the pin index of the ith row of L.
If all rows of L have distinct pin indices then the frontal matrix of L is nonsin-

gular. Suppose that two rows r1, r2 of L have the same pin index k. Set d1 = ord r1,
d2 = ord r2. Let d1 6 d2. There exists a v in K such that the difference

r2 − v∂ d2−d1r1 (11)

either has the pin index which is bigger than k or has the order which is less than
d2. This can be used1 instead of a search for a linear dependency of the rows of the
frontal matrix of L (in the case of EG, on key moments, the leading and the frontal
matrices coincide, and d2 − d1 = 0 in (11)). If L is of full rank then the frontal
matrix after the transformation is in triangular form.

This leads to modified versions of EG and RR. We will denote them as △EG
and, resp., △RR.

1 For the difference case, this was used in first versions [1] of algorithm EG. In a discussion
related to the differential case, A. Storjohann drew the author’s attention to the fact
that the complexity of this approach is less than of one which uses solving of linear
algebraic systems (see also [24]).
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Proposition 3 The differential and the full complexities of △EG and △RR admit
the asymptotic estimates

T̃△EG(n, d) = Θ(n2d2), T△EG(n, d) = Θ(n3d2) (12)

and

T̃△RR(n, d) = Θ(n3d3), T△RR(n, d) = Θ(n3d3). (13)

Proof. The replacement of r2 by (11) is a unimodular operation on L. This operation
has the complexity Θ(nd). A row can have its pin index increased at most n times
before the order of the row is decreased. Thus, Fxx(n, d) = Θ(nd ·n ·nd) = Θ(n3d2)
for xx ∈ {△EG,△RR}. Concerning the differential complexity, for △EG and, resp.
△RR it is the same as for EG and RR.

We emphasize that the difference between two estimates T△RR = Θ(n3d3) and

T△EG(n, d) = Θ(n3d2) is due to the differential component: if we ignored the

operation of differentiation, then we would have the estimate Θ(n3d2) for both
complexities.

3.3 Extended RR: Computing U Along with L̆

To compute along with L̆ the multiplier U such that L̆ = UL, one can apply the
following algorithm (we call it ExtRR) to L:

Apply RR to L (this gives L̆), and repeat in parallel all the operations for the
matrix which is originally equal to the identity matrix In (this gives U).

The algorithm was presented in [9, Sect.4]. Evidently,BExtRR(n, d) = 2BRR(n, d).
The following proposition is useful for estimating FExtRR(n, d), T̃ExtRR(n, d) and
TExtRR(n, d):

Proposition 4 Let algorithm RR compute step-by-step the unimodular matrices of
the form (5) for L ∈ Mat n(K[∂]), ordL = d (see Remark 1). Then ord (Uk . . . U1) =
O(nd) for all k = 1, . . . , l.

Proof. It follows from [9, Prop. 1], [18, Thm 4.9].

Proposition 4, estimates (10) and the equality nd · (n2 · nd) = n4d2 imply the
estimates FExtRR(n, d) = O(nω+1d+ n4d2) = O(n4d2). Thus

T̃ExtRR(n, d) = O(n4d3), TExtRR(n, d) = O(n4d2 + n4d3) = O(n4d3). (14)

These estimates can be sharpened.

Proposition 5 Let L be unimodular. Then

ordL−1 6 (n− 1)d (15)

and (15) is the tight bound: for all integer n, d such that d > 0, n > 2 there exists
L ∈ Mat n(K[∂]) such that ordL−1 = (n− 1)d.

Proof. The bound (15) follows from some estimates related to computing the Her-
mite form given in [18, Thm 4.9]. (The Hermite form of a unimodular matrix is the
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identity, the transformation matrix U is the inverse.) Let us prove that this bound
is tight. Indeed, the n× n operator matrix of order d

1 ∂d 0 0 . . . . . . 0 0

0 1 ∂d 0 . . . . . . 0 0

. . .

. . .

. . .

0 0 0 0 . . . . . . 1 ∂d

0 0 0 0 . . . . . . 0 1


(16)

has the inverse of order (n− 1)d:

1 −∂d ∂2d −∂3d . . . (−1)n−2∂(n−2)d (−1)n−1∂(n−1)d

0 1 −∂d ∂2d . . . (−1)n−3∂(n−3)d (−1)n−2∂(n−2)d

. . .

. . .

. . .

