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ABSTRACT
We describe a new direct algorithm for transforming a linear

system of recurrences into an equivalent one with nonsingu-

lar leading or trailing matrix. Our algorithm, which is an

improvement to the EG elimination method [2], uses only

elementary linear algebra operations (ranks, kernels and de-

terminants) to produce an equation satis�ed by the degrees

of the solutions with �nite support. As a consequence, we

can bound and compute the polynomial and rational solu-

tions of very general linear functional systems such as sys-

tems of di�erential or (q�)di�erence equations.

1. INTRODUCTION
LetK be a �eld of characteristic 0 andK[x] a ring of univari-

ate polynomials over K. Using formal power series with re-

spect to suitable bases and the induced recurrences for their

coe�cients, we introduced in [5] an algorithm for computing

all the solutions inK[x] of homogeneous and inhomogeneous

functional equations of the form Ly = 0 or Ly = f for a

large class of K�linear maps L : K[x] ! K[x]. That algo-

rithm was applicable in particular to linear ordinary di�er-

ential, di�erence and q�di�erence equations with coe�cients

inK[x]. In this paper, we generalize that algorithm to a sim-

ilar class of K�linear maps L : K[x]

m

! K[x]

r

. As a con-

sequence, we obtain direct algorithms for solving systems of

linear ordinary di�erential, di�erence and q�di�erence equa-

tions, as well as mixed di�erential/q�di�erence equations.

Our algorithm, which is based on constructing and trans-

forming a linear recurrence system induced by the initial

functional system, solves the following problems:

(a) Transform a linear recurrence system into an equivalent

one with nonsingular leading or trailing matrix.

(b) Compute the formal power series solutions of a linear

�
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functional system with polynomial coe�cients.

(c) Compute the polynomial solutions of a linear functional

system with polynomial coe�cients.

(d) Compute the Laurent series solutions of a linear func-

tional system with polynomial coe�cients.

Since the rational solutions of a di�erential system of the

form Y

0

(x) = A(x)Y (x) have their poles among the poles of

A(x), points (c) and (d) imply that we can compute all the

rational solutions of such systems. In combination with di-

rect algorithms for bounding the denominators of solutions,

we can also compute all the rational solutions of di�erence

and q�di�erence systems of the form Y (x+ 1) = A(x)Y (x)

or Y (qx) = A(x)Y (x) (see Section 8).

Our contribution consists in an improvement to the EG�

elimination method [2] for solving problem (a) above, which

is an important component of several computer algebra al-

gorithms besides solving problems (b), (c) and (d). We

neither uncouple the systems nor compute superirreducible

forms as in [3, 7], but only rely on elementary linear alge-

bra operations that can be performed using e�cient mod-

ular methods. Our algorithm, which is complete whenever

the functional system is not underdetermined, has been im-

plemented both in the �

it

library

1

and in D. Khmelnov's

LinearFunctionalSystems

2

package.

2. INDUCED RECURRENCE SYSTEMS
The algorithm of [5] was based on transforming a K�linear

map L : K[x] ! K[x] into a recurrence satis�ed by the

coe�cients, with respect to a suitable basis that depends

on L, of a formal power series solution of Ly = 0. That

transformation was formalized in [6] where it was shown

to be an isomorphism between certain K�algebras of linear

operators acting on polynomials and sequences. We brie�y

recall its de�nition and key properties, referring to [6] for

the proofs and additional details. Let B = hP

n

i

n�0

be a

persistent sequence of polynomials, i.e. a sequence in K[x]

satisfying:

P1. degP

n

= n for n � 0,

P2. P

n

jP

m

for 0 � n < m.

1

http://www.inria.fr/cafe/Manuel.Bronstein/sumit/

2

To be included in an upcoming release of Maple.
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Note that P1 implies that B is a basis of K[x]. Let K[[B]] be

theK�algebra of formal power series of the form

P

n�0

c

n

P

n

where c

n

2 K. Since K[x] can be naturally embedded into

K[[B]] we view it as a subalgebra of K[[B]]. Let K

Z

be the

K�algebra of two�way in�nite sequences with entries in K

and � : K[[B]] ! K

Z

be the mapping sending

P

n�0

c

n

P

n

to its coe�cient sequence c = hc

n

i

n2Z

, extended by taking

c

n

= 0 for n < 0.

