
On Unimodular Matrices of Difference Operators

S. A. Abramov, D. E. Khmelnov

Dorodnicyn Computing Centre,
Federal Research Center “Computer Science and Control”

of the Russian Academy of Sciences,
Vavilova, 40, Moscow 119333, Russia

sergeyabramov@mail.ru, dennis khmelnov@mail.ru

Abstract. We consider matrices L ∈ Matn(K[σ, σ−1]) of scalar difference
operators, where K is a difference field of characteristic 0 with an automor-
phism σ. We discuss approaches to compute the dimension of the space of
those solutions of the system of equations L(y) = 0 that belong to an ade-
quate extension of K. On the base of one of those approaches, we propose a
new algorithm for computing L−1 ∈ Matn(K[σ, σ−1]) whenever it exists. We
investigate the worst-case complexity of the new algorithm, counting both
arithmetic operations in K and shifts of elements of K. This complexity
turns out to be smaller than in the earlier proposed algorithms for inverting
matrices of difference operators.

Some experiments with our implementation in Maple of the algorithm are
reported.

1 Introduction

Matrix calculus has wide application in various branches of science. Testing whether
a given matrix over a field or ring is invertible and computing the inverse matrix
are classical mathematical problems. Below, we consider these problems for matri-
ces whose entries belong to the ring (non-commutative) of scalar linear difference
operators with coefficients from a difference field K of characteristic 0 with an au-
tomorphism (shift) σ. We discuss some new algorithms for solving these problems.
These problems can be also solved by well-known algorithms proposed originally
for more general problems. The new algorithms below have lower complexity.

In the case of matrices of operators, the term “unimodular matrix” is usually
used instead of the “invertible matrix”. This term will be used throughout this
paper.

In the differential case when the ground field K is a differential field of char-
acteristic 0 with a derivation δ =′ and when the matrix entries are scalar linear
differential operators over K, algorithms for the unimodularity testing of a matrix
and computing its inverse were considered in [2]. For a given matrix L, the algo-
rithms discussed below rely on determining the dimension of the solution space
VL of the corresponding system of equations under the assumption that the com-
ponents of solutions belong to the Picard–Vessiot extension of K associated with
L (see [16]). A matrix L of operators, when L is of full rank (the rows of L are
independent over the ring of scalar linear operators) is unimodular if and only if
dimVL = 0, i.e., VL is the zero space (see [4]).

There are two significant dissimilarities between the differential and difference
cases. One of them gives an advantage to the differential case, the other to the
difference case. The differential system y′ = Ay has the n-dimensional solution
space in the universal differential extension, regardless of the form (singular or non-
singular) of the n×n-matrix A [17]. But in the difference case, the non-singularity of



2 S. A. Abramov, D. E. Khmelnov

A is required. However, the difference case has the advantage that the automorphism
σ has the inverse in K[σ, σ−1], while the differentiation δ is not invertible in K[δ].

It is worthy to note that some algorithms for solving the “difference problems”
formulated above have been proposed in [3]. The algorithms below have lower com-
plexity (this is the novelty of the results) due to the usage of the EG-eliminations
algorithm [1, 6, 7] as an auxiliary tool instead of the algorithm Row-Reduction [11].
The obstacle for such a replacement in the differential case, is the absence of the
inverse element for δ in the ring K[δ].

The problems of unimodularity testing and inverse matrix construction can be
solved by applying various other algorithms. For example, the Jacobson and Hermite
forms of the given operator matrix can be constructed; their definitions can be
found in [13, 15]. The complexity of the algorithms is greater than the complexity
of the algorithms in this paper and in [3]. Of course, the algorithms in [13, 15] are
intended for more general problems, and the algorithms in this paper and in [3] have
advantages only for unimodularity recognition and the construction of an inverse
operator matrix.