0 0 0 0 . . . 1 −∂d

0 0 0 0 . . . 0 1


. (17)

If algorithm ExtRR is applied to matrix (16) then this yields two matrices U and In
where U is equal to (17). Note in addition to (14) that applying RR to matrix (16)
yields U1, . . . , Un−1 (see (4), where l = n−1 in this case) such that ord (Uk . . . U1) =

kd, k = 1, . . . , n− 1. Since
∑n−1

k=1 k
3d3 = Θ(n4d3), we obtain

T̃ExtRR(n, d) = Θ(n4d3), TExtRR(n, d) = Θ(n4d2 + n3d3). (18)

Remark 2 As a consequence of (15) we obtain that if L ∈ Mat 2(K[∂]) is unimod-
ular then ordL−1 = ordL. (Miyake’s example (2) illustrates this.)

Note finally that to show the correctness of using △RR instead of RR for ExtRR

we have to prove an analog of the statement of Proposition 4. It is not clear whether
such a statement holds. In addition, the replacement of RR by △RR does not
improve estimate (18) due to the term n4d3, which replaces n3d3 in T△RR(n, d)

since the number of elements in a row is now (n− 1)nd.

3.4 When Differentiated Rows are Stored

One can store all the results of row differentiations. In this case, some upper esti-
mates for the total number of differentiations can easily be obtained.

Proposition 6 The number of row differentiations without repetitions (when the
result of each differentiation is stored, i.e., when we collect all such results) executed
by algorithms RR and △RR is O(nd2) and, resp., O(n2d2) in the worst case; as a
consequence, the number of differentiations of elements of K is O(n2d3) and, resp.,
O(n3d3).

Proof. Let a row r be changed in the course of RR or △RR performance. Let the
order of r after the changing be d0 < d. In this case, one can compute and store
d− d0 rows

∂r, ∂(∂r), . . . , ∂(∂ . . . (∂r) . . . )︸ ︷︷ ︸
d−d0 differentiations

.
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After this, when a row of the form ∂mr, m 6 d − d0 is needed for following elim-
inations, pick the needed row from the collection of the stored rows. Thus, we get
modified versions of RR and △RR whose numbers of row differentiations are not
less than the analogous numbers for the original versions. It is easy to see that for
the modified version of RR, this number is not bigger than nd2, and not bigger than
n2d2 for △RR. The claim follows.

However, the estimates O(n2d3) and O(n3d3) for the number of differentiations
do not allow to decrease the exponent of d in (10), (13). Based on Proposition 6, we
cannot draw the conclusion that the storage of the results of all the differentiations
decreases significantly the full complexity of RR and △RR. Similarly, using the
upper bound O(n3d3) we cannot decrease the exponent of d in (18). But the space
complexity will go up when we store all the results of differentiating.

Remark 3 It is not clear whether, say, the upper bound O(nd2) for the number of
row differentiations by RR is sharp. If for this number, the estimate O(nd) holds
then we would have the estimate O(n4d2) for the full complexity of the version of
ExtRR such that if a row r is differentiated m times then the rows ∂r, . . . , ∂mr are
stored for potential later uses.

4 Two Computational Problems

4.1 Singularities of Systems

If, for example, K = Q(x), ∂ = d
dx and we are interested in singular points of

solutions of a system L(y) = 0, L ∈ Mat n(K), ordL = d, then by each of algorithms
EG, RR, △EG, DRR we can find a polynomial whose roots form a finite superset
of the set of such points [6–8]. The basic idea is that if the leading matrix of L is
invertible in Mat n(K) then we can take the (square-free factorized) determinant of
the leading matrix.

Similarly, we can use the frontal matrix, if it is invertible. The fact is that
if α1, . . . , αn are the row orders of L̆, d = ord L̆ = max{α1, . . . , αn} and D =
diag(∂d−α1 , . . . , ∂d−αn) then the leading matrix of DL̆ coincides with the frontal
matrix of L̆ (we do not need to compute DL̆).

Therefore, for example, algorithms △EG, △RR can be used to compute the
desirable polynomial. The distinction between complexities (12) and (13) shows
that at least when n and d are large enough algorithm △EG is probably better.
The full complexity (in the meaning of this paper) is Θ(n3d2).

4.2 The Unimodularity Testing

Applying algorithm ExtRR to L we transform L into L̆. Theorem 1(ii, iii) im-
plies that L is unimodular if and only if L̆ is invertible in Matm(K). In this case,
(L̆)−1UL = In, where U is unimodular. Therefore, (L̆)−1U is the inverse for L.