We say that an endomorphism L 2 End

K

(K[x]) is compati-

ble with B if there are A;B 2 N and elements �

i;n

2 K for

all n � 0 and �A � i � B such that

LP

n

=

B

X

i=�A

�

i;n

P

n+i

(1)

with P

k

= 0 for k < 0. The set of the endomorphisms of

K[x] compatible with B is a K�algebra, which we denote

End

B

(K[x]). It follows from (1) that every L 2 End

B

(K[x])

can be extended to a K�algebra endomorphism of K[[B]] by

linearity.

Let now � : K

Z

! K

Z

be the shift given by �(a) = b where

b(n) = a(n + 1) for n 2 Z. Let E be the K�algebra of

recurrence operators of the form R =

P

r

i=s

a

i

(n)�

i

with

r; s 2 Z and a

i

2 K

Z

for s � i � r. If a

s

6= 0 6= a

r

, then we

write r = deg

�

(R) and s = �

�

(R). The product in R is the

composition of operators, and is given by � � a = �(a) �� for

any a 2 K

Z

. De�ne R

B

: End

B

(K[x])! E by

R

B

L =

A

X

i=�B

�

�i;n+i

�

i

where A;B and the �

i;n

are given by (1).

Theorem 1 ([6]). R

B

is an isomorphism of K�algebras

between End

B

(K[x]) and E.

As a consequence, if End

B

(K[x]) contains a skew�polynomial

ring K[x][�

1

; : : : ; �

m

], then R

B

is uniquely determined on it

by R

B

x and R

B

�

1

; : : : ;R

B

�

m

. For example, K[x][d=dx; �

q

],

where �

q

is the automorphism of K[x] over K that maps

x to qx for a given q 2 K, is compatible with the power

basis P = hx

n

i

n�0

and R

P

is given on K[x][d=dx; �

q

] by

R

P

(x) = �

�1

, R

P

(d=dx) = (n + 1)� and R

P

(�

q

) = q

n

. It

follows that R

P

maps K[x][d=dx; �

q

] into K[n; q

n

][�; �

�1

].

Another common example is the ring of linear ordinary dif-

ference operators K[x][�], where � is the automorphism of

K[x] over K that maps x to x+ 1. That ring is compatible

with either the binomial coe�cient basis h

�

x

n

�

i

n�0

or the de-

scending factorial basis hx

n

i

n�0

, and is mapped by R into

K[n][�; �

�1

] with either one.

Theorem 2 ([6]). For any L 2 End

B

(K[x]) and any y 2

K[[B]], �Ly = (R

B

L)(�y).

Theorem 2 reduces �nding the solutions y 2 K[x] of Ly =

f to �nding the solutions z 2 K

Z

with �nite support of

(R

B

L)z = �f . When L is a linear ordinary di�erential,

di�erence or q�di�erence equation, R

B

L is in K[n][�; �

�1

]

or K[q

n

][�; �

�1

]. Therefore, an upper bound on the support

of solutions with �nite support can be obtained as a zero of

the trailing coe�cient of R

B

L. Once that bound is known,

the recurrence R

B

L can be used to produce formal series

solutions of Ly = f and the polynomial solutions are found

by equating enough terms above the degree bound to 0.

This is essentially the algorithm described in [5] and we now

proceed to generalize it to functional systems of the form:

0

B

B

B

@

L

11

: : : L

1m

L

21

: : : L

2m

.

.

.

.

.

.

L

r1

: : : L

rm

1

C

C

C

A

0

B

B

B

@

y

1

y

2

.

.

.

y

m

1

C

C

C

A

=

0

B

B

B

@

f

1

f

2

.

.

.

f

r

1

C

C

C

A

(2)

where L

ij

2 End

B

(K[x]) for 1 � i � r and 1 � j � m.

Applying � to row i of (2) and using Theorem 2 and the

K�linearity of �, we have

�

 

m

X

j=1

L

ij

y

j

!

=

m

X

j=1

�(L

ij

y

j

) =

m

X

j=1

(R

B

L

ij

)(�y

j

) :

Applying � and R

B

pointwise to vectors and matrices, this

proves:

Theorem 3. For any matrix L with entries in End

B

(K[x])

and any Y 2 K[[B]]

m

, �LY = (R

B

L)(�Y ).

Therefore, �nding the solutions Y 2 K[x]

m

of LY = F

for a given F 2 K[x]

r

is reduced to �nding the solutions

Z 2

�

K

Z

�

m

with �nite support of (R

B

L)Z = �F , the lat-

ter being a linear recurrence system for Z, which can be

seen as a sequence of vectors in K

m

. We remark that the

original equations do not have to be all of the same type,

it is su�cient that their operators all lie in End

B

(K[x]) for

some basis B. For example, systems of mixed di�erential/q�

di�erence equations are in the scope of Theorem 3 since

K[x][d=dx; �

q

] � End

P

(K[x]) where P is the power basis.