We use the following notation. The ring of n×n-matrices (n is a positive integer)
with elements from a ring or field R is denoted by Mat n(R). If M is an n×n-matrix,
then Mi,∗ with 1 6 i 6 n is the 1×n-matrix equal to the ith row of M . The diagonal
n × n-matrix with diagonal elements r1, . . . , rn is denoted by diag(r1, . . . , rn), and
In is the n× n identity matrix.

The proposed algorithms are presented in Section 3. Their implementation in
Maple and some experiments are described in Section 5.

2 Preliminaries

2.1 Adequate Difference Extensions

As usual, a difference ring K is a commutative ring with identity and an auto-
morphism σ (which will frequently be referred to as a shift). If K is additionally
a field, then it is called a difference field. We will assume that the considered dif-
ference fields are of characteristic 0. The ring of constants of a difference ring K is
Const (K) = {c ∈ K | σc = c}. If K is a difference field, then Const (K) is a subfield
of K. Let K be a difference field with an automorphism σ, and let Λ be a difference
ring extension of K (on K, the corresponding automorphism of Λ coincides with σ;
for this automorphism of Λ, we use the same notation σ).

Definition 1 The ring Λ which is a difference ring extension of a field K is an
adequate difference extension of K if Const (Λ) is a field and an arbitrary system

σy = Ay, y = (y1, . . . , yn)T (1)

with a nonsingular A ∈ Mat n(K) has in Λn the linear solution space over Const (Λ)
of dimension n.

The non singularity of A in this definition is essential: e.g., if the first row of A
is zero, then the entry y1 in any solution of the system (1) is zero as well.

Note that the q-difference case [10] is covered by the general difference case.
If Const (K) is algebraically closed, then there exists a unique (up to a differ-

ence isomorphism, i.e., an isomorphism commuting with σ) adequate extension Ω
such that Const (Ω) = Const (K), which is called the universal difference (Picard-
Vessiot) ring extension of K. The complete proof of its existence is not easy (see [16,
Sect. 1.4]), while the existence of an adequate difference extension for an arbitrary
difference field can be rather easily proved (see [5, Sect. 5.1]). However, it should



On Unimodular Matrices of Difference Operators 3

be emphasized that, for an adequate extension, the equality Const (Λ) = Const (K)
is not guaranteed; in the general case, Const (K) is a proper subfield of Const (Λ).
The assertion that a universal difference extension exists for an arbitrary difference
field of characteristic 0 is not true if the extension is understood as a field. Franke’s
well-known example [12] is the scalar equation over a field with an algebraically
closed field of constants. This equation has no nontrivial solutions in any difference
extension having an algebraically closed field of constants.

In the sequel, Λ denotes a fixed adequate difference extension of a difference
field with an automorphism σ.

2.2 Orders of difference operators

A scalar difference operator is an element of the ring K[σ, σ−1]. Given a nonzero
scalar operator f =

∑
aiσ

i, its leading and trailing orders are defined as

ord f = max{i | ai 6= 0}, ord f = min{i | ai 6= 0}

and the order of f is defined as

ord f = ord f − ord f.

Set ord 0 = −∞, ord 0 =∞, and ord 0 = −∞.
For a finite set F of scalar operators (a vector, matrix, matrix row etc), ordF

is defined as the maximum of the leading orders of its elements; ordF is defined
as the minimum of the trailing orders of its elements; finally, ordF is defined as
ordF − ordF . A matrix of difference operators is a matrix from Mat n(K[σ, σ−1]).
In the sequel, such a matrix of difference operators is associated with some matrices
belonging to Mat n(K). To avoid confusion of terminology, matrices of difference
operators will be briefly referred to as operators. The case of scalar operators will
be considered separately. An operator is of full rank (or is a full rank operator) if
its rows are linearly independent over K[σ, σ−1]. Same-length rows u1, . . . , us with
components belonging to K[σ, σ−1] are called linearly dependent (over K[σ, σ−1])
if there exist f1, . . . , fs ∈ K[σ, σ−1] not all zero such that f1u1 + · · · + fsus = 0;
otherwise, these rows are called linearly independent (over K[σ, σ−1]). If

L ∈ Mat n(K[σ, σ−1]), l = ordL, t = ordL,

and L is nonzero, then it can be represented in the expanded form as

L = Alσ
l +Al−1σ

l−1 + · · ·+Atσ
t, (2)

where Al, Al−1, . . . , At ∈ Mat n(K), and Al, At (the leading and trailing matrices of
the original operator) are nonzero.

