D'Alembertian Solutions of Linear Differential and Difference Equations

Sergei A. Abramov
Computer Center of
the Russian Academy of Science, Vavilova 40, Moscow 117967, Russia.
abramov@sms.ccas.msk.su

Marko Petkovšek
Department of Mathematics and Mechanics, University of Ljubljana, Jadranska 19, 61111 Ljubljana, Slovenia.
marko.petkovsek@uni-lj.si

Abstract

D'Alembertian solutions are those expressible as nested indefinite integrals resp. sums of hyperexponential functions. They are a subclass of Liouvillian solutions, and can be constructed by recursively finding hyperexponential solutions and reducing the order. Knowing d'Alembertian solutions of $L y=0$, one can write down the corresponding solutions of $L y=f$ and $L^{*} y=0$.

1 Introduction

Let k be a field of characteristic zero, X an indeterminate over k, σ a nonzero fieldendomorphism of k, and $\delta: k \rightarrow k$ a map satisfying

$$
\begin{equation*}
\delta(a+b)=\delta a+\delta b \quad \text { and } \quad \delta(a b)=\sigma(a) \delta b+\delta a b \quad \text { for any } a, b \in k \tag{1}
\end{equation*}
$$

The left skew polynomial ring given by σ and δ is the ring $(k[X],+, \cdot)$ of polynomials in X over k with the usual polynomial addition, and the multiplication given by

$$
X a=\sigma(a) X+\delta a \quad \text { for any } a \in k
$$

To avoid confusing it with the usual commutative polynomial ring $k[X]$, the left skew polynomial ring is denoted $k[X ; \sigma, \delta]$. We will denote by $\operatorname{Const}_{\sigma, \delta}(k)$ the constant subfield of k (i.e., the set of all $a \in k$ such that $\sigma(a)=a$ and $\delta a=0$).

Example 1 Let k be a differential field of characteristic 0 with derivation D. Let σ be the identity on k and take $\delta=D$. Then $k[X ; \sigma, \delta]=k[D]$, the ring of linear differential operators with coefficients in k.

Example 2 Let k be a difference field of characteristic 0 with transform (shift) E. Take $\sigma=E$ and $\delta=0$. Then $k[X ; \sigma, \delta]=k[E]$, the ring of linear difference operators with coefficients in k.

The ring $k[X ; \sigma, \delta]$ has no zero divisors and possesses a right Euclidean division algorithm. For any two nonzero polynomials $R, S \in k[X ; \sigma, \delta]$, one can compute their greatest common right divisor $\operatorname{gcrd}(R, S)$ and their least common left multiple $\operatorname{lclm}(R, S)$. For details, see [Ore33] or [Bro\&Pet94].

For $R, S \in k[X ; \sigma, \delta] \backslash\{0\}$, let $T \in k[X ; \sigma, \delta]$ be such that $\operatorname{lclm}(R, S)=T S$. Following [Koo91] we write $T=R / S$.

Definition 1 A polynomial $R \in k[X ; \sigma, \delta]$ of degree $d \geq 1$ is completely factorable if there are first-order polynomials $R_{1}, R_{2}, \ldots, R_{d} \in k[X ; \sigma, \delta]$ and $a \in k$ such that $R=a R_{1} R_{2} \cdots R_{d}$.

Theorem 1 Let $R, S \in k[X ; \sigma, \delta] \backslash\{0\}$. Then $\operatorname{deg} R / S=\operatorname{deg} R-\operatorname{deg} \operatorname{gcrd}(R, S)$. If $R=R_{1} R_{2} \cdots R_{k}$ where $R_{1}, R_{2}, \ldots, R_{k} \in k[X ; \sigma, \delta]$ are irreducible polynomials then $R / S=$ $\left(R_{1} / S_{1}\right)\left(R_{2} / S_{2}\right) \cdots\left(R_{k} / S_{k}\right)$ where $S_{k}=S$ and $S_{j-1}=S_{j} / R_{j}$, for $j=2,3, \ldots, k$.

For a proof, see [Ore33, Thm. I/16] and [Koo91, pp. 16-20].
Corollary 1 Let $R, S \in k[X ; \sigma, \delta] \backslash\{0\}$. If R is completely factorable then so is R / S.
Definition 2 Let $R, S \in k[X ; \sigma, \delta] . R$ is similar to S if $R=S / T$ for some $T \in k[X ; \sigma, \delta]$ such that $\operatorname{deg} \operatorname{gcrd}(S, T)=0$.

