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Abstract

We propose a new algorithm for indefinite rational summa-
tion which, given a rational function F (x), extracts a ratio-
nal part R(x) from the indefinite sum of F (x):

∑
F (x) = R(x) +

∑
H(x).

If H(x) is not equal to 0 then the denominator of this ratio-
nal function has the lowest possible degree. We then solve
the same probleme in the q-difference case.

1 The decomposition problem

We discuss here the problem of indefinite summation of ra-
tional functions. This problem is equivalent to the problem
of solving the difference equation

y(x + 1) − y(x) = F (x) (1)

where F (x) is a rational function over a field K of charac-
teristic 0. The decomposition problem is to find whether (1)
has a rational solution, and if it does not, then to extract
an additive rational part R(x) from the solution s.t. the re-
maining part satisfies a simpler difference equation, where
the denominator of the new right-hand side has the lowest
possible degree. This gives an equality

∑
F (x) = R(x) +

∑
H(x) (2)

where H(x) is a rational function whose denominator has the
lowest possible degree. Similar algorithms are well known
in integration theory: we have in mind especially the al-
gorithms of M.V.Ostrogradsky [Ost1845] and Ch.Hermite
[Her1872]. (Some people mistakenly attribute the algorithm
of Ostrogradsky to E. Horowitz.)

Note that by
∑

F (x) we denote the set of all solutions
of (1), and the same for

∑
H(x) etc... This is an analogue

of the indefinite integral. If those functions take on integer
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values then we can use some integer bounds s ≤ t for our
sums:

t∑

x=s

F (x) = R(t + 1) − R(s) +

t∑

x=s

H(x).

It is probable that the publication [Abr75] was the first
in which the rational and nonrational parts were computed
in an algorithmic way. In [Pau93], P.Paule introduced the
concept of shift-saturated extension which allows one to give
some useful explicit formulas, and presented two new algo-
rithms to construct (2). One works iteratively and is similar
to Hermite’s algorithm. The other is an analogue of the
algorithm of Ostrogradsky. Neither of them requires full
factorization of polynomials.

Our old algorithm [Abr75] works iteratively. In the next
paragraph we discuss a new algorithm which is an analogue
of the algorithm of Ostrogradsky. We will compare it with
Paule’s algorithm.

2 A new algorithm to solve the decomposition problem

We can assume that F (x) is a proper rational function (the
degree of its numerator is lower than the degree of the de-
nominator). If the degree of the numerator of F (x) is not
lower than the degree of its denuminator, then one can ex-
tract the polynomial part p(x) from F (x):

F (x) = p(x) + F ∗(x),

where F ∗(x) is a proper rational function. A polynomial
q(x) s.t. q(x + 1) − q(x) = p(x) can be found, so our main
goal will be finding a solution of the decomposition problem
when F (x) is a proper rational function. From here on we
will consider only this case.

Consider (1) again. We temporarily replace the coeffi-

cient field K by its algebraic closure K. The partial fraction
decomposition of F (x) has the form

F (x) =

m∑

i=1

ti∑

j=1

βij

(x − αi)j
. (3)

Write αi ∼ αj if αi − αj is an integer. Obviously, ∼ is an
equivalence relation in the set {α1, . . . , αm}. Each of the
corresponding equivalence classes has a largest element in
the sense that the other elements of the class are obtained
by subtracting positive integers from it. Let α1, . . . , αk be



the largest elements of all the classes (k ≤ m). Then (3) can
be rewritten as

F (x) =

k∑

i=1

li∑

j=1

Mij(E)
1

(x − αi)j
. (4)

Here E is the shift operator: Ef(x) = f(x + 1) for any
function f(x), and Mij(E) is a linear difference operator

with constant coefficients (a polynomial in E over K).
Let F (x) have the form (4) and suppose that (1) pos-

sesses a solution R(x) ∈ K(x). The rational fuction R(x)
can be written in a form analogous to (4):

k∑

i=1

li∑

j=1

Lij(E)
1

(x− αi)j
. (5)

This presentation is unique and therefore

Lij(E)(E − 1) = Mij(E). (6)

So, a necessary and sufficient condition for existence of a ra-
tional solution of (1) is that for all i = 1, . . . , k; j = 1, . . . , li
there is an operator Lij(E) s.t. (6) holds. Then, (1) has the
solution (5) and all the other rational solutions of (1) can
be obtained by adding arbitrary constants.

Example 1 Let

F (x) =
−3x + 4

x3 − 3x2 + 2x
=

−3x + 4

x(x − 1)(x − 2)
=

= (2E2 − E − 1)
1

x − 2
.

