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The bounds given in the paper are valid when the system of recurrences (5)
and the equations (6) are valid for all n € Z, which is the case when using the
power basis P = (2™),>0, because it can be extended to negative values of n.
Therefore the bounds given in the paper are valid for differential and g-difference
equations provided that the basis P is used to produce the recurrence.

In the case when the basis used is valid only for n > p for some p € Z
(for example we can have u = 0 for difference equations), then the system of
recurrences (5) and the equations (6) are valid only for n > u. Since we apply (6)
ton = N —s in the proof of Theorem 4, that proof is valid only when N —s > p,
ie. N > s+ u. Therefore, the correct version of Theorem 4 is the following,
where deg(0) = —oo by convention:

Theorem 4 Let L be an v x m maltric with entries in Endg(K|[z]), F € Klz|",
Y € Klz]™ be nonzero and N = max;{degY;}. If LY = F then either
N < s + max{p — 1,max;{deg(F;)}} or Ker(Ms;(N — s)) # 0, where M is
as in (6) and p is either —oo or an integer such that the equations (6) are valid
only forn > u.

When the basis P is used, then the transformed recurrences remain valid for
all n € Z and the bounds in the paper are valid. Otherwise, for example when
computing recurrences from difference equations, the value of p in the above
theorem can change when transforming the recurrence as described in Section 4:
initially g = 0 and the lower bounds for each row of (5) are ny =...=n, =0.
When the algorithm replaces row ig by (¢~ wy,..., ¢ tw,,) with w = vTR,
then n; must be replaced by 1+ max;,,«o{n:}. Throughout the algorithm,
row ¢ of (5) is valid for n > n;, so when we produce a nonsingular trailing
matrix, we have ¢ = max;{n;}. By the above theorem, the correct bound on
the degree of the polynomial solutions at the end of the process is

N <s+ max{mzax{ni} - 1,m?x{deg(Fi)}} or Ker(M (N —s))#0.

where M is the nonsingular trailing matrix at the end of transformation.