Let the leading and trailing row orders of an operator L be α1, . . . , αn and
β1, . . . , βn, respectively. The frontal matrix of L is the leading matrix of the operator
PL, where

P = diag(σl−α1 , . . . , σl−αn), l = ordL.

Accordingly, the rear matrix of L is the trailing matrix of the operator QL, where

Q = diag(σt−β1 , . . . , σt−βn), t = ordL.

If αi = −∞ (resp. βi =∞) then the i-th row of P (resp. Q) is zero.
We say that L is strongly reduced if its frontal and rear matrices are both non-

singular.



4 S. A. Abramov, D. E. Khmelnov

Definition 2 An operator L ∈ Mat n(K[σ, σ−1]) is unimodular or invertible if there
exists an inverse L−1 ∈ Mat n(K[σ, σ−1]): LL−1 = L−1L = In. The group of
unimodular n×n-operators is denoted by Υn. Two operators are said to be equivalent
if L1 = UL2 for some U ∈ Υn.

If L has a zero row (in such a case, its frontal and rear matrices have also zero
rows) then L is not of full rank, and is not unimodular: suppose, e.g., that the first
row of L is zero, then for any M ∈ Mat n(K[σ, σ−1]), the first row of the product
LM is also zero, thus, the equality LM = In is impossible. Similarly, if U ∈ Υn and
UL has a zero row then L /∈ Υn.

Let VL denote the space of the solutions of the system L(y) = 0 that belong to
Λn (see Section 2.1). For brevity, VL is sometimes called the solution space of L.

For the difference case, Theorem 1 from [2] can be reformulated as follows.

Theorem 1 Let L ∈ Mat n(K[σ, σ−1]) be of full rank. Then

(i) If L is strongly reduced, then dimVL =
∑n
i=1 ordLi,∗.

(ii) L ∈ Υn iff VL = 0.

The proof is based on [4, 5].

2.3 Complexity

Besides the complexity as the number of arithmetic operations (the arithmetic com-
plexity) one can consider the number of shifts in the worst case (the shift complexity).

Thus, we will consider two complexities. This is similar to the situation with
sorting algorithms, when we consider separately the complexity as the number of
comparisons and, resp. the number of swaps in the worst case.

We can also consider the full algebraic complexity as the total number of all
operations in the worst case.

Supposing that L ∈ Mat n(K[σ, σ−1]), ordL = d, each of the mentioned com-
plexities is a function of n and d.

In asymptotic complexity estimates, along with the O notation we use the Θ
notation (see [14]): the relation f(n, d) = Θ(g(n, d)) is equivalent to

f(n, d) = O(g(n, d)) and g(n, d) = O(f(n, d)).

Note that the full complexity of an algorithm counting operations of two different
types in the worst case is not, in general, equal to the sum of two complexities,
counting operations of the first and, resp. second type. We can claim only that the
full complexity does not exceed that sum. If for the first and second complexities we
have asymptotic estimates Θ(f(n, d)) and Θ(g(n, d)) then for the full complexity
we have the estimate O(f(n, d) + g(n, d)). To this we can add that if for the first
and second complexities we have estimates O(f(n, d)) and O(g(n, d)) then we have
the estimate O(f(n, d) + g(n, d)) for the full complexity.

