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Université de Limoges; CNRS
123, Av. A. Thomas, 87060 Limoges

France
moulay.barkatou@unilim.fr

Abstract

We consider linear ordinary differential or difference systems of the form L(y) = 0 where L is an
operator with matrix coefficients, the unknown vector y has m components y1, . . . , ym, m > 1. The
matrix coefficients are of size m × m, their entries belong to a differential or difference field K of
characteristic 0. For any such a system the solution space VL is considered, and the components of
each solution are in a fixed appropriate differential or difference extension of K (e.g., in the universal
Picard-Vessiot extension). We prove that dimVLM = dimVL + dimVM for arbitrary operators L and M
of the considered form, and discuss some algorithms based on this property of operators. In particular,
we propose an algorithm to compute dimVL, as well as a new algorithm having a low complexity for
recognizing unimodular operators and constructing the inverse of a unimodular operator.

1 Introduction

Linear ordinary differential and difference systems with variable coefficients appear in various areas of
mathematics. In this paper we discuss some questions related to the dimension of solution spaces of such
systems. First we detail the differential case, then we consider specific features of difference systems.

Let K be a differential field of characteristic 0 with a derivation ∂ =′. The ring of m×m matrices with
entries belonging to a ring R is denoted by Matm(R). Let K[∂] denote the ring of differential operators
with coefficients in K. Any non-zero element L ∈ Matm(K[∂]) can be represented as a differential operator
with matrix coefficients in Matm(K):

L = Ar∂
r +Ar−1∂

r−1 + · · ·+A0, (1)

where the coefficients A0, A1, . . . , Ar belong to Matm(K), and where Ar (the leading matrix of L) is non-
zero. The number r is the order of L (we write r = ordL). The corresponding differential system L(y) = 0
is given by

Ary
(r) +Ar−1y

(r−1) + · · ·+A0y = 0, (2)

where y is an unknown m−dimensional vector with components y1, . . . , ym. When the operator L is of full
rank, i.e., the equations of the corresponding system (2) are linearly independent over K[∂], the solution
space VL is of finite dimension. In the scalar case, i.e., the case where m = 1, any non-zero scalar equation
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L(y) = 0, has in appropriate extensions of K a solution space VL whose dimension is equal to ordL.
Moreover, if for scalar operator L,M ∈ K[∂] we consider the equation LM(y) = 0, where LM is the
product of the operators L and M then we have

dimVLM = dimVL + dimVM . (3)

The equality (3) is a direct consequence of the equality ord (LM) = ordL+ ordM .
In the case of a system of differential equations the situation is not so simple. If the leading matrix of L

is invertible then dimVL = m ordL in an appropriate differential extension of K. However, if this matrix
is not invertible then dimVL < m ordL. Nevertheless, equality (3) holds for any L,M ∈ Matm(K[∂]) and
an elementary proof is given in Section 3. Equality (3) is a generalization of the following fact that we
proved in [2]: By differentiating one of the equations in a full rank system, one increases the dimension of
the solution space by one.

In the general case ord (LM) 6 ordL+ordM , and it may happen that ord (LM) < ordL+ordM , due
to the existence of zero divisors in the ring of matrices. It is even possible that ord (LM) = 0 while both
operators L and M are of positive order. This is the case for example when L is an invertible in Matm(K[∂])
and M is its inverse, i.e., LM = ML = Im where Im is the unit m ×m-matrix. Invertible operators are
also called unimodular operators. It can be shown by different ways that an operator L ∈ Matm(K[∂]) is
unimodular if and only if dimVL = 0.

In Section 4 we propose an algorithm to compute dimVL, as well as algorithms for recognizing uni-
modular operators and constructing their inverses.

These algorithms are based on the algorithm RR (Row-Reduction) by B.Beckermann, H.Cheng, and
G.Labahn from [8, Thm. 2.2] (see also [6, Sect. 2.1]). The complexity measured as the number of field
operations in K in the worst case of each of those algorithms is the same as of algorithm RR, i.e.,

Θ(mω+1r2), (4)

where r = ordL, and 2 < ω 6 3 is the matrix multiplication exponent. To verify these new algorithms we
suppose that the field K is constructive and, in particular that there exists an algorithm for zero testing
in K.

