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Abstract

D’Alembertian solutions are those expressible as nested indefinite integrals resp.

sums of hyperexponential functions. They are a subclass of Liouvillian solutions, and

can be constructed by recursively finding hyperexponential solutions and reducing the

order. Knowing d’Alembertian solutions of Ly = 0, one can write down the corre-

sponding solutions of Ly = f and L∗y = 0.

1 Introduction

Let k be a field of characteristic zero, X an indeterminate over k, σ a nonzero field-
endomorphism of k, and δ : k → k a map satisfying

δ(a + b) = δa + δb and δ(ab) = σ(a) δb + δa b for any a, b ∈ k. (1)

The left skew polynomial ring given by σ and δ is the ring (k[X], +, ·) of polynomials in X
over k with the usual polynomial addition, and the multiplication given by

Xa = σ(a)X + δa for any a ∈ k.

To avoid confusing it with the usual commutative polynomial ring k[X], the left skew poly-
nomial ring is denoted k[X; σ, δ]. We will denote by Constσ,δ(k) the constant subfield of k
(i.e., the set of all a ∈ k such that σ(a) = a and δa = 0).

Example 1 Let k be a differential field of characteristic 0 with derivation D. Let σ be the
identity on k and take δ = D. Then k[X; σ, δ] = k[D], the ring of linear differential operators
with coefficients in k. ✷

Example 2 Let k be a difference field of characteristic 0 with transform (shift) E. Take
σ = E and δ = 0. Then k[X; σ, δ] = k[E], the ring of linear difference operators with
coefficients in k. ✷
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The ring k[X; σ, δ] has no zero divisors and possesses a right Euclidean division algorithm.
For any two nonzero polynomials R, S ∈ k[X; σ, δ], one can compute their greatest common
right divisor gcrd(R, S) and their least common left multiple lclm(R, S). For details, see
[Ore33] or [Bro&Pet94].

For R, S ∈ k[X; σ, δ] \ {0}, let T ∈ k[X; σ, δ] be such that lclm(R, S) = TS. Following
[Koo91] we write T = R/S.

Definition 1 A polynomial R ∈ k[X; σ, δ] of degree d ≥ 1 is completely factorable if there
are first-order polynomials R1, R2, . . . , Rd ∈ k[X; σ, δ] and a ∈ k such that R = aR1R2 · · ·Rd.

Theorem 1 Let R, S ∈ k[X; σ, δ] \ {0}. Then deg R/S = deg R − deg gcrd(R, S). If
R = R1R2 · · ·Rk where R1, R2, . . . , Rk ∈ k[X; σ, δ] are irreducible polynomials then R/S =
(R1/S1)(R2/S2) · · · (Rk/Sk) where Sk = S and Sj−1 = Sj/Rj, for j = 2, 3, . . . , k.

For a proof, see [Ore33, Thm. I/16] and [Koo91, pp. 16–20].

Corollary 1 Let R, S ∈ k[X; σ, δ] \ {0}. If R is completely factorable then so is R/S.

Definition 2 Let R, S ∈ k[X; σ, δ]. R is similar to S if R = S/T for some T ∈ k[X; σ, δ]
such that deg gcrd(S, T ) = 0.

Theorem 2 [Ore33, Thm. II/1] Let L ∈ k[X] be monic. If L = R1R2 · · ·Rk = S1S2 · · ·Sn

are two factorizations of L into irreducible factors then k = n and the factors are similar in
pairs.

Corollary 2 A monic factor of a completely factorable polynomial is completely factorable.

2 Homogeneous equations

Henceforth we limit attention to the rings of differential resp. difference operators k[X] where
X is D resp. E. If K is a differential resp. difference extension of k then any element R ∈ k[X]
can be viewed as acting on K, and its kernel Ker R is a linear space over ConstX(K). Call
K adequate for R if dim Ker R = ord R. It is well known that for any finite set of operators
R ⊆ k[X] there is an extension K of k which is adequate for all R ∈ R. If K is adequate
for R and S then Ker R/S = S Ker R (cf. [Koo91]).