Theorem 2 [Ore33, Thm. II/1] Let $L \in k[X]$ be monic. If $L=R_{1} R_{2} \cdots R_{k}=S_{1} S_{2} \cdots S_{n}$ are two factorizations of L into irreducible factors then $k=n$ and the factors are similar in pairs.

Corollary 2 A monic factor of a completely factorable polynomial is completely factorable.

2 Homogeneous equations

Henceforth we limit attention to the rings of differential resp. difference operators $k[X]$ where X is D resp. E. If K is a differential resp. difference extension of k then any element $R \in k[X]$ can be viewed as acting on K, and its kernel $\operatorname{Ker} R$ is a linear space over $\operatorname{Const}_{X}(K)$. Call K adequate for R if $\operatorname{dim} \operatorname{Ker} R=\operatorname{ord} R$. It is well known that for any finite set of operators $\mathcal{R} \subseteq k[X]$ there is an extension K of k which is adequate for all $R \in \mathcal{R}$. If K is adequate for R and S then Ker $R / S=S \operatorname{Ker} R$ (cf. [Koo91]).

Definition 3 Let k be a differential resp. difference field of characteristic 0 and y an element of a differential resp. difference extension K of k. Then y is hyperexponential over k if $y \neq 0$ and $R y=0$ for some first-order operator $R \in k[X]$; and d'Alembertian over k if $R y=0$ for some completely factorable operator $R \in k[X]$.

We will denote the set of all hyperexponential elements over k by \mathcal{H}_{k}, and the set of all d'Alembertian elements over k by \mathcal{A}_{k}.

Theorem $3 \mathcal{A}_{k}$ is a linear space over Const $_{X}(K)$, for any extension K of k.

Proof: Let $a, b \in \mathcal{A}_{k}$ and $\lambda, \mu \in \operatorname{Const}_{X}(K)$. Then there are completely factorable operators R and S such that $R a=S b=0$. Since $\operatorname{lclm}(R, S)(\lambda a+\mu b)=0$ and $\operatorname{lclm}(R, S)=(R / S) S$ is completely factorable by Corollary 1 , it follows that $\lambda a+\mu b \in \mathcal{A}_{k}$.

Lemma 1 Let $L \in k[X]$. If y is hyperexponential over k then $L y=$ ay for some $a \in k$. In particular, if $L y \neq 0$ then Ly is hyperexponential. If y is d'Alembertian over k then so is Ly.

Proof: If $R y=0$ then $(R / L) L y=\operatorname{lclm}(R, L) y=(L / R) R y=0$. As ord $R / L \leq$ ord R and since by Corollary $1, R / L$ is completely factorable when R is, the Lemma follows.

Theorem 4 Let $L \in k[X]$. If the equation Ly $=0$ has a nonzero d'Alembertian solution then it also has an hyperexponential solution.

Proof: Let $a \neq 0$ and $L a=R a=0$ where $R \in k[X]$ is completely factorable. If M is a minimal operator annihilating a then M is a right-hand factor of both L and R. By Corollary $2, M$ is completely factorable. It follows that L has a first-order right-hand factor, or equivalently, that the equation $L y=0$ has an hyperexponential solution.

Assume that there is an algorithm \mathbf{H} which takes an operator $L \in k[X]$ as input and returns an hyperexponential solution of the equation $L y=0$ if it exists. In the case when k is the field of rational functions $F(x)$ over some field F of characteristic 0 such algorithms are given, e.g., in [Sin91] for differential operators, and in [Pet92] for difference operators. We show that algorithm \mathbf{H}, used recursively in combination with reduction of order, will construct a basis for the space of all d'Alembertian solutions of $L y=0$. We call this algorithm A.

Algorithm A

INPUT: A nonzero linear operator $L \in k[X]$.
OUTPUT: A basis for the space $\operatorname{Ker} L \cap \mathcal{A}_{k}$.

1. Call \mathbf{H} on $L y=0$.

If no hyperexponential solution was found then return \emptyset and stop. Otherwise let y_{1} be an hyperexponential solution of $L y=0$.
2. Let R_{1} be the monic first-order operator such that $R_{1} y_{1}=0$.

Divide L by R_{1} to obtain $L=L_{1} R_{1}$.
3. Recursively call \mathbf{A} on L_{1}. Let the output be $\left\{z_{2}, z_{3}, \ldots, z_{m}\right\}$.
4. For $i=2,3, \ldots, m$ construct solutions y_{i} of $R_{1} y_{i}=z_{i}$. Return $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ and stop.

Theorem 5 Algorithm A returns a basis for the space $\operatorname{Ker} L \cap \mathcal{H}_{1}$.