We have 2E2 − E − 1 = (2E + 1)(E − 1). Therefore (1) in
this case has the rational solution

R(x) = (2E + 1)
1

x − 2
=

3x − 5

(x − 1)(x − 2)
.

Example 2 If the denominator of F (x) is equal to x(x −
1)2(x− 2)(x− 4)3 then (1) has no rational solution because
we have in (4) the term M(E) 1

(x−4)3
with deg M(E) = 0.

Let
Lij(E) = L̃ij(E)Eγij

where L̃ij is not divisible by E, j = 1, . . . , li, and

σij = min{γij , γi,j+1, . . . , γili},

τij = max{deg Lij , deg Li,j+1, . . . , deg Lili};

i = 1, . . . , k; j = 1, . . . , li.
It is easy to see that the polynomial

u(x) =

k∏

i=1

li∏

j=1

τij−σij∏

m=0

(x − αi + σij + m) (7)

is divisible by the denominator of (5). The polynomial (7)
can be found without full factorization of polynomials. To
show that, we note the following: it is obvious that

τi1 − σi1 = max{τi1 − σi1 , . . . , τili
− σili

},

i = 1, . . . , k. Let

ρ = max{τ11 − σ11, . . . , τk1
− σk1

}.

Let a(x) be the denominator of F (x). Then ρ can be com-
puted as the largest nonnegative integer root h1 of the poly-
nomial r(h) = Resx(a(x−1), a(x+h)) and if there is no such
root then (1) has no solution in K(x); in such a case, as will
be made clear below, we may set R(x) = 0 and H(x) = F (x)
in (2). Let now h1 be such a root. We can easy find the
product of all polynomials of the form

τi1−σi1∏

m=0

(x − αi + σi1 + m)

for all i s.t. τi1 − σi1 = ρ. Indeed, it is enough to find

d(x) = gcd(a(x− 1), a(x + h1))

and to compute

d(x)d(x− 1) . . . d(x − h1).

The process can be continued, yielding the following al-
gorithm to compute (7):

A(x) := a(x − 1); B(x) := a(x);u(x) := 1;
find all nonnegative integers h1 > . . . > hm

s.t. deg gcd(A(x),B(x + hi)) > 0, i = 1, . . . , m;
let di(x) = gcd(A(x),B(x + hi)), i = 1, . . . , m;
k := 0;
while m > k do

k := k + 1;
sk(x) := dk(x)dk(x − 1) . . . dk(x − hk);
u(x) := u(x)sk(x);
j := k;
for i = k + 1, k + 2, ..., m do

di(x) := di(x)/gcd(di(x), sk(x));
if deg di(x) > 0

then j := j + 1; dj(x) := di(x); hj := hi

fi

od;

m := j
od.

Thus, we need neither full factorization nor the use of
elements of K in our computation.

The denominator found by Paule’s algorithm [Pau93] is
equal to

k∏

i=1

τi1−σi1∏

m=0

(x − αi + σi1 + m)li . (8)

Comparing (7) with (9) shows that the former divides the
latter and is of lower degree in general.

Example 3 Let

F (x) = −
1

x
−

2

(x + 1)2
+

1

x + 1
+

2

(x + 2)2
−

1

x + 2
+

+
1

x + 3
+

1

(x + 4)2
−

1

(x + 5)2

(the function is taken in the decomposed form for clarity
only; the algorithm deals with the denominator

a(x) = x(x + 1)2(x + 2)2(x + 3)(x + 4)2(x + 5)2 (9)

taken in nonfactorized form). In this case

R(x) =
1

x
+

2

(x + 1)2
+

1

x + 2
−

1

(x + 4)2
,



and the denominator of R(x) is

x(x + 1)2(x + 2)(x + 4)2.

All the αi’s in our case are equivalent and α1 = 0 is the
largest element:

F (x) = (−E5 + E4 + 2E2 − 2E)
1

x2
+ (E3 − E2 + E − 1)

1

x
,

R(x) = (−E4 + 2E)
1

x2
+ (E2 + 1)

1

x
.

We have σ11 = 0, σ12 = 1, τ11 = τ12 = 4. Both the above
algorithm and formula (7) give the same polynomial u(x):

x(x + 1)2(x + 2)2(x + 3)2(x + 4)2.

Paule’s algorithm gives the denominator

(x(x + 1)(x + 2)(x + 3)(x + 4))2.