Section 5 is devoted to the difference case. First we give an elementary proof that for any difference
field of characteristic 0 there exists a difference extension such that the needed statements on the dimension
of solution spaces of first-order systems hold. (The proof of existence of the universal difference extension
given in [15] is quite non-trivial). Then we prove the properties analogous to the ones established in the
differential case. We define, prove the existence, and give an algorithm to construct a strongly row-reduced
form of a full-rank difference operator. In comparison with the row-reduced form which was considered in
[8], this new form has some additional useful properties. An algorithm to compute dimVL for a full-rank
difference operator L as well as algorithms for recognizing unimodular operators and constructing their
inverses are also described. (In [2, Appx.] only an incomplete sketch of an algorithm to compute dimVL
in the difference case was given.)

2 Preliminaries

The notation MT is used for the transpose of a matrix (vector) M . If F is a differential field with derivation
∂ then Const (F ) = {c ∈ F | ∂c = 0} is the constant field of F .

2.1 Differential Adequate Field Extension

Let K be a differential field of characteristic 0 with derivation ∂ =′.
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Definition 1 An adequate differential extension Λ of K is a differential field extension Λ of K such that
any differential system

∂y = Ay, (5)

with A ∈ Matm(K) has in Λm a solution space of dimension n over Const (Λ).

If Const (K) is algebraically closed then there exists a unique (up to a differential isomorphism) ade-
quate differential extension Λ such that Const (Λ) = Const (K) which is called the universal differential
field extension of K [16, Sect. 3.2]. For any differential field K of characteristic 0 there exists a differential
extension whose constant field is algebraically closed. Indeed, this is the algebraic closure K̄ with the deriva-
tion obtained by extending the derivation of K in the natural way. In this case Const (K̄) = Const (K)
(see [16, Exercises 1.5, 2:(c),(d)]). Existence of the universal differential extension for K̄ implies that there
exists an adequate differential extension for K, i.e., for an arbitrary differential field of characteristic zero.

In the sequel, we denote by Λ a fixed adequate differential extension of K. Concerning the solution
spaces of systems of the form (2), we suppose that the solutions are in Λm.

In addition of the first-order systems of the form (5), we also consider the differential systems of the
form (2) of arbitrary order r > 1.

Remark 1 If Ar is invertible in Matm(K) then system (2) is equivalent to the first-order system having
mr equations:

∂Y = AY, (6)

with

A =




0 Im . . . 0
...

...
. . .

...
0 0 . . . Im
Â0 Â1 . . . Âr−1


 , (7)

where Âk = −A−1
r Ak, k = 0, 1, . . . , r − 1, and

Y = (y1 . . . , ym, ym+1, . . . , yrm)T (8)

with
(y1 . . . , ym, ym+1, . . . , yrm) =

(
y1 . . . , ym, y

′
1 . . . , y

′
m, . . . , y

(r−1)
1 , . . . , y(r−1)

m

)
.

Therefore if the leading matrix of system (2) is invertible then the dimension of the solution space of this
system is equal to mr.

Operator (1) can be represented as a matrix in Matm(K[∂]):




L11 . . . L1m

. . . . . . . . .
Lm1 . . . Lmm


 , (9)

Lij ∈ K [∂], i, j = 1, . . . ,m, with maxi,j ordLij = r. We say that the operator L ∈ Matm(K [∂]) (as well
as the system L(y) = 0) is of full rank, if the rows

`i = (Li1, . . . , Lim), i = 1, . . . ,m, (10)

of matrix (9) are linearly independent over K [∂].
System (2) can be also written as a system of m scalar linear equations

L1(y1, . . . , ym) = 0, . . . , Lm(y1, . . . , ym) = 0, (11)
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with

Li(y1, . . . , ym) =
m∑

j=1

Lij(yj), (12)

where Lij , i, j = 1, . . . ,m, are as in (9).
The matrix Ar is the leading matrix of both the system L(y) = 0 and operator L, regardless of the

representation form.

2.2 Unimodular Factors and Algorithm RR

We use the notation
[M ]i,∗ , 1 6 i 6 m,

for the 1×m-matrix which is the i-th row of an m×m-matrix M .