2.4 EG-eliminations (Family of EG-algorithms)

Definition 3 Let the ith row of the frontal matrix of L ∈ Mat n(K[σ, σ−1]) be
non-zero and have the form

(0, . . . , 0︸ ︷︷ ︸
k

, a, . . . , b),

0 6 k 6 n, a 6= 0. In this case, k is the indent of the ith row of L.



On Unimodular Matrices of Difference Operators 5

The algorithm EGσ (the version published in [1]) is as follows:

Algorithm: EGσ
Input: An operator L ∈ Mat n(K[σ, σ−1) whose leading matrix has no zero row.
Output: An equivalent operator having an upper triangle leading matrix (that
operator is also denoted by L) or the message “is not of full rank”.
while L has rows with equal indents do

(Reduction) Let some rows r1, r2 of L have the same indent k. Then compute
v ∈ K such that the indent of the row

r = r1 − vr2 (3)

is greater than k or ord r < ordL (the computation of v uses one arithmetic oper-
ation); if r is zero row of L then STOP with the message “is not of full rank”fi;
The row from r1, r2 which has the smaller trailing order, must be replaced by r (if
ord r1 = ord r2 then any of r1, r2 can be taken for the replacement);

(Shift) If ord r < ordL then apply σordL−ord r to r in L
od;
Return L. �

Thus, each step of the algorithm EGσ is a combination “reduction + shift”. All
the steps are unimodular since the operator σ−1 is the inverse for σ.

Example 1

L =

 1 − 1
xσ

x2

2 −
x
2σ + 1

 =

0 − 1
x

0 −x2

σ +

 1 0

x2

2 1

 . (4)

By applying the algorithm EGσ, the operator L is transformed as follows:0 − 1
x

0 −x2

σ +

 1 0

x2

2 1

 1−→

0 − 1
x

0 0

σ +

1 0

0 1

 2−→

0 − 1
x

0 1

σ +

1 0

0 0

 3−→

0 0

0 1

σ +

1 0

0 0

 4−→

1 0

0 1

σ +

0 0

0 0

 .

Here

1. L2,∗ :=
−x2

2
L1,∗ + L2,∗,

2. L2,∗ := σL2,∗,

3. L1,∗ := L1,∗ +
1

x
L2,∗,

4. L1,∗ := σL1,∗.

(5)

As the result of this transformation, we obtain the operator

1 0

0 1

σ, i.e.,σ 0

0 σ

 . (6)

By analogy with EGσ we can propose an algorithm EGσ−1 in which the trailing
matrix of the operator is considered instead of its leading matrix.



6 S. A. Abramov, D. E. Khmelnov

Proposition 1 The arithmetic complexity of the algorithms EGσ, EGσ−1 is

Θ(n3d2), (7)

the shift complexity is

Θ(n2d2). (8)

Correspondingly, the full algebraic complexity is

O(n3d2). (9)

See [3, Sect. 5.4] for the proof.

3 Unimodularity Testing, Computing Inverse Operator

3.1 Unimodularity Testing

Proposition 2 Let the rear matrix of an operator L ∈ Mat n(K[σ, σ−1) be non-
singular. Then applying EGσ to L gives an operator having a non-singular rear
matrix.

Proof. Let us prove that one step of EGσ does not change the determinant of the
rear matrix of L. Indeed, let the reduction stage of this step change a row r1 of L
and before this step, we have ord r1 = β. The row r1 is replaced by a sum of r1
and another row r2, multiplied by v ∈ K: r1 := r1 + vr2. The inequality ord r2 > β
holds. If ord r2 > β then the rear matrix gets no change. If ord r2 = β then the
determinant of the rear matrix gets no change since the shift stage does not change
the rear matrix.