Proof: Obviously A finds a factorization $L=L_{m} R_{m} R_{m-1} \cdots R_{1}$ where ord $R_{i}=1$ and the equation $L_{m} y=0$ has no hyperexponential solution, hence by Theorem 4 no nonzero d'Alembertian solution.

We claim that $\operatorname{Ker} L \cap \mathcal{A}_{k}=\operatorname{Ker} R_{m} R_{m-1} \cdots R_{1}$. If $R_{m} R_{m-1} \cdots R_{1} a=0$ then $L a=0$. Conversely, assume that $a \in \mathcal{A}_{k}$ and $L a=0$ but $b:=R_{m} R_{m-1} \cdots R_{1} a \neq 0$. By Lemma 1, $b \in \mathcal{A}_{k}$. Since $L_{m} b=L a=0$, it follows from the previous paragraph that $b=0$, proving the claim.

It is easy to show that $R_{j} R_{j-1} \cdots R_{1} y_{j}=0$ and $R_{j-1} \cdots R_{1} y_{j} \neq 0$ for $1 \leq j \leq m$. Hence $y_{j} \in \operatorname{Ker} R_{m} R_{m-1} \cdots R_{1}=\operatorname{Ker} L \cap \mathcal{A}_{k}$ for $1 \leq j \leq m$. Let $\sum_{i=1}^{m} \alpha_{i} y_{i}=0$ where $\alpha_{i} \in \operatorname{Const}_{X}(K)$ for some extension K of k. Successively applying $R_{j} R_{j-1} \cdots R_{1}$ for $j=$ $m-1, \ldots, 1$ to both sides shows that $\alpha_{m}=\ldots=\alpha_{1}=0$. Since $\operatorname{dim} \operatorname{Ker} L \cap \mathcal{A}_{k}=$ $\operatorname{dim} \operatorname{Ker} R_{m} R_{m-1} \cdots R_{1}=m$, the set $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ is a basis for $\operatorname{Ker} L \cap \mathcal{A}_{k}$.

Let $L_{1} \in k[D]$ be a monic differential operator of order 1 . Then the general solution of equation $L_{1} y=f$ can be written as

$$
\begin{equation*}
y=h_{1} \int \frac{f}{h_{1}} \tag{2}
\end{equation*}
$$

where $h_{1} \in \mathcal{H}_{k}$ is such that $L_{1} h_{1}=0$. We write $\int u$ to denote the set of all v such that $D v=u$. Using (2) repeatedly we see that the general solution of equation $L_{n} L_{n-1} \cdots L_{1} y=f$ where $L_{n}, L_{n-1}, \ldots, L_{1} \in k[D]$ are monic first-order operators can be written as

$$
\begin{equation*}
y=h_{1} \int \frac{h_{2}}{h_{1}} \int \frac{h_{3}}{h_{2}} \ldots \int \frac{f}{h_{n}} \tag{3}
\end{equation*}
$$

where $h_{i} \in \mathcal{H}_{k}$ are such that $L_{i} h_{i}=0$.
Let $L_{1} \in k[E]$ be a monic difference operator of order 1 . Then the general solution of equation $L_{1} y=f$ can be written as

$$
\begin{equation*}
y=h_{1} \sum \frac{f}{E h_{1}} \tag{4}
\end{equation*}
$$

where $h_{1} \in \mathcal{H}_{k}$ is such that $L_{1} h_{1}=0$. We write $\sum u$ to denote the set of all v such that $\Delta v=u$ where $\Delta=E-1$. Using (4) repeatedly we see that the general solution of equation $L_{n} L_{n-1} \cdots L_{1} y=f$ where $L_{n}, L_{n-1}, \ldots, L_{1} \in k[E]$ are monic first-order operators can be written as

$$
\begin{equation*}
y=h_{1} \sum \frac{h_{2}}{E h_{1}} \sum \frac{h_{3}}{E h_{2}} \cdots \sum \frac{f}{E h_{n}} \tag{5}
\end{equation*}
$$

where $h_{i} \in \mathcal{H}_{k}$ are such that $L_{i} h_{i}=0$.
Consider the homogeneous equation

$$
\begin{equation*}
L y=0 \tag{6}
\end{equation*}
$$

where $L \in k[D]$ and ord $L=n$. It is well known that if $\varphi \in \mathcal{H}_{k}$ is a nonzero solution of (6) then the substitution