Definition 2 Let a full-rank operator L ∈ Matm(K[∂]) be of the form (1). If 1 6 i 6 m then define αi(L)
as the maximal integer k, 0 6 k 6 r, such that [Ak]i,∗ is a nonzero row. The matrix M ∈ Matm(K) such
that [M ]i,∗ = [Aαi(L)]i,∗, i = 1, 2, . . . ,m, is the row frontal matrix of L. The vector (α1(L), . . . , αm(L)) is
the row-order of L. (We will write simply (α1, . . . , αm), when it is clear which operator is considered.)

Definition 3 An operator U ∈ Matm(K[∂]) is unimodular (or invertible) if there exists Ū ∈ Matm(K[∂])
such that ŪU = UŪ = Im. An operator in Matm(K[∂]) is row-reduced if its row frontal matrix is invertible.

The following proposition is a consequence of [8, Thm. 2.2]:

Proposition 1 If L ∈ Matm(K [∂]) is of full rank then there exists a unimodular operator U ∈ Matm(K [∂])
such that the operator

L̆ = UL (13)

is row-reduced and ord L̆ 6 ordL.

Suppose that the field K is constructive, i.e., there exist algorithms to execute the field operations and
an algorithm for zero testing in K. In this case the proof of mentioned Theorem 2.2 from [8] gives an
algorithm for constructing U, L̆. This algorithm “...closely follows the one in [7, Eqn. (12)], for ordinary
matrix polynomials, and is similar to that of [4] in case of skew polynomials” ([8, Rem. 2.3 ]). A detailed
description of this algorithm is given in [6, Sect. 2.1]. We will refer to this algorithm as RR (Row-
Reduction).

We describe briefly algorithm RR. Suppose that it is checked whether the rows of the row frontal
matrix of L are linearly dependent over K. If they are not then U = Im, L̆ = L, and the algorithm stops.
Otherwise, let coefficients

v1, . . . , vm ∈ K (14)

of the dependence be found. From the rows of (9) corresponding to nonzero coefficients, we select a row
with the maximal component of the row-order. Let it be the i-th row, so αi = max 16j6m

vj 6=0
αj . The row `i

of (9) is replaced by

v1∂
αi−α1`1 + · · ·+ vi−1∂

αi−αi−1`i−1 + vi`i + vi+1∂
αi−αi+1`i+1 + · · ·+ vm∂

αi−αm`m,

and αi is decreased. This transformation of L is equivalent to the left multiplication by a unimodular
W ∈ Matm(K[∂]). Let the recursive application of RR to the operator WL give Ũ , L̃, then return
U = ŨW , L̆ = L̃ and stop.

The recursion is correct due to decreasing of the sum of the row-order components. In[8, 6], it was
shown that the complexity of RR measured as the number of the field operations in K in the worst case
is given by (4).

158



S.A.Abramov, M.A.Barkatou

Remark 2 The full version of the algorithm from [8, 6] allows one to solve a more general problem:
given an operator L ∈ Matm(K [∂]), to construct U, L̆ ∈ Matm(K [∂]) such that U is unimodular while L̆
represented in form (9) has k zero rows, 0 6 k 6 m, and the row frontal matrix of L̆ is of rank m− k over
K. An operator L is of full rank if and only if k = 0.

2.3 Differentiating an Equation of a Full Rank System

Theorem 1 ([2]) Let a system of the form (11) be of full rank. Let the system

L1(y1, . . . , ym) = 0, . . . , Lm−1(y1, . . . , ym) = 0, L̃m(y1, . . . , ym) = 0, (15)

be such that its first m − 1 equations are as in system (11) while the m-th equation is the result of dif-
ferentiating the m-th equation of (11), i.e., the equation L̃m(y1, . . . , ym) = 0 is equivalent to the equation
(Lm(y1, . . . , ym))′ = 0. Then the dimension of the solution space of (15) exceeds that of (11) by 1.