Example 1. Consider the mixed di�erential/q�di�erence

system:

�

Y

0

1

(2x)

3077Y

0

2

(x)

�

=

�

80x

3

+ 32x

2

x

4

� 1

p(x) q(x)

��

Y

1

(x)

Y

2

(x)

�

(3)

where

p(x) = 988480x

3

+ 1037712x

2

+ 196928x

and

q(x) = 12356x

4

+ 8029x

3

� 750x

2

+ 300x� 120 :

In operator notation, it becomes

�

QD � 80x

3

� 32x

2

1� x

4

�p(x) 3077D � q(x)

��

Y

1

Y

2

�

= 0

where D is d=dx and Q is the automorphism of Q(x) over

Q that maps x to 2x. Using R

P

where P is the power basis,

the induced recurrence system is then

�

f(�) 1� �

�4

�p(�

�1

) 3077(n + 1)�� q(�

�1

)

��

Z

1

Z

2

�

= 0 (4)

where

f(�) = 2

n

(n+ 1)�� 80�

�3

� 32�

�2

:

2



3. SOLUTIONS WITH FINITE SUPPORT
We now look for solutions Z 2 (K

m

)

Z

with �nite support of

(R

B

L)Z = �F , which we write as

0

B

B

B

@

R

11

: : : R

1m

R

21

: : : R

2m

.

.

.

.

.

.

R

r1

: : : R

rm

1

C

C

C

A

Z = G (5)

where G 2 K[[B]] is �F for a given F 2 K[x]

m

and R

ij

=

R

B

L

ij

for some L

ij

in End

B

(K[x]). Letting M

k

be the ma-

trix of sequences whose (i; j)

th

entry is the coe�cient of �

k

in

R

ij

, the system (5) is equivalent to

�

P

t

k=s

M

k

(n)�

k

�

Z = G,

i.e.

t

X

k=s

M

k

(n)Z

n+k

= G(n) for all n 2 Z (6)

where s � t 2 Z and we can assume without loss of gen-

erality that M

s

and M

t

are not identically 0. We have the

following generalization of Theorem 1 of [5]:

Theorem 4. Let L be an r � m matrix with entries in

End

B

(K[x]), F 2 K[x]

r

, Y 2 K[x]

m

be nonzero and N =

max

i

(deg(Y

i

)). If LY = F then either N � s+max

i

(deg(F

i

))

or Ker(M

s

(N � s)) 6= 0, where M

s

is as in (6).

Proof. Let N = max

i

(deg(Y

i

)), Z = �Y and G = �F .

Then Z

N

6= 0 and Z

n

= 0 for n > N , so equation (6)

for n = N � s becomes M

s

(N � s)Z

N

= G(N � s). If

N > s +max

i

(deg(F

i

)), then G(N � s) = 0, which implies

that Z

N

2 Ker(M

s

(N � s)).

For Theorem 4 to yield degree bounds for the polynomial

solutions of (2), the set fn 2 Z s.t. Ker(M

s

(n)) 6= 0g must

be �nite and computable. This implies in particular that

r � m in (2) and that the L

ij

's are all mapped by R

B

into A[�; �

�1

] for some suitable subalgebra A of K

Z

. By

suitable, we mean that given a nonzero p 2 A, the set

Z(p) = fn 2 Z s.t. p(n) = 0g is �nite and can be com-

puted. This hypothesis is satis�ed by the classical equa-

tion types as seen in the examples following Theorem 1:

A = K[n] when the L

ij

's are either all di�erential opera-

tors or all di�erence operators, A = K[q

n

] when the L

ij

's

are q�di�erence operators, and A = K[n; q

n

] when the L

ij

's

are mixed di�erential/q�di�erence operators. When K is a

�nitely generated extension of the rational numbers, K[n]

is suitable, and [4] describes algorithms showing that K[q

n

]

and K[n; q

n

] are suitable whenever q is not a root of unity.

Assume from now on that the system (2) satis�es the above

hypotheses. If it has a polynomial solution of degree N ,

then either N � s + max

i

(deg(f

i

)) or det(M)(N � s) = 0

for all nonsingular m�m submatrices M of M

s

. If M

s

has

rank m, then there is at least one such submatrix, and the

suitability hypothesis on A implies that we can �nd a �nite

set of candidates for N . Remark that this is always the case

for m = 1, and we obtain in that case the algorithm of [5].