Definition 3 Let k be a differential resp. difference field of characteristic 0 and y an element
of a differential resp. difference extension K of k. Then y is hyperexponential over k if y 6= 0
and Ry = 0 for some first-order operator R ∈ k[X]; and d’Alembertian over k if Ry = 0 for
some completely factorable operator R ∈ k[X].

We will denote the set of all hyperexponential elements over k by Hk, and the set of all
d’Alembertian elements over k by Ak.

Theorem 3 Ak is a linear space over ConstX(K), for any extension K of k.
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Proof: Let a, b ∈ Ak and λ, µ ∈ ConstX(K). Then there are completely factorable operators
R and S such that Ra = Sb = 0. Since lclm(R, S) (λa + µb) = 0 and lclm(R, S) = (R/S)S
is completely factorable by Corollary 1, it follows that λa + µb ∈ Ak. ✷

Lemma 1 Let L ∈ k[X]. If y is hyperexponential over k then Ly = ay for some a ∈ k. In
particular, if Ly 6= 0 then Ly is hyperexponential. If y is d’Alembertian over k then so is
Ly.

Proof: If Ry = 0 then (R/L)Ly = lclm(R, L)y = (L/R)Ry = 0. As ord R/L ≤ ordR and
since by Corollary 1, R/L is completely factorable when R is, the Lemma follows. ✷

Theorem 4 Let L ∈ k[X]. If the equation Ly = 0 has a nonzero d’Alembertian solution
then it also has an hyperexponential solution.

Proof: Let a 6= 0 and La = Ra = 0 where R ∈ k[X] is completely factorable. If M is
a minimal operator annihilating a then M is a right-hand factor of both L and R. By
Corollary 2, M is completely factorable. It follows that L has a first-order right-hand factor,
or equivalently, that the equation Ly = 0 has an hyperexponential solution. ✷

Assume that there is an algorithm H which takes an operator L ∈ k[X] as input and
returns an hyperexponential solution of the equation Ly = 0 if it exists. In the case when k
is the field of rational functions F (x) over some field F of characteristic 0 such algorithms
are given, e.g., in [Sin91] for differential operators, and in [Pet92] for difference operators.
We show that algorithm H, used recursively in combination with reduction of order, will
construct a basis for the space of all d’Alembertian solutions of Ly = 0. We call this
algorithm A.

Algorithm A

INPUT: A nonzero linear operator L ∈ k[X].

OUTPUT: A basis for the space Ker L ∩ Ak.

1. Call H on Ly = 0.
If no hyperexponential solution was found then return ∅ and stop.
Otherwise let y1 be an hyperexponential solution of Ly = 0.

2. Let R1 be the monic first-order operator such that R1y1 = 0.
Divide L by R1 to obtain L = L1R1.

3. Recursively call A on L1. Let the output be {z2, z3, . . . , zm}.

4. For i = 2, 3, . . . , m construct solutions yi of R1yi = zi.
Return {y1, y2, . . . , ym} and stop.

Theorem 5 Algorithm A returns a basis for the space KerL ∩H1.
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Proof: Obviously A finds a factorization L = LmRmRm−1 · · ·R1 where ordRi = 1 and
the equation Lmy = 0 has no hyperexponential solution, hence by Theorem 4 no nonzero
d’Alembertian solution.

We claim that KerL ∩ Ak = Ker RmRm−1 · · ·R1. If RmRm−1 · · ·R1a = 0 then La = 0.
Conversely, assume that a ∈ Ak and La = 0 but b := RmRm−1 · · ·R1a 6= 0. By Lemma 1,
b ∈ Ak. Since Lmb = La = 0, it follows from the previous paragraph that b = 0, proving the
claim.