Note that the same polynomial u(x) can be computed
by this simpler algorithm (see [Abr95]):

A(x) := a(x − 1); B(x) := a(x);u(x) := 1;
R(h) := Resx(A(x),B(x + h));
if R(h) has some nonnegative integer root then

N := largest nonnegative integer root of R(h);
for i = 0, 1, ..., N do

d(x) := gcd(A(x),B(x + i));
A(x) := A(x)/d(x);
B(x) := B(x)/d(x − i);
u(x) := u(x)d(x)d(x− 1) . . . d(x − i)

od

fi.

But the algorithm given earlier is more adequate for our
goal of computing not only the denominator of R(x), but the
corresponding denominator of H(x) as well: in the earlier
algorithm, every product

sk(x) := dk(x)dk(x − 1) . . . dk(x − hk)

is such that dk(x), . . . , dk(x − hk) are pairwise relatively
prime (we emphasize however, that the polynomial u(x) is
the same in both cases). In addition, in our algorithm for
constructing the denominator of H(x) together with the de-
nominator of R(x) (see below) we use the polynomials sk(x)
in the order

sm(x), . . . , s1(x).

It is not surprising, then, that all the sk are stored.
It is likely that this algorithm gives the smallest denom-

inator u(x) that it is possible to predict without taking the
numerator into account.

The algorithm [AbrKva93] can be used for computing
d1(x), . . . , dk(x) efficiently.

Going back to (4) and (6), if at least one polynomial
Mij(E) is not divisible by E − 1 then (1) has no rational
solution. We want then to construct (2). Let (4) have only
one term, and let us write this term for simplicity in the
form

M(E)
1

(x − α)j
, j ≥ 1.

Then our problem can be solved by computing the quotient
L(E) and the remainder u:

M(E) = L(E)(E − 1) + w, w ∈ K. (10)

We can write the right-hand side of (2) in the form

L(E)
1

(x − α)j
+

∑ w

(x − α)j
.

The denominator of the rational function under the sign of
the indefinite sum has obviously the lowest possible degree.

Note that instead of (10) one can consider the reduction
modulo E − 1 of the form

M(E) = V (E)(E − 1) + vEc, v ∈ K,

where c is some convenient nonnegative integer. It is easy
to see that if c < deg M(E) then deg V (E) ≤ deg L(E). If
M(E) = Mij(E) then we can take c = δi, where δi is s.t.
Mi,li is divisible by Eδi and is not divisible by Eδi+1. Thus
(7) can be used as a denominator of the rational part, i.e.
of R(x), and

k∏

i=1

(x − αi + δi)
li (11)

as a denominator of H(x). If we compute the numerator of
H(x) corresponding to the denominator (11) then we can
obtain a reducible fraction. We will get the lowest possible
degree denominator after reducing this fraction.

Example 4 Let F (x) have the denominator (7) then for-
mula (11) gives us (x + 1)2. The numerator of F (x) can be
chosen s.t. H(x) = 0 in (2) (as in Example 3). If H(x) is
nonzero and if its denominator has lowest possible degree
then its degree is 1 or 2. We can choose the presentation (2)
s.t. the denominator is equal to x + 1 in the first case, and
to (x + 1)2 in the second case. If

F (x) = (−E5 + E4 + 2E2 − 2E)
1

x2
+ (E3 − E2 + E + 1)

1

x

then since

−E5 + E4 + 2E2 − 2E = (−E4 + 2E)(E − 1),

E3 − E2 + E + 1 = (E2 − 1)(E − 1) + 2E

we can take

R(x) = (−E4 + 2E)
1

x2
+ (E2 − 1)

1

x
,

H(x) = 2E
1

x
.

If

F (x) = (E5 + E4 + 2E2 − 2E)
1

x2
+ (E3 − E2 + E + 1)

1

x

then since

E5 +E4 +2E2 − 2E = (E4 + 2E3 +2E2 + 4E)(E − 1) +3E

we can take

R(x) = (E4 + 2E3 + 2E2 + 4E)
1

x2
+ (E2 − 1)

1

x
,

H(x) = 3E
1

x2
+ 2E

1

x
.

If we already have expressions (7) and (11) for some con-
crete F (x) then the numerators of R(x) and H(x) can be



found by the method of unknown coefficients. To construct
a system of linear algebraic equations we use that R(x) and
H(x) are proper rational functions and that

F (x) = R(x + 1) − R(x) + H(x).

The functions R(x),H(x) must be reduced after their con-
struction.

How we can construct (11) without the full factorization
of a(x), the denominator of F (x)? Note that (11) includes
all the factors of a(x) which are relatively prime with the
least common multple (lcm) of the denominators of R(x)
and R(x + 1). The lcm is equal to

d1(x + 1) . . . dm(x + 1)u(x).