The following remark was also given in [2]:

Remark 3 Theorem 1 is valid for the case of a full-rank inhomogeneous system as well. That is a system
of form L(y) = b, with L ∈ Matm(K [∂]) of full rank and b ∈ Km. First of all note that this system has at
least one solution in Λm since by adding to y a (m+ 1)-st component with value 1, one can transform the
given system into a homogeneous system with a matrix belonging to Matm+1(K). The set of solutions in
Λm of L(y) = b is an affine space over the Const (Λ) and is given by VL + f where VL ⊂ Λm is the solution
space of the homogeneous system L(y) = 0 and f ∈ Λm is a particular solution of L(y) = b. When we
differentiate the m-th equation of the system L(y) = b we get a new system L̃(y) = b̃ where the operator L̃
corresponds to system (15). By Theorem 1 dimVL̃ = dimVL + 1.

2.4 The Dimension of the Solution Space of a Given Full Rank System

The following theorem was derived in [2] as a consequence of Theorem 1:

Theorem 2 ([2]) Let L ∈ Matm(K [∂]) be row-reduced, and α = (α1, . . . , αm) its row-order. Then
dimVL =

∑m
i=1 αi.

In Section 2.2 we discussed algorithm RR to convert a given full-rank operator L into an operator L̆
such that VL = VL̆ and L̆ is row-reduced. If the field K is constructive then by Theorem 2 we are able to
compute algorithmically the dimension of the solution space of a given full-rank system.

Remark 4 A unimodular U and a row-reduced L̆ in (13) are not in general unique. However, it follows
from Theorem 2 that the sum of components of the row-order (α1, . . . , αm) is invariant for all possible L̆.

3 Products of Operators

Theorem 3 Let L,M ∈ Matm(K [∂]) be of full rank. Then dimVLM = dimVL + dimVM .

Proof. Four auxiliary statements can be easily proved.
(A) The product of two full-rank operators is again a full-rank operator. (Indeed, let u be a row-vector

with coefficient from K[∂] and suppose that uLM = 0. Then necessarily uL = 0, because otherwise, M
would not be of full rank. As L is of full-rank and uL = 0, we must have u = 0.)

(B) Let Λ be an adequate differential extension of K and Ω be a differential field extension of Λ. Let
a full-rank operator P ∈ Matm(K[∂]) and z ∈ Ωm be such that P (z) = 0. Then z ∈ Λm. (By Proposition
1 there exists an operator U such that the row frontal matrix of UP is invertible; then multiplying UP
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from the left by an operator of the form diag(∂l1 , . . . , ∂lm) gives an operator P̃ with an invertible leading
matrix. Since P̃ (z) = 0, we have z ∈ Λm.)

(C) For a full-rank operator P the value dimVP is finite. (Again, P is a right factor of an operator Q
with invertible leading matrix. Q can be converted into a first-order system of the form (5).)

(D) Let L,M ∈ Matm(K [∂]) be of full rank, and L(z) = 0 for some z ∈ Λm. Then the equation
M(y) = z has at least one solution belonging to Λm. (By Remark 3, the equation M(y) = z has a
solution in Ωm where Ω is an adequate extension of Λ. By (B), we have y ∈ Λm since any such y satisfies
LM(y) = 0.)

Now we can prove our theorem. The product LM is of full rank too by (A). Hence, by (C), the VLM
is of finite dimension over Const (Λ). Observe that VM is a subspace of VLM and let W be any subspace
of VLM such that VLM = VM ⊕W . We will prove that W is isomorphic to VL. Indeed, for each w ∈ W ,
M(w) belongs to VL and if M(w) = 0 then w = 0 (since W ∩ VM = {0}). Hence the operator M induces
an injective Const (Λ)−linear map ϕ from W into VL. We will prove now that this map is also surjective:
Given z ∈ VL, the equation M(y) = z has (at least) one solution y ∈ Λm by (D). Now, such an element y
belongs to VLM so it can be written as y = v +w where v ∈ VM and w ∈W . One has M(w) = M(y) = z.
This proves that ϕ is surjective, and concludes the proof of our theorem. 2

Note that different proofs of the latter theorem are possible. The proof presented above is elementary
(it only uses basic techniques).

An adequate differential extension of K is not in general unique, and we can consider VL, VM , . . . only
after fixing such an extension Λ. Those solution spaces are considered as subspaces of the space Λm over
Const (Λ). Theorems 2 and 3 hold for any adequate differential extension Λ of K. In particular, the values
dimVL,dimVM , . . . do not depend on the choice of an adequate differential extension Λ of K.