The matrices U and L̆ can be constructed by ExtRR. By (14) the full complexity
of the computation of the inverse is

Θ(n4d3). (19)

The multiplication of L̆−1 and U does not change this estimate (recall that ord L̆−1 6
(n− 1)d).

In the case when we want only to test whether L is unimodular without con-
structing L−1, then we can use △EG; as we have mentioned, L is unimodular if
and only if the number of differentiations has to be exactly equal to nd, and the
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leading matrix is invertible in K after those differentiations. Such testing has the
complexity

Θ(n3d2). (20)

The formulated computational problems related to unimodularity can be solved
by different algorithms. For example, algorithms to construct the Jacobson and
Hermite forms of a given operator matrix can be used. A polynomial-time deter-
ministic algorithm for constructing the Jacobson form of L was proposed in [22].
Its complexity is considered in [22] as a function of three variables, and two of them
are our n, d (in [22], another notation is used). The value of the third variable is in
the worst case nd, and for the complexity as a function of the variables n, d one can
derive the estimate Θ(n9d9). As we have mentioned in the proof of Proposition 5,
the Hermite form of a unimodular matrix is the identity, the transformation matrix
U is the inverse. The complexity estimate for the algorithm given in [18, Thm 5.5]
is O(n7d3 log(nd)) (in our notation). It looks like this estimate is tight. (Of course,
the algorithms from [22, 18] solve more general problems, and the algorithm given
above in this section has some advantages only for recognizing invertibility of an
operator matrix and computing the inverse matrix.)

The author is unaware of the algorithms which solve the testing unimodularity
problem with a complexity which is less than (20). Search in the literature gave no
positive result, but of course it is possible that such algorithms exist. The author
makes no attempt to offer a champion algorithm for solving this problem. Perhaps,
for example, using the ideas of the fast matrix multiplication over a field [27, 16,
28], as well as the fast multiplication algorithm for scalar differential operators [20,
12, 13], one can propose an algorithm for fast multiplication operator matrices and
then get out of it the appropriate algorithm for solving the unimodularity testing
problem.

5 Conclusions

The author’s goal is to show that to choose an algorithm to solve a problem over a
differential field K it is reasonable to take into account the complexity measured as
not only the number of arithmetic operation in K but all operations including the
operation of differentiation. The algorithms that have the equivalent complexity as
the number of arithmetic operations in the worst case can differ in the context of
the full algebraic complexity that includes needed differentiations.

It is worthy to note that some versions of algorithms EG and RR are used
quite successfully, for example, for finding singular points of differential systems,
and we mentioned this in Section 4.1. We can expect that by these algorithms, the
unimodularity testing will be performed in practice in a reasonable time.

From the current work, new questions arise.
First, the question formulated in Section 3.4: suppose that we store all the

results of differentiations; does it allow to decrease the complexities (13), (14), (19)
(it would be desirable to get d2 instead of d3)?

Second. It is unclear whether there exists an algorithm for unimodularity testing
whose complexity is O(nαdβ), where α, β are real numbers and α < 3. For matrices
whose entries are commutative polynomials from K[x], there is an algorithm [17] for
constructing the inverse matrix with complexity O(n3ρ), where ρ is the maximal de-
gree of entries of given matrices (strictly speaking, algorithm from [17] is for the case
of “generic matrix inversion” only). It is unclear whether the problem of construct-
ing the inverse operator matrix is reducible to the problem of the operator matrix
multiplication, similarly to the case when entries of matrices belong to a field [15,
Sect. 16.4]. Going back to matrices with polynomial entries, note that there exists
a matrix multiplication algorithm [14] with complexity O(nωρ f(log n log ρ)), where
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f is a polynomial. However, an algorithm with a similar complexity for the matrix
inversion does not probably exists. It looks like that the problem of constructing the
inverse matrix is not reducible to the problem of the operator matrix multiplication
neither for polynomial matrices nor for operator matrices.

Third, much recent work has focused on properly dealing with the growth in the
size of coefficients from K, for example, when K = Q(x) ([11], [18] etc). It would be
valuable to investigate the bit complexity of the unimodularity testing algorithms.
Another way is to consider the complexity as a function of three variables: n, d
and ρ, where ρ is such that all the polynomials involved into L as numerators
and denominators of coefficients of entries of L are of degree which is ρ at most.
The complexity itself is then the number of operations in Q in the worst case. The
algorithms should allow control over coefficients growth. It is reasonable to continue
to investigate this line of enquiry.
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