It is easy to show that RjRj−1 · · ·R1yj = 0 and Rj−1 · · ·R1yj 6= 0 for 1 ≤ j ≤ m.
Hence yj ∈ KerRmRm−1 · · ·R1 = Ker L ∩ Ak for 1 ≤ j ≤ m. Let

∑m
i=1 αiyi = 0 where

αi ∈ ConstX(K) for some extension K of k. Successively applying RjRj−1 · · ·R1 for j =
m − 1, . . . , 1 to both sides shows that αm = . . . = α1 = 0. Since dim KerL ∩ Ak =
dim Ker RmRm−1 · · ·R1 = m, the set {y1, y2, . . . , ym} is a basis for KerL ∩ Ak. ✷

Let L1 ∈ k[D] be a monic differential operator of order 1. Then the general solution of
equation L1y = f can be written as

y = h1

∫ f

h1
(2)

where h1 ∈ Hk is such that L1h1 = 0. We write
∫

u to denote the set of all v such that
Dv = u. Using (2) repeatedly we see that the general solution of equation LnLn−1 · · ·L1y = f
where Ln, Ln−1, . . . , L1 ∈ k[D] are monic first-order operators can be written as

y = h1

∫

h2

h1

∫

h3

h2
. . .
∫

f

hn

(3)

where hi ∈ Hk are such that Lihi = 0.

Let L1 ∈ k[E] be a monic difference operator of order 1. Then the general solution of
equation L1y = f can be written as

y = h1

∑ f

Eh1
(4)

where h1 ∈ Hk is such that L1h1 = 0. We write
∑

u to denote the set of all v such that
∆v = u where ∆ = E − 1. Using (4) repeatedly we see that the general solution of equation
LnLn−1 · · ·L1y = f where Ln, Ln−1, . . . , L1 ∈ k[E] are monic first-order operators can be
written as

y = h1

∑ h2

Eh1

∑ h3

Eh2
. . .
∑ f

Ehn

(5)

where hi ∈ Hk are such that Lihi = 0.
Consider the homogeneous equation

Ly = 0 (6)

where L ∈ k[D] and ordL = n. It is well known that if ϕ ∈ Hk is a nonzero solution of (6)
then the substitution

y = ϕ
∫

u (7)
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leads to an (n−1)-st order equation for u with coefficients in k. The substitution (7) is called
d’Alembert substitution connected with ϕ. Similarly, in the difference case the substitution

y = ϕ
∑

u (8)

leads to an (n − 1)-st order equation for u with coefficients in k.
Assume that the new equation is reduced again using its solution ϕ2 ∈ Hk and so on,

until the last d’Alembert substitution connected with ϕr ∈ Hk produces an equation with
no solution in Hk. Then a subspace of solutions of (6) has been found, namely

ϕ1

∫

ϕ2 . . .
∫

ϕr

∫

0 (9)

in the differential case, and
ϕ1

∑

ϕ2 . . .
∑

ϕr

∑

0 (10)

in the difference case. In [Abr91, Abr93a] it was shown that this subspace is independent
of the choice of particular solutions ϕi, and that it is equal to the space of d’Alembertian
solutions of (6). Furthermore, (9) and (10) correspond to a factorization

L = LrRrRr−1 · · ·R1 (11)

of L where Lr has no first-order right-hand factor, Ri are first-order operators, and if

hi = ϕ1ϕ2 · · ·ϕi (12)

in the differential case, or
hi = Ei−1ϕ1E

i−2ϕ2 · · ·ϕi (13)

in the difference case, then Rihi = 0.