Remark 5 If we consider solutions whose components belong to an arbitrary differential extension then
the statement of Theorem 3 is in general incorrect (as well as the statement of Theorem 1). Let K = C(x),
L = ∂ = d

dx , M = ∂ − 1
x , and LM = ∂2 − 1

x∂ + 1
x2

. If we consider only solutions belonging to C(x) or
even to C((x)) then the solution spaces of both M , LM are one dimensional (they are spanned by x), but
the solution space of LM(y) = 0 is two dimensional if we consider solutions in the universal differential
extension: in this case the solution space of LM(y) = 0 is spanned by x, x lnx.

4 The inverse operator

Algorithms for recognizing invertibility of a matrix whose entries belong to a constructive field K, and for
computing the inverse matrix are well known. In this section we describe analogous algorithms for matrices
whose entries belong to K[∂].

4.1 Unimodularity of an Operator and the Dimension of its Solution Space

Proposition 2 Let L be a full-rank operator belonging to Matm(K [∂]), ordL = r. We have
(i) If the leading matrix of L is invertible then dimVL = mr otherwise dimVL < mr.
(ii) L is unimodular if and only if dimVL = 0.

Proof. (i) Follows from Proposition 1 and Theorem 2.
(ii) Let L−1 be the inverse of L. Then the equality L(y) = 0 implies y = 0. Therefore dimVL = 0. If

dimVL = 0 then by Theorem 2 the representation UL = L̆ described in Proposition 1 has to be such that
the row-order of L̆ is (0, . . . , 0). This implies that ord L̆ = 0, i.e. L̆ is an invertible matrix in Matm(K).
This gives L−1 = (L̆)−1U . 2
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Remark 6 It follows that if an operator L ∈ Matm(K[∂]) has a left inverse L̄ then L is unimodular:
L̄L = LL̄ = Im. Indeed, by Theorem 3

dimVLL̄ = dimVL + dimVL̄ = dimVL̄L = dimVIm = 0,

and the operator LL̄ is unimodular by Proposition 2(ii). Thus there exists the inverse of this operator:
LL̄(LL̄)−1 = Im. It follows that L̄(LL̄)−1 is a right inverse of L. Now we can use the standard proof
of the fact that if an operator L has both left and right inverses L−1

l , L−1
r then these inverses are equal:

L−1
l = L−1

l LL−1
r = L−1

r . The case when an operator L has a right inverse can be similarly considered.

4.2 Recognizing Invertibility of an Operator and Computing the Inverse Operator

Proposition 3 Let L ∈ Matm(K [∂]) have an invertible row frontal matrix. Then L is unimodular if and
only if ordL = 0.

Proof. By Theorem 2 and Proposition 2(ii). 2

Algorithm RR allows one to compute a unimodular U ∈ Matm(K [∂]) such that the operator L̆ = UL
has an invertible row frontal matrix. Proposition 3 implies that L is unimodular if and only if L̆ is an
invertible matrix in Matm(K). In this case (L̆)−1UL = Im, i.e., (L̆)−1U is the inverse of L. Hence the
following theorem holds (taking into account Remark 2, we need not assume that L is of full rank):

Theorem 4 Let K be constructive and L ∈ Matm(K [∂]). One can recognize algorithmically whether L is
unimodular or not, and compute the inverse operator if it is.

The algorithm is as follows:
By algorithm RR, compute a unimodular U such that the operator L̆ = UL represented in the form (9)

has k zero rows, 0 6 k 6 m, and the row frontal matrix of L̆ is of rank m− k over K. The operator L is
of full rank if and only if k = 0, and is unimodular if and only if L̆ is an invertible matrix in Matm(K).
In the latter case (L̆)−1U is the inverse for L.

4.3 Complexity comparison

There exists a number of algorithms for solving quite general problems and which can be used in particular
for solving the problem considered in Section 4.2. The algorithm proposed in Section 4.2 serves especially
to solve the problem of recognizing unimodularity of an operator L and computing the inverse operator,
if L is unimodular. Its complexity (the number of operations in K in the worst case) to the best of our
knowledge is lower than the complexity of other algorithms when used to solve the formulated problem.