4. TRANSFORMING THE RECURRENCE
We now describe our improvement to [2] for transforming

the recurrence (6) into an equivalent one, but with M

s

of

rank m. Write R for the matrix on the left hand side of (5).

Lemma 1. Suppose that v

T

R = 0 and v

T

G 6= 0 for some

v 2 (K

Z

)

r

. Then the systems (5) and (2) are inconsistent.

Proof. For any solution Z of (5), we have 0 = v

T

RZ =

v

T

G 6= 0, so (5) is inconsistent. Let u = R

�1

B

v, L = R

�1

B

R

and Y be any solution of LY = F where �F = G. By

Theorem 1, v

T

R = 0 implies that u

T

L = 0, hence that

u

T

F = u

T

LY = 0. Applying then � and Theorem 3 we get

0 = �(u

T

F ) = R

B

(u

T

)�F = v

T

G 6= 0, so (2) is inconsis-

tent.

Let d

i

(R) = max

j

(deg

�

(R

ij

)) for each i. Suppose that

rk(M

s

) < m and let then v 2 Ker(M

s

T

) be nonzero and

w = v

T

R. If w = 0 and v

T

G 6= 0, then (5) and (2) are in-

consistent by Lemma 1. Otherwise, let I

v

= fi s.t. v

i

6= 0g

and d = max

i2I

v

(d

i

(R)), and choose i

0

2 I

v

such that

d

i

0

(R) = d. If w = 0 and v

T

G = 0, then let R

0

be R

with row i

0

removed and G

0

be G with the i

0

th

entry re-

moved. Finally, if w 6= 0, then let R

0

be R with row i

0

replaced by (�

�1

w

1

; : : : ; �

�1

w

m

) and G

0

be G with the i

0

th

entry replaced by �

�1

(v

T

G). In both cases, replace RZ = G

by R

0

Z = G

0

and repeat the above procedure until either

M

s

has rank m or strictly less than m rows.

By construction, RZ = G =) R

0

Z = G

0

in both cases, so

the solutions of (5) appear among the solutions of R

0

Z = G

0

.

We now prove that the above algorithm terminates: since

v

T

M

s

= 0, �

�

(w

j

) > s for 1 � j � m, so �

�

(�

�1

w

j

) � s,

which implies that �

�

(R

0

ij

) � s for all i; j. Since v 2 A

r

,

deg

�

(w

j

) � d for 1 � j � m, so d

i

0

(R

0

) < d

i

0

(R), which

implies that

P

i

d

i

(R

0

) <

P

i

d

i

(R). Therefore, replacing

RZ = G by R

0

Z = G

0

, we have decreased either the number

of rows of (5) or

P

i

d

i

(R). Since

P

i

d

i

(R) � rs, the algo-

rithm must terminate when either M

s

has rank m or the

system (5) has strictly less than m rows (in which case we

fail to produce a degree bound since the system is in fact

underdetermined).

Example 2. Continuing Example 1, we rewrite the recur-

rence system (4) as

�

2

n

(n+ 1) 0

0 3077(n + 1)

�

Z

n+1

+

�

0 1

0 120

�

Z

n

+

�

0 0

�196928 �300

�

Z

n�1

+

�

�32 0

�1037712 750

�

Z

n�2

+

�

�80 0

�988480 �8029

�

Z

n�3

+

�

0 �1

0 �12356

�

Z

n�4

= 0

The trailing matrix is singular and its left kernel is generated

by v = (12356;�1)

T

. Letting R be the matrix on the left

hand side of (4) and replacing its second row by �

�1

v

T

R,

we get the new system

�

2

n

(n+ 1) 0

0 0

�

Z

n+1

+

�

0 1

12356n2

n�1

�3077n

�

Z

n

+

�

0 0

0 12236

�

Z

n�1

+

�

�32 0

196928 300

�

Z

n�2

+

�

�80 0

642320 �750

�

Z

n�3

+

�

0 �1

0 8029

�

Z

n�4

= 0

3



Continuing this process several times eventually yields a re-

currence with a nonsingular trailing matrix whose determi-

nant is 2

n�5

(n � 4) � 80 times a positive integer constant.