The following algorithm can be verified by means of Theorem 1 and Proposi-
tion 2:

Algorithm: Unimodularity testing (this algorithm has been described in [3] )
Input: An operator L ∈ Mat n(K).
Output: “is unimodular” or “is not unimodular” depending on whether L is uni-
modular or not.
if EGσ−1 did not find that L is not of full rank and ord r = ord r for each row r of
EGσ(EGσ−1(L)) then Return “is unimodular” otherwise Return “is not unimodular”
fi. �

Example 2 Let L be again as in Example 1, i.e., of the form (4). The rear matrix
coincides with the trailing one, and is nonsingular. By applying the algorithm EGσ,
the operator L is transformed to L̃ of the form (6). We have dimVL̃ = 0. Thus, the
original operator L is unimodular.

Proposition 3 The arithmetic, shift and full algebraic complexities of the algo-
rithm Unimodularity testing are, resp. (7), (8), and (9).

Proof. This follows from Proposition 1 and the fact that the values of n, d are not
increased after applying EGσ−1 .



On Unimodular Matrices of Difference Operators 7

3.2 Inverse Operator

Algorithm: ExtEGσ
Input: Operators J, L ∈ Mat n(K).
Output: The operator M = UJ , where U is such that EGσ(L) = UL.
Apply EGσ to L, and repeat in parallel the application of all the operations to J .�

Note that in the case when we use In as J , we obtain M which is equal to U .
By analogy with ExtEGσ we can propose an algorithm ExtEGσ−1 in which the

trailing matrix of the operator is considered instead of its leading matrix.

Proposition 4 We have ordU 6 nd on each step of applying of ExtEGσ to L ∈
Mat n(K[σ, σ−1]), ordL = d.

Proof. If in a step of the algorithm the shift σk of a row r was performed, then
the order of U will be increased by no more than |k|, while the order of the shifted
row is decreased by |k|. This implies that ordU after any step of ExtEGσ does not
exceed the sum of the orders of all rows of L. The order of each row does not exceed
d and the sum of the orders of all rows of L does not exceed nd.

Proposition 5 Both arithmetic and shift complexities of each of the algorithms
ExtEGσ, ExtEGσ−1 can be estimated by O(n4d 2). The full complexity is O(n4d 2) as
well.

Proof. When one applies EGσ or EGσ−1 to L ∈ Mat n(K[σ, σ−1]), ordL = d, then the
operation (3) is performed at most n ·nd times. By Proposition 4, when we compute
U , each operation (3) uses at most O(n · nd) arithmetic operations, i.e., O(n2d)
arithmetic operations. Totally, the number of arithmetic operations is O(n2d ·n2d),
i.e. O(n4d 2).

The shift complexity of each of EGσ, EGσ−1 is O(n2d 2). When we substitute nd
for d (by Proposition 4) we obtain O(n4d 2).

The estimate O(n4d 2) for the full complexity follows from the obtained estimates
for the arithmetic and shift complexities.

Algorithm: Inverse operator

Input: An operator L ∈ Mat n(K).
Output: The inverse of L or the message “is not unimodular”.
U := In; (U,L) := ExtEGσ−1(U,L); (U,L) := ExtEGσ(U,L);
if ord r 6= ord r for at least one row r of L then STOP with the message “is not
unimodular”
fi;
Let β1, . . . , βn be the trailing orders of rows of L,

thus L = MD with M ∈ Mat n(K), D = diag(σβ1 , . . . , σβn);
L−1 := diag(σ−β1 , . . . , σ−βn)M−1U. �

Example 3 Consider again operator (4). To find L−1 after getting the operator L̃
(as it was shown in Example 2), we, first, apply (5) to I2. We get1 0

0 1

 1−→

 1 0

−x
2

2 1

 2−→

 1 0

− (x+1)2

2 σ σ

 3−→

1− (x+1)2

2x σ 1
xσ

− (x+1)2

2 σ σ

 4−→

σ − (x+2)2

2(x+1)σ
2 1

x+1σ
2

− (x+1)2

2 σ σ

 .