For example, for solving the problem considered in Section 4.2, algorithms to construct the Jacobson
and Hermite forms of a given operator can be used. Recall that for a full-rank operator L ∈ Matm(K[∂])
there exist unimodular S, T ∈ Matm(K[∂]) such that SLT = diag(1, . . . , 1, p), where p is a monic (the
leading coefficient of p is equal to 1) scalar operator from K[∂] \ {0}. In this case diag(1, . . . , 1, p) is the
Jacobson form of L ([9, Chap. 8, Thm. 1.1]). It is clear that if as before VL is the space of solutions of
L in an adequate differential extension Λ of K then dimVL = ord p, and L is unimodular if and only if
p = 1 (thus we get again that L is unimodular if and only if dimVL = 0). Therefore using an algorithm
for constructing the Jacobson form we can at least check the unimodularity of an operator. The Jacobson
form of L can be constructed by numerous algorithms. A polynomial-time deterministic algorithm was
proposed by J.Middeke ([14]). Its complexity is considered in [14] as a function of three variables, and two
of them are our m, r (in [14] another notation is used). The value of the third variable is in the worst case
mr, and for the complexity as a function of the variables m, r one can derive the estimate Θ(m9r9) from
the asymptotic estimate given in [14, Sect. 6]. On the other hand, the algorithms proposed in Section 4.2
have the same complexity as the algorithm RR, i.e., Θ(mω+1r2).
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A full-rank operator can be represented also in the Hermite normal form (the definition can be found,
e.g., in [12, Sect. 1]): H = UL, where U is unimodular. The Hermite form of a unimodular matrix is
the identity, the transformation matrix U is the inverse. The algorithm of M.Giesbreht and M.Kim in
[12] works for both differential and difference cases. The complexity estimate for this algorithm given in
[12, Thm. 5.5] is O(m7r3 log(mr)) (in our notation). It looks like this estimate is exact. So, again, the
complexity Θ(mω+1r2) looks better.

Of course, the algorithms from [14, 12] solve more general problems, and our algorithms have some
advantages only for recognizing invertibility of an operator and computing the inverse operator.

Remark 7 In [11], M.Giesbrecht and A.Heinle proposed a Las Vegas type algorithm for the Jacobson form
which is polynomial-time in the degree of the entries as well as in the coefficient size (degree and bit-length),
if the coefficients are rational functions of x. The algorithm in [13] by V.Levandovskyy and K.Schindelar
is useful for practical Jacobson form computation, even though it is not polynomial-time.

4.4 An Additional Trick

Searching for coefficients (14) of a linear dependence is equivalent to solving a homogeneous system of
linear algebraic equations with coefficients in K. If we obtain s linearly independent solutions of the linear
algebraic system then it is possible to use all of them, which gives an decreasing of the sum of the row-order
components at least by s. To do that, we first represent the s dependencies as rows of an s ×m matrix
V , and use the first row of V to decrease an αi, 1 6 i 6 m. We then transform V by eliminating the
i-th element in its rows having the numbers 2, 3, . . . , s, using the i-th element of the first row as pivot.
After this elimination, each remaining row of V contains the coefficients of a linear dependence of the rows
1, . . . , i−1, i+1, . . . ,m of the frontal row matrix. So we may perform s similar steps. This is a modification
of the trick proposed originally in [4] for the EG-eliminations algorithm ([1]). The trick does not decrease
complexity but can be useful to practice.

5 The Difference Case

5.1 Difference Rings and Fields; Adequate Difference Extensions

A difference ring is a commutative ring K with multiplicative identity, together with an automorphism σ.
The constant ring of K is then Const (K) = {c ∈ K | σc = c}. If, in addition, K is a field then K is a
difference field. In this case Const (K) is a subfield of K (the constant field of K).

Let K be a difference field of characteristic 0 with an automorphism σ, and Λ be a difference ring
extension of K. Then the ring Λ is an adequate difference extension if Const (Λ) is a field and the dimension
of the solution space over Const (Λ) (considered as a subspace of Λm) of an arbitrary system

σy = Ay, (16)

with an invertible A ∈ Matm(K), is equal to m. Note that in the differential case the invertibility of A in
(5) is not needed; this peculiarity of the difference case requires some additional efforts. We will discuss
this in the two following sections.