Additionaly, (11) includes some factors of

d1(x − h1), . . . , dm(x − hm),

taken to particular powers.
The computation of (11) can be combined with the com-

putation of (7). But first we have to know how to do the
following: Let g(x), d(x) ∈ K[x], h be a nonnegative integer
and

s(x) = d(x)d(x − 1) . . . d(x − h).

Let
d(x), d(x − 1), . . . , d(x − h)

be pairwise relatively prime. Let

g(x) = pα1

1 (x)pα2

2 (x) . . . (12)

be the full factorization of g(x) over K. Assume that for no
pair pi(x), pj(x) in (12) pi(x) equals pj(x+l) for an integer l.
We must extract from s(x) all the irreducible factors which
are of the form pi(x) and from d(x − h) all the irreducible
factors which are not of the form pi(x−l), 0 < l ≤ h. Finally,
g(x) must be multiplied by these factors.

All this can be achieved by the procedure, which uses
only g(x) itself rather than its factored form (11):

procedure nonrational (g(x), d(x), h, s(x));
f(x) := gcd(g(x), s(x));
while deg f(x) > 0 do

g(x) := g(x)f(x);
s(x) := s(x)/f(x);
f(x) := gcd(g(x), s(x))

od;

e(x) := d(x);
for l = 1, 2, . . . , h do

e(x) := e(x)/gcd(e(x), g(x));
e(x) := e(x − 1)

od;

e(x) := e(x)/gcd(e(x), g(x));
g(x) := g(x)e(x).

The complete algorithm can now be given as follows.

input:a(x) is the denominator of the right-hand side of (1);
output:u(x), g(x) are polynomials that can be used as the
denominators of R(x) and H(x) (see (2));

A(x) := a(x− 1); B(x) := a(x);u(x) := 1; g(x) := a(x);
find all nonnegative integers h1 > . . . > hm

s.t. deg gcd(A(x),B(x + hi)) > 0, i = 1, . . . , m;
let di(x) = gcd(A(x),B(x + hi)), i = 1, . . . , m;
k := 0;

while m > k do

k := k + 1;
sk(x) := dk(x)dk(x − 1) . . . dk(x − hk);
u(x) := u(x)sk(x);
g(x) := g(x)/gcd(g(x), dk(x + 1)sk(x));
j := k;
for i = k + 1, k + 2, ..., m do

di(x) := di(x)/gcd(di(x), sk(x));
if deg di(x) > 0

then j := j + 1; dj(x) := di(x); hj := hi

fi

od;

m := j
od;

for k = m, m − 1, ..., 1 do

call nonrational (g(x), dk(x), hk, sk(x))
od.

Remark that we need neither full factorization nor the
use of elements of K in our computation.

3 The decomposition problem in the q-difference case

A q-analogue of (1) is the equation

y(qx) − y(x) = F (x) (13)

where F (x) ∈ K(x), q ∈ K is not zero and not a root of
unity.

The q-analogue of the decomposition problem is to find
whether (13) has a rational solution, and if it does not, then
to extract an additive rational part R(x) from the solution
s.t. the remaining part satisfies a simpler q-difference equa-
tion, where the denominator of the new right-hand side has
the lowest possible degree. This gives an equality

ΣqF (x) = R(x) + ΣqH(x) (14)

where H(x) is a rational function whose denominator has

the lowest possible degree. Note that by ΣqF (x) we denote

the set of all solutions of (13), and the same for ΣqH(x)
etc... If those functions take on values in {1, q, q2, . . .} then
we can use some integer bounds s ≤ t for our sums:

t∑

i=s

F (qi) = R(qt+1) − R(qs) +

t∑

i=s

H(qi).

Note that the equation

y(qx) − y(x) = xm,

where m is a nonzero integer, has the rational solution

1

qm − 1
xm.

It is easy to show that if m = 0 then that equation has no
rational solution. We can write a given rational function
F (x) in the form

F (x) = avxv + . . . + a1x + a0 +
a−1

x
+ . . . +

a−w

xw
+ F ∗(x)

where a−w, . . . , a−1, a0, a1, . . . , av ∈ K, F ∗(x) ∈ K(x) and
F ∗(x) is a proper rational function which does not have a



pole at x = 0. After solving the q-decomposition problem
(the presentation

ΣqF
∗(x) = R∗(x) + ΣqH

∗(x)

will be obtained) we will be able to go from F ∗(x) to F (x)
by adding the rational function

av

qv − 1
xv + . . . +

a1

q − 1
x +

qa−1

(1 − q)x
+ . . . +

qwa−w

(1 − qw)xw

to R∗(x) and by adding a0 to H∗(x). Hence, we can suppose
that F (x) is a proper rational function which does not have
a pole at x = 0. This supposition allows us to transform the
algorithm described in §2 to an analogous algorithm for the
q-difference case. It can be done simply replacing any shift
x + n by qnx.

