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The bounds given in the paper are valid when the system of re
urren
es (5)

and the equations (6) are valid for all n 2 Z, whi
h is the 
ase when using the

power basis P = hx

n

i

n�0

, be
ause it 
an be extended to negative values of n.

Therefore the bounds given in the paper are valid for di�erential and q-di�eren
e

equations provided that the basis P is used to produ
e the re
urren
e.

In the 
ase when the basis used is valid only for n � � for some � 2 Z

(for example we 
an have � = 0 for di�eren
e equations), then the system of

re
urren
es (5) and the equations (6) are valid only for n � �. Sin
e we apply (6)

to n = N�s in the proof of Theorem 4, that proof is valid only when N�s � �,

i.e. N � s + �. Therefore, the 
orre
t version of Theorem 4 is the following,

where deg(0) = �1 by 
onvention:

Theorem 4 Let L be an r�m matrix with entries in End

B

(K[x℄), F 2 K[x℄

r

,

Y 2 K[x℄

m

be nonzero and N = max

i

fdegY

i

g. If LY = F then either

N � s + maxf� � 1;max

i

fdeg(F

i

)gg or Ker(M

s

(N � s)) 6= 0, where M

s

is

as in (6) and � is either �1 or an integer su
h that the equations (6) are valid

only for n � �.

When the basis P is used, then the transformed re
urren
es remain valid for

all n 2 Z and the bounds in the paper are valid. Otherwise, for example when


omputing re
urren
es from di�eren
e equations, the value of � in the above

theorem 
an 
hange when transforming the re
urren
e as des
ribed in Se
tion 4:

initially � = 0 and the lower bounds for ea
h row of (5) are n

1

= : : : = n

r

= 0.

When the algorithm repla
es row i

0

by (�

�1

w

1

; : : : ; �

�1

w

m

) with w = v

T

R,

then n

i0

must be repla
ed by 1 + max

ijv

i

6=0

fn

i

g. Throughout the algorithm,

row i of (5) is valid for n � n

i

, so when we produ
e a nonsingular trailing

matrix, we have � = max

i

fn

i

g. By the above theorem, the 
orre
t bound on

the degree of the polynomial solutions at the end of the pro
ess is

N � s+maxfmax

i

fn

i

g � 1;max

i

fdeg(F

i

)gg or Ker(M

s

(N � s)) 6= 0 :

where M

s

is the nonsingular trailing matrix at the end of transformation.