$$
\begin{equation*}
y=\varphi \int u \tag{7}
\end{equation*}
$$

leads to an $(n-1)$-st order equation for u with coefficients in k. The substitution (7) is called d'Alembert substitution connected with φ. Similarly, in the difference case the substitution

$$
\begin{equation*}
y=\varphi \sum u \tag{8}
\end{equation*}
$$

leads to an $(n-1)$-st order equation for u with coefficients in k.
Assume that the new equation is reduced again using its solution $\varphi_{2} \in \mathcal{H}_{k}$ and so on, until the last d'Alembert substitution connected with $\varphi_{r} \in \mathcal{H}_{k}$ produces an equation with no solution in \mathcal{H}_{k}. Then a subspace of solutions of (6) has been found, namely

$$
\begin{equation*}
\varphi_{1} \int \varphi_{2} \ldots \int \varphi_{r} \int 0 \tag{9}
\end{equation*}
$$

in the differential case, and

$$
\begin{equation*}
\varphi_{1} \sum \varphi_{2} \ldots \sum \varphi_{r} \sum 0 \tag{10}
\end{equation*}
$$

in the difference case. In [Abr91, Abr93a] it was shown that this subspace is independent of the choice of particular solutions φ_{i}, and that it is equal to the space of d'Alembertian solutions of (6). Furthermore, (9) and (10) correspond to a factorization

$$
\begin{equation*}
L=L_{r} R_{r} R_{r-1} \cdots R_{1} \tag{11}
\end{equation*}
$$

of L where L_{r} has no first-order right-hand factor, R_{i} are first-order operators, and if

$$
\begin{equation*}
h_{i}=\varphi_{1} \varphi_{2} \cdots \varphi_{i} \tag{12}
\end{equation*}
$$

in the differential case, or

$$
\begin{equation*}
h_{i}=E^{i-1} \varphi_{1} E^{i-2} \varphi_{2} \cdots \varphi_{i} \tag{13}
\end{equation*}
$$

in the difference case, then $R_{i} h_{i}=0$.
Example 3 Consider the equation

$$
\begin{equation*}
x y^{V}-2 y^{I V}+x(x-1) y^{\prime \prime \prime}-(x-2) y^{\prime \prime}-x^{2} y^{\prime}+x y=0 . \tag{14}
\end{equation*}
$$

Repeated d'Alembert substitution, or algorithm A, produces the space of d'Alembertian solutions

$$
\begin{equation*}
e^{x} \int e^{-2 x} \int 0 \tag{15}
\end{equation*}
$$

of (14). Alternatively, one can express the general solution of the original equation as

$$
\begin{equation*}
e^{x} \int e^{-2 x} \int g \tag{16}
\end{equation*}
$$

where g is the general solution of the third-order equation

$$
\begin{equation*}
x y^{\prime \prime \prime}-(3 x+2) y^{\prime \prime}+\left(x^{2}+3 x+4\right) y^{\prime}-\left(x^{2}+2 x+2\right) y=0 . \tag{17}
\end{equation*}
$$

which has no solution in \mathcal{H}_{k}. Nevertheless, we will demonstrate in Section 4 that by means of d'Alembertian theory, the general solution of (17) and hence of (14) can be described in terms of solutions of a second-order equation.

If the equation (6) was reduced by means of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{r}$ and the last d'Alembert substitution connected with φ_{r} produced an equation $L_{r} y=0$, then the general solution of (6) can be written as

$$
\begin{equation*}
\varphi_{1} \int \varphi_{2} \ldots \int \varphi_{r} \int g \quad \text { resp. } \quad \varphi_{1} \sum \varphi_{2} \ldots \sum \varphi_{r} \sum g \tag{18}
\end{equation*}
$$

where g is the general solution of equation $L_{r} y=0$.

3 Nonhomogeneous equations

Consider the equation

$$
\begin{equation*}
L y=f \tag{19}
\end{equation*}
$$

where $L \in k[X]$ and ord $L=n$. Let a_{n} be the leading coefficient of L.
Theorem 6 If L is completely factorable, and $\varphi_{1} \int \varphi_{2} \ldots \int \varphi_{n} \int 0$ (in the differential case), resp. $\varphi_{1} \sum \varphi_{2} \ldots \sum \varphi_{n} \sum 0$ (in the difference case) is the general solution of the homogeneous equation $L y=0$ then

$$
\begin{equation*}
\varphi_{1} \int \varphi_{2} \int \ldots \int \varphi_{n} \int \frac{f}{a_{n} \varphi_{1} \cdots \varphi_{n}} \tag{20}
\end{equation*}
$$