If Const (K) is algebraically closed then there exists a unique (up to a difference isomorphism) adequate
extension Λ such that Const (Λ) = Const (K) which is called the universal difference Picard-Vessiot ring
extension of K (see [15, Sect. 1.4]). In the general case, an adequate difference extension can be easily
constructed, e.g., as described in the following proposition (the equality Const (Λ) = Const (K) is not
guaranteed any longer).

Proposition 4 Let K with an automorphism σ be a difference field of characteristic 0. Then there exists
an adequate difference ring extension of K.
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Proof. LetG be the ring of double-sided sequences whose elements belong toK, with componentwise addi-
tion and multiplication. Let τ be the automorphism of this ring defined by τ ((ai)−∞<i<∞) = (bi)−∞<i<∞
with bi = ai+1, i ∈ Z. Then G together with τ is a difference ring, and g ∈ Const (G) if and only if
g = (. . . , f, f, f, . . . ), f ∈ K. Define the monomorphism ϕ : K → G by ϕa = (σia)−∞<i<∞ for an arbi-
trary a ∈ K. Define additionally an automorphism σ̃ of Im(ϕ) as follows: if g = ϕa then σ̃g = ϕσa. One
can see that τ and σ̃ coincide on Im(ϕ). Since K with σ and Im(ϕ) with σ̃ are isomorphic as difference
fields, we can consider G with τ as a difference ring extension of K with σ. We can set Λ = G and write
σ for τ .

Set ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

)T , j = 1, . . . , n, and define sequences s1, . . . , sn whose components belong

to Kn, by sj = (fji)−∞<i<∞, where

fji =

{
(σi−1A)(σi−2A) . . . Aej if i > 0,
(σ−iA−1)(σ−i+1A−1) . . . (σ−1A−1)ej if i < 0,

j = 1 . . . , n, i = 0,±1,±2, . . . Then ϕs1, . . . , ϕsn form a basis for the solution space of system (16) over
the field Const (Λ). 2

Remark 8 The latter proposition shows that an adequate difference ring extension exists for any difference
field K of characteristic zero. The claim is not true for difference field (rather than ring) extensions: a
well-known example due to Franke ([10]) is the scalar equation σy = −y which has no non-zero solution if
Const (K) is algebraically closed.

In the sequel we denote by Λ a fixed adequate difference ring extension of K. We set also ∆ = σ − 1.

5.2 Strongly Row Reduced Form of a Full Rank Difference Operator

A difference operator can be considered as a matrix in Matm(K[σ, σ−1]). An operator is of full rank if the
rows of the corresponding matrix are linearly independent over K[σ, σ−1]. Let L ∈ Matm(K[σ, σ−1]) then
L can be expanded as

L = Alσ
l +Al−1σ

l−1 + · · ·+Atσ
t, (17)

where At, At+1, . . . , Al ∈ Matm(K), and matrices Al, At (the leading and trailing matrices of the system)
are non-zero. We set degL = l, valL = t and ordL = degL− valL.

We define the row-order (α1, . . . , αm) of (17) similarly to the differential case: if 1 6 i 6 m then αi is
the maximal integer k, t 6 k 6 l, such that [Ak]i,∗ is a nonzero row.

By definition, the row frontal matrix of L is the leading matrix of PL where

P = diag(σl−α1 , σl−α2 , . . . , σl−αm).

Definition 4 An operator L in Matm(K
[
σ, σ−1

]
) is strongly row-reduced if its row frontal and trailing

matrices are both invertible.