It is easy to �nd (see for example [4, �4]) that its only

positive integer root is n = 9, so Theorem 4 implies that

max(deg(Y

1

); deg(Y

2

)) = 5 for any nonzero polynomial so-

lution of (3). Using for example undetermined coe�cients,

we �nd that the polynomial solution space of (3) is generated

by

Y =

�

x

5

+ x

4

� 1

�80x

4

� 112x

3

� 32x

2

�

Remark 1. The above algorithm can also be used to ob-

tain an equivalent recurrence with M

t

of rank m rather than

M

s

: we simply use a nonzero v 2 Ker(M

t

T

) and choose

i

0

2 I

v

such that �

i

0

(R) is minimal for i 2 I

v

, where

�

i

(R) = min

j

(�

�

(R

ij

)). When w = v

T

R 6= 0, we replace

R

i

0

by (�w

1

; : : : ; �w

m

) and the i

0

th

entry of G by �(v

T

G).

Otherwise we either prove inconsistency of the system or

remove R

i

0

as previously. Since each step either decreases

the number of rows or increases

P

i

�

i

(R), which is bounded

above by rt, this process terminates either when M

t

has rank

m or the system has strictly less than m rows.

We conclude this section with a note on the solution space

of (5) as it evolves through the algorithm. As we have seen,

RZ = G =) R

0

Z = G

0

by construction, but the con-

verse does not always hold: if R

0

Z = G

0

, then it is easy

to see that v

i

0

R

i

0

Z = v

i

0

G

i

0

and R

i

Z = G

i

for i 6= i

0

,

where R

i

and G

i

denote the i

th

row of R and i

th

entry of

G respectively. Viewing R

i

0

Z = G

i

0

as an in�nite number

of linear constraints on the values of the entries of Z, we

see that they do not always follow from v

i

0

R

i

0

Z = v

i

0

G

i

0

because of the possible zeroes of v

i

0

. Since v

i

0

is not iden-

tically 0, our suitability hypothesis on A implies that the

set Z(v

i

0

) = fn 2 Z s.t. v

i

0

(n) = 0g is �nite and can be

computed. We then have

RZ = G,

�

R

0

Z = G

0

;

8n 2 Z(v

i

0

);

P

t

k=s

M

k;i

0

(n)Z

n+k

= G

i

0

(n)

(7)

where M

k;i

0

and G

i

0

denote the i

0

th

row of M

k

and i

0

th

entry of G respectively. Keeping the �nitely many linear

constraints appearing in (7) at each step through the algo-

rithm makes it possible to replace the recurrence system (5)

by the one produced by the algorithm when it terminates.

While this step is optional when computing degree bounds,

it becomes necessary when we use (6) to generate the solu-

tion space.

5. VALID INPUTS
Since the above algorithm fails when the number of rows

drops below m, we investigate in this section what hypothe-

sis on the initial system guarantees that the algorithm never

reaches that situation (and therefore either proves incon-

sistency or obtains a degree bound). It turns out to be

su�cient to require that the original linear system not be

underdetermined. We say that a ring S is a left Ore domain

if S has no zero divisors and if any two nonzero elements of

S have a nonzero common left multiple in S.

Lemma 2. If the suitable subalgebra A of K

Z

is an integral

domain, then A[�; �

�1

] is a left Ore domain.

Proof. The skew�polynomial ring F [�] is a left Ore do-

main [8] where F is the fraction �eld of A. Since every

a 2 A[�; �

�1

] can be written as a = �

�s

a

0

where s � 0

and a

0

2 A[�], it follows that A[�; �

�1

] has no zero divisors.

Let a; b 2 A[�; �

�1

], write a = �

�s

a

0

and b = �

�t

b

0

where

s; t � 0 and a

0

; b

0

2 A[�], and let c 2 F [�] be a nonzero left

common multiple of a

0

and b

0

in F [�]. Then, c = a

00

a

0

= b

00

b

0

for some a

00

; b

00

2 F [�]. Let d 2 A be a nonzero common

multiple of the denominators of the coe�cients of a

00

and b

00

.

Then, dc = da

00

a

0

= da

00

�

s

a = db

00

b

0

= db

00

�

t

b is a nonzero

left common multiple of a and b in A[�].

The next result uses the notion of rank of a module over a

left Ore domain [9, �0.9].

Theorem 5. If the suitable subalgebra A of K

Z

is an in-

tegral domain and the left module generated over A[�; �

�1

]

by the rows of the matrix R appearing on the left hand side

of (5) has rank m, then the algorithm of Section 4 either

proves that (2) is inconsistent, or it terminates with a ma-

trix M

s

of rank m.