8 S. A. Abramov, D. E. Khmelnov

We get

L−1 = diag(σ−1, σ−1) I−12

σ − (x+2)2

2(x+1)σ
2 1

x+1σ
2

− (x+1)2

2 σ σ

 =

1− (x+1)2

2x σ 1
xσ

−x
2

2 1

 .

Proposition 6 The arithmetic, shift, and full complexities of the algorithm Inverse

operator can be estimated by O(n4d2).

Proof. The statement follows from Proposition 5.

4 Other Versions of EG and Inverse operator

The algorithm Inverse operator proposed in this paper is based on the version [1]
of the EG-eliminations algorithm as an auxiliary tool. Another variant of the al-
gorithm for constructing the inverse operator has been proposed in [3], it is based
on a version (named RR in [3]) of the Row-Reduction algorithm [11] as an auxil-
iary tool. For a given operator, the algorithm RRσ constructs an equivalent operator
that has a nonsingular frontal matrix. Similarly, the algorithm RRσ−1 constructs an
equivalent operator that has a nonsingular rear matrix. The arithmetic complexity
of the algorithms presented in this paper and, resp. in [3], is the same, however, the
shift complexity (and, hence, the full algebraic complexity) of the new algorithm is
lower: O(n4d2) instead of Θ(n4d3).

Some other versions of the algorithms belonging to the EG-eliminations family
([6, 7]), whose full complexity does not differ much from the full complexity of the
above considered version, can be to some extent more convenient for implementa-
tion. This question has been discussed in [8]. In our Maple-implementation of the
Inverse operator algorithm represented below, we use elements of various vari-
ants of EG-eliminations. (It is well known that an algorithm that looks the best in
terms of complexity theory is not necessarily the best in computational practice.)

5 Implementation and Experiments

The implementation1 is performed in Maple [18]. The existing implementation of the
algorithm EG described in [9] is taken as a starting point. The procedure is adjusted
to the difference case and to provide extended versions, both ExtEGσ and ExtEGσ−1 .
On top of the procedure for ExtEGσ and ExtEGσ−1 , the procedure IsUnimodular to
test the unimodularity of an operator and to compute its inverse is implemented.

An operator L = Alσ
l + Al−1σ

l−1 + · · · + Atσ
t is specified at the input of the

procedures as the list
[A, l, t], (10)

where A is an explicit matrix

A = (Al|Al−1| . . . |At) (11)

of size n× n(l − t+ 1). The explicit matrix A is defined by means of the standard
Maple object Matrix. The entries of the explicit matrix are rational functions of
one variable, which are also specified in a standard way accepted in Maple. If t = 0
then the input may be given alternatively just by the explicit matrix A.

The procedure IsUnimodular returns true or false as the result of checking
the unimodularity of the given operator, its inverse operator is returned addition-
ally being assigned to a given variable name (an optional input parameter of the

1 Available at http://www.ccas.ru/ca/egrrext



On Unimodular Matrices of Difference Operators 9

procedure). The inverse operator is also represented by the list of its explicit matrix
and its leading and trailing orders. If the optional variable name is not given, then
the procedure uses the algorithm Unimodularity Testing from the section 3.1,
otherwise the algorithm Inverse Operator from the section 3.2 is used.

Example 4 We apply the procedure IsUnimodular to the operator matrix (4)
considered in Examples 1–3. The explicit matrix for the operator is0 − 1

x 1 0

0 −x2
x2

2 1

 ,

with l = 1 and t = 0. The procedure is applied twice: first time just for checking
the unimodularity, and the second time, for computing the inverse operator as well.
One can see that the result of the application coincides with the result presented in
Example 3 (the computation time is also presented):

> L := Matrix([[0, -1/x, 1, 0], [0, -x/2, x^2/2, 1]]);

L :=

0 − 1
x 1 0

0 −x2
x2

2 1


> st:=time(): IsUnimodular(L, x); time()-st;

true

0.032

> st:=time(): IsUnimodular(L, x, ’InvL’); time()-st;

true

0.063

> InvL; 
− (x+1)2

2x
1
x 1 0

0 0 −x
2

2 1

, 1, 0


Example 5 Consider the operator(
σ−1 − 1

x−1
x2

2 −x2σ + 1

)
.