Proposition 5 Let L ∈ Matm(K
[
σ, σ−1

]
) be of full rank, then there exists a unimodular operator U such

that the operator
L̆ = UL (18)

is strongly row-reduced and ord L̆ 6 ordL (such an operator L̆ is a strongly row-reduced form of the
original operator L).
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Proof. It has been proved (see [1, 4]) that for any full-rank operator L of form (17) there exists a
unimodular operator G ∈ Matm(K[σ, σ−1]) such that the product GL is an operator which has an invertible
trailing matrix, ordGL 6 ordL. We can apply the difference version (replacing ∂ by ∆) of algorithm RR
to GL. This gives an operator L̆ with invertible row frontal matrix. Each step of the considered version of
algorithm RR does not change the rank of the trailing matrix. The claim follows. 2

Remark 9 The original difference version of the algorithm RR proposed in [8] does not guarantee the
invertibility of the trailing matrix of L̆. Note that a strongly reduced row form can be also defined for an
operator of arbitrary rank: the operator as an element of Matm(K[σ, σ−1]) has k zero rows, the row frontal
and trailing matrices are of rank m−k. (It follows also from [1, 4] that in the general case for any operator
L of form (17) there exists a unimodular operator G ∈ Matm(K[σ, σ−1]) such that the product GL has k
zero rows, and its trailing matrix is of rank m− k. We can apply the mentioned difference version of RR
to GL.)

By definition, if L is of full rank then the system L(y) = 0 is of full rank too, and the order of the
system L(y) = 0 coincides with ordL. Consider a system of order r > 1 which has the form L(y) = 0 with
L as in (17). If Al, At are invertible then the system L(y) = 0 is equivalent to the first-order system having
mr equations: σY = AY , where A is as in (7) with Âk = −A−1

l Ak+t, k = 0, 1, . . . , r − 1. The matrix A

is invertible since detA = −det Â0 = detA−1
l detAt 6= 0. Let VL be the set of the solutions of L(y) = 0

belonging to Λm. We consider this set as a linear space over the field Const (Λ). It follows that if both the
leading and trailing matrices of L ∈ Matm(K[σ, σ−1]) are invertible and ordL = r then dimVL = rm.

The proof of Theorem 3 given in Section 3 is valid for the difference case after replacing derivation ∂
by an automorphism σ. (In part (B) of the proof we can consider U such that UP is strongly row-reduced,
then multiplying UP from the left by an operator of form diag(∆l1 , . . . ,∆lm) gives an operator P̃ with
invertible leading and trailing matrices.) Thus we have the following theorem:

Theorem 5 Let L,M ∈ Matm(K[σ, σ−1]) be of full rank. Then dimVLM = dimVL + dimVM .

5.3 The Dimension of the Solution Space of a Full Rank Difference System

Theorem 6 Let a full-rank operator L ∈ Matm(K[σ, σ−1]) be strongly row-reduced, and α = (α1, . . . , αm)
be the row-order of L, t = valL. Then dimVL =

∑m
i=1 αi −mt.

Proof. Let l = degL, r = ordL = l − t. If we left multiply L by

diag(∆l−α1 ,∆l−α2 , . . . ,∆l−αm),

then we increase by Theorem 5 the dimension of the solution space by ml−∑m
i=1 αi(L), and the resulting

full-rank operator has a leading matrix which coincides with the row frontal matrix of L, and a trailing
matrix which coincides with the trailing matrix of L. The dimension of the solution space of the obtained
operator is mr = ml −mt by the last paragraph of Section 5.2. 2

We can similarly prove that for any full-rank operator L ∈ Matm(K[σ, σ−1]), there exists an operator
R such that RL has invertible both the leading and trailing matrices, and ordRL 6 ordL. Note that
earlier it was known only that one can construct an operator R such that RL has invertible leading and
trailing matrices, with ordRL = ordL+ 1 in the general case (see, e.g., [5, Sect. 3.5]).

Theorem 6 and the difference version of algorithm RR (as that version was explained in the proof of
Proposition 5) give an algorithm to compute dimVL for any full-rank operator L.

Remark 10 A unimodular U and a strongly row-reduced L̆ in (18) are not in general uniquely defined.
However, it follows from Theorem 6 that the sum of components of the row-order (α1, . . . , αm) is invariant
for all possible L̆.
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If K is constructive, and L ∈ Matm(K[σ, σ−1]) then one can recognize algorithmically whether L is
unimodular or not, and compute the inverse operator if it is. The algorithm is the same as that given in
Section 4.1 for the differential case. The complexity measured as the number of the field operations in K in
the worst case of this computation is equal to Θ(mω+1r2), where ω is the matrix multiplication exponent.
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