Example 3 Consider the equation

xyV − 2yIV + x(x − 1)y′′′ − (x − 2)y′′ − x2y′ + xy = 0. (14)

Repeated d’Alembert substitution, or algorithm A, produces the space of d’Alembertian
solutions

ex
∫

e−2x
∫

0 (15)

of (14). Alternatively, one can express the general solution of the original equation as

ex
∫

e−2x
∫

g (16)

where g is the general solution of the third-order equation

xy′′′ − (3x + 2)y′′ + (x2 + 3x + 4)y′ − (x2 + 2x + 2)y = 0. (17)

which has no solution in Hk. Nevertheless, we will demonstrate in Section 4 that by means
of d’Alembertian theory, the general solution of (17) and hence of (14) can be described in
terms of solutions of a second-order equation. ✷
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If the equation (6) was reduced by means of ϕ1, ϕ2, . . . , ϕr and the last d’Alembert
substitution connected with ϕr produced an equation Lry = 0, then the general solution
of (6) can be written as

ϕ1

∫

ϕ2 . . .
∫

ϕr

∫

g resp. ϕ1

∑

ϕ2 . . .
∑

ϕr

∑

g (18)

where g is the general solution of equation Lry = 0.

3 Nonhomogeneous equations

Consider the equation
Ly = f (19)

where L ∈ k[X] and ord L = n. Let an be the leading coefficient of L.

Theorem 6 If L is completely factorable, and ϕ1

∫

ϕ2 . . .
∫

ϕn

∫

0 (in the differential case),
resp. ϕ1

∑

ϕ2 . . .
∑

ϕn

∑

0 (in the difference case) is the general solution of the homogeneous
equation Ly = 0 then

ϕ1

∫

ϕ2

∫

. . .
∫

ϕn

∫ f

anϕ1 · · ·ϕn

(20)

respectively
∑

ϕ1

∑

ϕ2 . . .
∑

ϕn

∑ 1

anEnϕ1En−1ϕ2 . . . Eϕn

is the general solution of (19).

Proof: According to (3), the general solution of (19) is

y = h1

∫

h2

h1

∫

h3

h2
. . .
∫

f

anhn

where, according to (12), hi = ϕ1ϕ2 · · ·ϕi. This implies (20). In the difference case, we use
(5) instead of (3), and (13) instead of (12). ✷

This approach does not require solving systems of linear algebraic equations (as does the
method of variation of constants).

Example 4 Let (x2 − 1)y′′ + 4xy′ + 2y = sin x. The general solution

x

x2 − 1

∫

1

x2

∫

0

of the corresponding homogeneous equation leads immediately to the general solution of the
original equation:

x

x2 − 1

∫

1

x2

∫

x sin x =
C1x + C2 − sin x

x2 − 1
.

✷
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Now consider the problem of finding all d’Alembertian solutions of (19) assuming that
f satisfies Mf = 0 for some M ∈ k[X]. Then MLy = 0 for any solution y of (19). Use
algorithm A to write ML = RA where A = LrLr−1 · · ·L1 and ordLi = 1.

Proposition 1 With the above notation, equation (19) has a d’Alembertian solution if and
only if (A/L)f = 0.

Proof: If La = f and a ∈ Ak then Aa = 0. Hence (A/L)f = (A/L)La = (L/A)Aa = 0. –
Conversely, if (A/L)f = 0 then f ∈ Ker A/L = L Ker A, hence there is an a ∈ KerA such
that f = La. ✷

When (A/L)f = 0 it is possible to construct a particular d’Alembertian solution a of
(19) by expanding it into a power series around some point which is not a singularity of the
equation MLy = 0.

4 Adjoint equations

The adjoint of a linear differential operator is defined by

(

n
∑

i=0

aiD
i

)

∗

=
n
∑

i=0

(−1)iDiai .

It can be shown that for any L1, L2 ∈ k[D],

(L∗

1)
∗ = L1, (L1L2)

∗ = L∗

2L
∗

1 . (21)

The adjoint of a linear difference operator is defined by

(

n
∑

i=0

aiE
i

)

∗

=
n
∑

i=0

Eian−i

when an, a0 6= 0. Direct computation shows that for any L1, L2 ∈ k[E],

(L∗

1)
∗ = EnL∗

1E
−n, (L1L2)

∗ = (EnL∗

2E
−n)L∗

1 (22)

where n = deg(L1). Hence in both cases left-hand factors of L correspond to right-hand
factors of L∗, and vice versa.