The explicit matrix for the operator is(
0 0 0 − 1

x−1 1 0

0 −x2
x2

2 1 0 0

)
with l = 1 and t = −1. The procedure IsUnimodular is applied twice again: first
time just for checking the unimodularity, and the second time, for computing the
inverse operator as well. The computation time is also presented.

> L:= Matrix([[0, 0, 0,-1/(x-1), 1, 0], [0, -x/2, x^2/2, 1, 0, 0]]);



10 S. A. Abramov, D. E. Khmelnov

L :=

0 0 0 − 1
x−1 1 0

0 −x2
x2

2 1 0 0


> st:=time(): IsUnimodular([L, 1, -1], x); time()-st;

true

0.078

> st:=time(): IsUnimodular([L, 1, -1], x, ’InvL’); time()-st;

true

0.109

> InvL; 
− (x+1)2

2x 0 1 1
x 0 0

0 0 −x
2

2 0 0 1

, 2, 0


It means that(
σ−1 − 1

x−1
x2

2 −x2σ + 1

)−1
=

(
− (x+1)2

2x σ2 + σ 1
xσ

−x
2

2 σ 1

)
.

In addition, a series of experiments has been executed.

Example 6 Consider the following n× n-operator with n = 2k

M =

(
Ik A
0k Ik

)
, (12)

where 0k is the zero k × k-matrix, A ∈ Mat k(K[σ, σ−1) is an arbitrary operator.
The operator (12) is unimodular for any A, its inverse operator is

M−1 =

(
Ik −A
0k Ik

)
. (13)

For each experiment, we have generated an operator A whose entries are scalar
difference operators having random rational function coefficients with the numera-
tors and denominators of the degree up to 2. We compute the inverse for M of the
form (12). The order of A, and hence, the order of M varies as d = 1, 2, 4, 6, 8, 10
and the number of rows of M varies as n = 4, 6, 8, 10 (hence, the number of rows
of A varies as k = 2, 3, 4, 5). The inverse of M is calculated in each experiment by
IsUnimodular. The results are presented in Table 1.

The table shows that the computation time in general corresponds to the com-
plexity estimates (it should not be exact since the estimates are for the worst case
and asymptotical). However, the computing time starts to increase faster than ex-
pected with the growth of n and d. It is again caused by the significant growth of
the size of the elements of the matrix in the course of the computation. The size of
the elements in M−1 is equal to the size of the elements in M in these experiments,
so the coefficients of the elements are rational functions with the numerators and
denominators of the degree up to 2. But in the course of the computation, the ele-
ments of the matrix have coefficients with the numerators and denominators of the
degree up to several dozens for the smaller n and d, and up to several hundreds and
even more than a thousand for the greater n and d.



On Unimodular Matrices of Difference Operators 11

Table 1. Results of the experiments, in seconds

d=1 d=2 d=4 d=6 d=8 d=10
n=4 0.125 0.188 0.500 0.969 2.078 2.906
n=6 0.282 0.593 1.734 6.563 79.375 92.562
n=8 0.516 1.500 37.938 94.813 427.375 1836.547
n=10 0.703 5.562 910.218 1006.797 7576.063 13372.172

6 Conclusion

In this paper, we have presented some new algorithms for solving problems for
matrices whose entries belong to the non-commutative ring of scalar linear difference
operators with coefficients from a difference field K of characteristic 0 with an
automorphism σ. Some algorithms for solving the difference problems formulated
in the paper had been proposed in [3]. The algorithms in the present paper have
lower complexity due to the usage of the EG-eliminations algorithm as an auxiliary
tool instead of Row-Reduction algorithm. The implementation of the algorithm in
Maple was done and some experiments were reported. The experimental results
show that the computation time corresponds in general to the complexity estimates
from the proposed theory.