Proof. For a matrix M with entries in A[�; �

�1

], we write

M

i

for the i

th

row of M and M(M) for the left module

generated by the M

i

's over A[�; �

�1

]. Using the notations

of the algorithm, if v

T

R = 0, then R

0

is R with the row i

0

removed, soM(R

0

) is a submodule ofM(R). Otherwise, R

0

is R with row i

0

replaced by R

0

i

0

=

P

i

�

�1

v

i

R

i

2M(R), so

M(R

0

) is again a submodule of M(R). Therefore, in both

cases the sequence

0!M(R

0

)!M(R)!M(R)=M(R

0

)! 0

is a short exact sequence of left A[�; �

�1

]�modules, which

implies ([9, Prop. 9.3]) that

rkM(R) = rkM(R

0

) + rk(M(R)=M(R

0

)) :

Furthermore, if v

T

R = 0, then v

i

0

R

i

0

= �

P

i6=i

0

v

i

R

i

2

M(R

0

). Otherwise,

�

�

�1

v

i

0

�

R

i

0

= R

0

i

0

�

X

i6=i

0

�

�1

v

i

R

i

2 M(R

0

) :

Therefore, in both cases there is a nonzero a 2 A[�; �

�1

]

such that aR

i

0

2 M(R

0

). Let u = tR

i

0

+

P

i6=i

0

s

i

R

i

2

M(R) where t and the s

i

's are in A[�; �

�1

]. If t = 0, then

u 2 M(R

0

). Otherwise, let t

0

t = a

0

a be a nonzero common

left multiple of t and a in A[�; �

�1

] (Lemma 2). Then,

t

0

u = t

0

tR

i

0

+

X

i6=i

0

t

0

s

i

R

i

= a

0

aR

i

0

+

X

i6=i

0

t

0

s

i

R

i

2 M(R

0

) :

This implies that M(R)=M(R

0

) is a torsion module, so it

has rank 0 and rkM(R) = rkM(R

0

). Therefore the rank

of M(R) remains constant throughout the algorithm, so if

rkM(R) = m when it starts, it cannot produce a matrix

with fewer than m rows.

The rank condition appearing in Theorem 5 is in fact equiv-

alent to requiring that the system (2) not be underdeter-

mined:

Corollary 1. If the suitable subalgebra A of K

Z

is an in-

tegral domain and the matrix on the left hand side of (2) has

m linearly independent rows over R

B

�1

(A[�; �

�1

]), then the

algorithm of Section 4 either proves that (2) is inconsistent,

or it terminates with a matrix M

s

of rank m.

4



Proof. Since R

B

is an isomorphism of K�algebras, if there

are m linearly independent rows over R

B

�1

(A[�; �

�1

]), then

their images underR

B

form a linearly independent subset of

M(R) over the fraction �eld of A[�; �

�1

], which implies that

the rank of M(R) is m and Theorem 5 can be applied.

First order systems of the form

0

B

@

0

B

@

d

1

.

.

.

d

m

1

C

A

� �B

1

C

A

Y = F (8)

where d

1

; : : : ; d

m

2 K[x], B is a square matrix with entries

in K[x], F is a vector with entries in K[x] and � is either

the derivation d=dx, the shift �x = x + 1 or the q�shift

�

q

x = qx, satisfy the hypotheses of Corollary 1 whenever

d

1

: : : d

m

6= 0 [2], so our algorithm always yields a degree

bound for such systems.

6. COMPLEXITY AND REFINEMENTS
The algorithm of Section 4 only needs to compute ranks,

determinants and nonzero elements of the kernels of matri-

ces with entries in A. When A is a polynomial ring over

K, which is the case for di�erential and (q�)di�erence equa-

tions, we can use modular and probabilistic methods such

as [12] for testing whether the rank is m, [1, �7] for deter-

minants and [11] for elements of the kernel. The worst�case

complexity of those methods is c(r + m)�

2

d

2

�eld opera-

tions in K, where � is the rank of M

s

, d is a bound on

the degrees of its entries and c is a positive constant. Since

our algorithm loops at most r(t � s + 1) times, the com-

plexity of producing the equation for the degree bound is

cr(t � s)(r +m)m

2

d

2

�eld operations in K. This indicates

that it is better not to convert systems of higher�order op-

erators to larger �rst�order systems. For example, when the

recurrence system is produced from a linear di�erential sys-

tem of m equations of order � with polynomial coe�cients

of degree �, then d = � and t � s � � + �, so the above

complexity becomes cr(� + �)(r+m)m

2

�

2

or c(� + �)�

2

m

4

when the system is square. Remark that it is linear in the

degree of the polynomial coe�cients because the entries of

the matrix coe�cients of the recurrences do not depend on

that degree.