Let R1 ∈ k[X] be a monic operator of order 1, and h1 ∈ Hk such that R1h1 = 0. Then
it is easy to see that

L∗

1

1

h1
= 0 (23)

in the differential case, and

L∗

1

1

Eh1
= 0 (24)

in the difference case.
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Theorem 7 Let L ∈ k[X], ordL = n, and let an be the leading coefficient of L. If
ϕ1

∫

ϕ2 . . .
∫

ϕn

∫

0 (in the differential case), resp. ϕ1
∑

ϕ2 . . .
∑

ϕn

∑

0 (in the difference case)
is the general solution of equation Ly = 0 then

1

anϕnϕn−1 . . . ϕ1

∫

ϕn

∫

ϕn−1 . . .
∫

ϕ2

∫

0. (25)

respectively

1

anEϕnE2ϕn−1 . . . Enϕ1

∑

Eϕn

∑

E2ϕn−1 . . .
∑

En−1ϕ2

∑

0 (26)

is the general solution of the adjoint equation L∗y = 0.

Proof: According to (11),
L = anRnRn−1 · · ·R1

where Ri are monic first-order operators such that Rihi = 0. In the differential case, let
R∗

i h
∗

i = 0 where h∗

i = 1/hi as in (23). Since L∗ = R∗

1R
∗

2 · · ·R
∗

nan, the general solution of
L∗y = 0 is, by (3),

h∗

n

an

∫ h∗

n−1

h∗

n

∫

. . .
h∗

1

h∗

2

∫

0 =
1

anhn

∫

hn

hn−1

∫

. . .
h2

h1

∫

0

which, using (12), gives (25).
In the difference case, L∗ = (En−1R∗

1E
−(n−1))(En−2R∗

2E
−(n−2)) · · · (R∗

n)an. Here we use
(24) instead of (23) and (5) instead of (3). We also take into account the fact that R∗

i is not
monic but rather has leading coefficient equal to −E2hi/Ehi. ✷

Example 5 Consider again equation (14). The adjoint equation of (17)

xy′′′ + (3x + 5)y′′ + (x2 + 3x + 10)y′ + (x2 + 4x + 5)y = 0

has general solution
e−x

x3

∫

ξ1

∫

ξ2

∫

0, (27)

where
∫

ξ1

∫

ξ2

∫

0 is the general solution of equation

x2y′′ + 4xy′ + (x3 + 6)y = 0 (28)

which has no Liouvillian solution. By Theorem 7,

x2ex

ξ1ξ2

∫

ξ1

∫

ξ2

∫

0

is the general solution of (17), hence

ex
∫

e−2x
∫

x2ex

ξ1ξ2

∫

ξ1

∫

ξ2

∫

0

is the general solution of (14). ✷
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Note that this approach is also suitable in the case of a nonhomogeneous equation.
Adjoint equations give convenient possibilities to parallelize the solving process. Consider

the original equation Ly = 0 together with the adjoint equation L∗y = 0 and begin to search
for particular solutions of both of them in parallel. If a particular solution of one of them is
found then we reduce the order of the equation and begin to search for particular solutions
of the new equation and its adjoint. If some branch leads to a an equation of order zero we
use formulae (25) and (18) to obtain the general solution of the original equation.

5 Concluding remarks

Call an operator L ∈ k[X] rational if Ker L has a basis in k. If in the definition of complete
factorability the factors are required to be both first-order and rational, then all our results
remain valid provided that hyperexponential solutions are everywhere replaced by solutions
in k, and that in algorithm A, in place of algorithm H an algorithm for finding solutions
in k is used. In the case when k = F (x) such algorithms are given in [Abr89b] both for
differential and for difference equations.
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