From our work, new questions arise (they were earlier formulated in [3]). For
example, it is not clear, whether the problem of inverting can be reduced to the
matrix multiplication problem (similarly to the “commutative” case)?

One more question: whether there exists an algorithm for such n × n-matrices
inverting with the full complexity O(nadb), with a < 3? It is possible to prove by
the usual way that the matrix multiplication can be reduced to the problem of
the matrix inverting (we have in mind the difference matrices). However, it is not
so easy to prove that the problem of the matrix inverting can be reduced to the
problem of the the matrix multiplication.

We will continue to investigate this line of enquiry.

Acknowledgments

The authors are thankful to anonymous referees for useful comments.

References

1. Abramov, S.: EG–Eliminations. J. Difference Equations Appl., 5, 393–433 (1999)
2. Abramov, S.: On the Differential and Full Algebraic Complexities of Operator Matrices

Transformations. In: Gerdt, V.P. et al. (eds.) CASC 2016, LNCS, vol. 9890, pp. 1–14.
Springer, Heidelberg (2016)

3. Abramov, S.: Inverse linear difference operators. Comput. Math. Math. Phys. 57,
1887–1898 (2017)

4. Abramov, S., Barkatou, M.: On the dimension of solution spaces of full rank linear
differential systems. In: Gerdt, V.P. et al. (eds.) CASC 2013, LNCS, vol. 8136, pp.
1–9. Springer, Heidelberg (2013)

5. Abramov, S., Barkatou, M.: On solution spaces of products of linear differential or
difference operators. ACM Comm. in Computer Algebra 4, 155–165 (2014)

6. Abramov, S., Bronstein, M.: On solutions of linear functional systems. In: ISSAC’2001
Proc., pp. 1–6 (2001)

7. Abramov, S., Bronstein, M.: Linear algebra for skew-polynomial matrices. Rapport de
Recherche INRIA RR-4420, March 2002, http://www.inria.fr/RRRT/RR-4420.html
(2002)



12 S. A. Abramov, D. E. Khmelnov

8. Abramov, S.A., Glotov, P.E., Khmelnov, D.E.: A scheme of eliminations in linear
recurrent systems and its applications. Transactions of French-Russian Lyapunov In-
stitute 3, 78–89 (2001)

9. Abramov, S., Khmelnov, D., Ryabenko, A.: Procedures for searching local solutions
of linear differential systems with infinite power series in the role of coefficients. Pro-
gramming Comput. Software 42(2), 55–64 (2016)

10. Andrews, G.E.: q-Series: their development and application in analysis, number theory,
combinatorics, physics, and computer algebra. Pennsylvania: CBMS Regional Confer-
ence Series, AMS, R.I., vol. 66 (1986)

11. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of
Ore polynomials. J. Symb. Comput. 41, 513–543 (2006)

12. Franke, C.H.: Picard–Vessiot theory of linear homogeneous difference equations. Trans.
Amer. Math. Soc. 108, 491–515 (1986)

13. Giesbrecht, M., Sub Kim, M.: Computation of the Hermite form of a matrix of Ore
Polynomials. J. Algebra 376, 341–362 (2013)

14. Knuth, D.E.: Big omicron and big omega and big theta. ACM SIGACT News 8(2),
18–23 (1976)

15. Middeke, J.: A polynomial-time algorithm for the Jacobson form for matrices of dif-
ferential operators. Tech. Report No. 08-13 in RISC Report Series (2008)

16. van der Put, M., Singer, M.F.: Galois Theory of Difference Equations. LNM, vol. 1666.
Heidelberg: Springer (1997)

17. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations.
Grundlehren der mathematischen Wissenschaften, 328. Springer, Heidelberg (2003)

18. Maple online help: https://www.maplesoft.com/support/help/