The complete algorithm can now be given as follows.

input:a(x) is the denominator of the right-hand side of (13);
output: u(x), g(x) are polynomials that can be used as the
denominators of R(x) and H(x) (see (14));

A(x) := a(q−1x);B(x) := a(x);u(x) := 1; g(x) := a(x);
find all nonnegative integers h1 > . . . > hm

s.t. deg gcd(A(x),B(qhix)) > 0, i = 1, . . . , m;
let di(x) = gcd(A(x),B(qhix)), i = 1, . . . , m;
k := 0;
while m > k do

k := k + 1;
sk(x) := dk(x)dk(q−1x) . . . dk(q−hkx);
u(x) := u(x)sk(x);
g(x) := g(x)/gcd(g(x), dk(qx)sk(x));
j := k;
for i = k + 1, k + 2, ..., m do

di(x) := di(x)/gcd(di(x), sk(x));
if deg di(x) > 0

then j := j + 1; dj(x) := di(x); hj := hi

fi

od;

m := j
od;

for k = m,m − 1, ..., 1 do

call nonrational (g(x), dk(x), hk, sk(x))
od.

procedure nonrational (g(x), d(x), h, s(x));
f(x) := gcd(g(x), s(x));
while deg f(x) > 0 do

g(x) := g(x)f(x);
s(x) := s(x)/f(x);
f(x) := gcd(g(x), s(x))

od;

e(x) := d(x);
for l = 1, 2, . . . , h do

e(x) := e(x)/gcd(e(x), g(x));
e(x) := e(q−1x)

od;

e(x) := e(x)/gcd(e(x), g(x));
g(x) := g(x)e(x).

The search for the nonnegative integers h1, . . . , hm can
be done, for instance, by computing the following polyno-
mial r in qh:

r(qh) = Resx(A(x),B(qhx))

and by finding of all h1, . . . , hm s.t. r(qhi) = 0. If K =
K′(q), q is an undetermined parameter, then after simplifi-
cations we get an algebraic equation whose coefficients are
polynomials in q and the constant term of the equation
can be assumed nonzero (we are interested in nonzero roots

only). All roots of the form qhi divide the constant term.
The search for h1, . . . , hm is also easy when q is a rational
number, K =Q, or when K =Q(q), q is a Gaussian number
s.t. |q| 6= 1.

A proof of correctness of the above algorithm can be
obtained from the proof of the algorithm given in §2: it
is enough to change the operator E by the operator Q s.t.
Qf(x) = f(qx) for any rational function f(x). The principle
of the construction of the analogue of (4) is that we write
αi ∼ αj if αi = qlαj , where l is an integer. Each of the
corresponding equivalence classes has a largest element in
the sense that the other elements of the class are obtained
by multiplying it by q to a negative integer power. (The

motivation is: Ql(x − αi) = qlx − αi = ql(x − q−lαi).) The
analogues of the formulas (4),(5) are formulas in which the
operators Mij , Lij are polynomials in Q. The presentation
F (x),R(x) in the form is unique because no αi is equal to
zero. Hense Lij(Q)(Q− 1) = Mij(Q). The analogues of the
key formulas (7),(11) are

k∏

i=1

li∏

j=1

τij−σij∏

m=0

(qσij+mx − αi)

and
k∏

i=1

(qδix − αi)
li .

Example 5 Let

F (x) =
(1 − 3q)x2 − (2 + q)x − 1

qx3 + (1 + q)x2 + x
.

Let K =Q(q), q is an undetermined parameter. Then

F (x) = −
1

x
+ F ∗(x),

where

F ∗(x) =
(1 − 2q)x − 1

qx2 + (1 + q)x + 1
.

We get

R∗(x) =
1

x + 1
, H∗(x) = −

1

x + 1
.

For F (x) we have

R(x) = R∗(x) −
q

(1 − q)x
=

(1 − 2q)x − q

(1 − q)x2 + (1 − q)x
,

H(x) = H∗(x) = −
1

x + 1
.

Therefore

t∑

i=s

(1 − 3q)q2i − (2 + q)qi − 1

q3i+1 + (1 + q)q2i + qi
=

=
(1 − 2q)qt+1 − q

(1 − q)q2t+2 + (1 − q)qt+1
−

(1 − 2q)qs − q

(1 − q)q2s + (1 − q)qs
−

−

t∑

i=s

1

qi + 1
.
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