Note that [11] is not guaranteed to return the full kernel, and

that its cost increases for each additional kernel element,

which is why we used only one nonzero v 2 Ker(M

s

T

) in

Section 4. However, if we use algorithms, such as fraction�

free Gaussian elimination or the modular method of [10],

that can produce several linearly independent elements of

Ker(M

s

T

), then we can use those elements together in order

to decrease the number of times our algorithm must loop.

Suppose that we have computed a � � r matrix U of rank

� such that UM

s

= 0. Pick v

T

to be any row of U . Then

v

T

M

s

= 0, so apply the algorithm of Section 4 using v and

suppose that this leads to the transformation or elimination

of the i

0

th

row of M

s

. Then, v

i

0

6= 0, so use fraction�free

Gaussian elimination on U to zero out the column i

0

except

for v

i

0

. Removing the row of U corresponding to v, we

obtain a new matrix U

0

of rank � � 1 whose column i

0

is 0

and such that U

0

M

s

= 0. We can repeat this process until

all the rows of U have been used.

Additionally, instead of using any row of U , we can try �rst

to �nd a linear combination v

T

of the rows of U that provides

the maximal decrease of

P

i

d

i

(R): since UM

s

= 0, we solve

v

T

UM

s+1

= 0 obtaining a matrix U

00

such that U

00

M

s+1

=

U

00

M

s

= 0, then solve v

T

U

00

M

s+2

= 0 and continue as long

as there are nonzero solutions for v. This yields a vector v

that maximizes k such that v

T

M

s

= � � � = v

T

M

s+k

= 0. We

then pick i such that v

i

6= 0 and replace row i of U by v

T

and use v �rst in the above algorithm.

7. SOLVING THE RECURRENCE SYSTEM
Once we have a bound N � 0 for the degree of the solu-

tions Y 2 K[x]

m

of (1), we can always use the undeter-

mined coe�cients method to �nd all such solutions. How-

ever, this method has a cost of cm

3

N

3

operations in K for

some positive constant c since there are m(N +1) unknown

coe�cients. Instead, we can get an algorithm whose com-

plexity is linear in N by generalizing the method of [5] to

the recurrence (6). Note �rst that when using the algorithm

of Section 4 to make M

t

nonsingular rather than M

s

(see

Remark 1), Theorem 5 and Corollary 1 remain valid, so

assuming that their hypotheses hold, we either prove that

the system is inconsistent or obtain M

t

of rank m. When

that is the case, if we have more than m equations, then

Ker(M

t

T

) 6= 0, so we can continue this algorithm until we

have exactlym equations (this must happen since we cannot

increase

P

i

�

i

(R) beyond rt). Therefore, we are reduced to

�nding the solutions Z of support contained in f0; : : : ; Ng of

a system of the form (6) where theM

k

's are square matrices

and M

t

is nonsingular. In addition the values of the entries

of Z must satisfy a �nite number of linear constraints of the

form (7) that have been produced by the algorithm. Since

A is an integral domain and M

t

is square and nonsingular,

we can use fraction�free gaussian elimination to compute a

nonsingular matrix B with entries in A such that BM

t

is

nonsingular and diagonal. Multiplying (6) by B on the left

yields

0

B

@

d

1

(n)

.

.

.

d

m

(n)

1

C

A

Z

n+t

= (9)

B(n)G(n) �

t�1

X

k=s

B(n)M

k

(n)Z

n+k

for all n 2 Z, where d

1

; : : : ; d

m

2 K[x] are such that d

1

: : : d

m

is not identically 0. Given initial conditions with undeter-

mined coe�cients for Z, we use (9) with increasing values of

n to express the entries of Z

n+t

as linear forms in those un-

determined coe�cients until Z

N+s+t

has been determined

where N is the degree bound. When d

i

(n) = 0 for some

n, we add a new undetermined coe�cient for the i

th

entry

of Z

n+t

and add the linear constraint obtained by equating

the i

th

row of the right hand side of (9) to 0, as well as

the linear constraints obtained from specializing (6) at that

value of n (since B(n) can be singular � note that B(n)

is nonsingular whenever

Q

i

d

i

(n) 6= 0). We then obtain a

linear system for the undetermined coe�cients by taking all

the constraints (7) together with the ones obtained from the

zeroes of the d

i

's, and extend that system by equating Z

n

with B(n)G(n) for N < n � N + s + t and solve it over

K. Its solutions then yield the general polynomial solution

of (2).

5



8. RATIONAL SOLUTIONS
The power basis P = hx

n

i

n�0

can be extended to the basis

hx

n

i

n2Z

of the �eld of Laurent series K((x)), and the de-

�nition of compatibility extended by saying that (1) must

hold for all n 2 Z. Similarly, the map � : K[[x]] ! K

Z

can be extended to a map K((x)) ! K

Z

by taking the co-

e�cient sequence of the Laurent series, completed on the

left by zeroes. De�ne then �

x

: K(x)

�

! Z by �

x

(p) =

maxfn such that x

n

j pg and �

x

(p=q) = �

x

(p) � �

x

(q) for

p; q 2 K[x] n f0g. In that context, Theorem 2 still holds,

and we have the following analogue of Theorem 4.

Theorem 6. Let P = hx

n

i

n2Z

, L be an r�m matrix with

entries in End

P

(K[x]), F 2 K(x)

r

, Y 2 K(x)

m

be nonzero

and N = min

i

(�

x

(Y

i

)). If LY = F then either N � t +

min

i

(�

x

(F

i

)) or Ker(M

t

(N � t)) 6= 0, where M

t

is as in (6).

Proof. Let N = min

i

(�

x

(Y

i

)), Z = �Y and G = �F . Then

Z

N

6= 0 and Z

n

= 0 for n < N , so equation (6) for n = N�t

becomesM

t

(N�t)Z

N

= G(N�t). If N < t+min

i

(�

x

(F

i

)),

then G(N � t) = 0, which implies that Z

N

2 Ker(M

t

(N �

t)).

If M

t

has rank m, then Theorem 6 yields a lower bound for

min

i

(�

x

(Y

i

)), i.e. an upper bound on the power of x that

divides the denominator of any nonzero rational solution.

Otherwise, if the hypotheses of Corollary 1 hold, then, as

explained in Remark 1, we can use the algorithm of Section 4

to transform the recurrence until M

t

has rank m.

8.1 Differential equations
Suppose that all the L

ij

's in the original system (2) are

in K[x][d=dx]. Given any irreducible p 2 K[x], we use

the change of variable X = x � � where � is the image

of x in E = K[x]=(p) to get a new system with entries in

E[X][d=dX]. SinceE[X][d=dX] is compatible with hX

n

i

n2Z

,

applying the above method in E[X], we get an upper bound

on the power of p that divides the denominator of any nonzero

rational solution of the original system. This means that we

can compute all its rational solutions that have their poles

in a prescribed �nite set. If in addition, the original system

is of the form

P

t

i=0

A

i

Y

(i)

= F where the A

i

's are square

matrices with entries in K[x], F has entries in K[x] and A

t

is diagonal and nonsingular, then any rational solution Y

must have its �nite poles among the zeroes of the determi-

nant of A

t

, so we can use our algorithm at all its irreducible

factors to compute all the rational solutions.

8.2 Difference equations
For a di�erence system of the form Y (x+ 1) �AY (x) = F

where A and F have entries in K(x), we can use either [3]

or [13] to compute a universal denominator d 2 K[x] such

that the denominator of any nonzero rational solution di-

vides d. Replacing Y by Y

0

=d, we use our algorithm to get

the polynomial solutions Y

0

, thereby obtaining all the ratio-

nal solutions.

8.3 q–Difference equations
Suppose �nally that all the L

ij

's in the original system (2)

are in K[x][�

q

], where �

q

is the automorphism of K[x] over

K that maps x to qx for a given q 2 K. Since K[x][�

q

] is

compatible with hx

n

i

n2Z

, applying the above method yields

an upper bound 
 � 0 on the power of x that can appear in

the denominator of a nonzero rational solution. If in addi-

tion, the original system is of the form Y (qx)�AY (x) = F ,

where A and F have entries in K(x), then the algorithm

of [3] can be applied to compute a universal denominator

d 2 K[x] such that the denominator of any nonzero ratio-

nal solution divides x




d. Replacing Y by Y

0

=x




d, we use

our algorithm to get the polynomial solutions Y

0

, thereby

obtaining all the rational solutions.
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