respectively

$$
\sum \varphi_{1} \sum \varphi_{2} \ldots \sum \varphi_{n} \sum \frac{1}{a_{n} E^{n} \varphi_{1} E^{n-1} \varphi_{2} \ldots E \varphi_{n}}
$$

is the general solution of (19).
Proof: According to (3), the general solution of (19) is

$$
y=h_{1} \int \frac{h_{2}}{h_{1}} \int \frac{h_{3}}{h_{2}} \ldots \int \frac{f}{a_{n} h_{n}}
$$

where, according to (12), $h_{i}=\varphi_{1} \varphi_{2} \cdots \varphi_{i}$. This implies (20). In the difference case, we use (5) instead of (3), and (13) instead of (12).

This approach does not require solving systems of linear algebraic equations (as does the method of variation of constants).

Example 4 Let $\left(x^{2}-1\right) y^{\prime \prime}+4 x y^{\prime}+2 y=\sin x$. The general solution

$$
\frac{x}{x^{2}-1} \int \frac{1}{x^{2}} \int 0
$$

of the corresponding homogeneous equation leads immediately to the general solution of the original equation:

$$
\frac{x}{x^{2}-1} \int \frac{1}{x^{2}} \int x \sin x=\frac{C_{1} x+C_{2}-\sin x}{x^{2}-1} .
$$

Now consider the problem of finding all d'Alembertian solutions of (19) assuming that f satisfies $M f=0$ for some $M \in k[X]$. Then $M L y=0$ for any solution y of (19). Use algorithm A to write $M L=R A$ where $A=L_{r} L_{r-1} \cdots L_{1}$ and ord $L_{i}=1$.

Proposition 1 With the above notation, equation (19) has a d'Alembertian solution if and only if $(A / L) f=0$.

Proof: If $L a=f$ and $a \in \mathcal{A}_{k}$ then $A a=0$. Hence $(A / L) f=(A / L) L a=(L / A) A a=0$. Conversely, if $(A / L) f=0$ then $f \in \operatorname{Ker} A / L=L \operatorname{Ker} A$, hence there is an $a \in \operatorname{Ker} A$ such that $f=L a$.

When $(A / L) f=0$ it is possible to construct a particular d'Alembertian solution a of (19) by expanding it into a power series around some point which is not a singularity of the equation $M L y=0$.

4 Adjoint equations

The adjoint of a linear differential operator is defined by

$$
\left(\sum_{i=0}^{n} a_{i} D^{i}\right)^{*}=\sum_{i=0}^{n}(-1)^{i} D^{i} a_{i} .
$$

It can be shown that for any $L_{1}, L_{2} \in k[D]$,

$$
\begin{equation*}
\left(L_{1}^{*}\right)^{*}=L_{1}, \quad\left(L_{1} L_{2}\right)^{*}=L_{2}^{*} L_{1}^{*} . \tag{21}
\end{equation*}
$$

The adjoint of a linear difference operator is defined by

$$
\left(\sum_{i=0}^{n} a_{i} E^{i}\right)^{*}=\sum_{i=0}^{n} E^{i} a_{n-i}
$$

when $a_{n}, a_{0} \neq 0$. Direct computation shows that for any $L_{1}, L_{2} \in k[E]$,

$$
\begin{equation*}
\left(L_{1}^{*}\right)^{*}=E^{n} L_{1}^{*} E^{-n}, \quad\left(L_{1} L_{2}\right)^{*}=\left(E^{n} L_{2}^{*} E^{-n}\right) L_{1}^{*} \tag{22}
\end{equation*}
$$

where $n=\operatorname{deg}\left(L_{1}\right)$. Hence in both cases left-hand factors of L correspond to right-hand factors of L^{*}, and vice versa.

Let $R_{1} \in k[X]$ be a monic operator of order 1 , and $h_{1} \in \mathcal{H}_{k}$ such that $R_{1} h_{1}=0$. Then it is easy to see that

$$
\begin{equation*}
L_{1}^{*} \frac{1}{h_{1}}=0 \tag{23}
\end{equation*}
$$

in the differential case, and

$$
\begin{equation*}
L_{1}^{*} \frac{1}{E h_{1}}=0 \tag{24}
\end{equation*}
$$

in the difference case.

Theorem 7 Let $L \in k[X]$, ord $L=n$, and let a_{n} be the leading coefficient of L. If $\varphi_{1} \int \varphi_{2} \ldots \int \varphi_{n} \int 0$ (in the differential case), resp. $\varphi_{1} \sum \varphi_{2} \ldots \sum \varphi_{n} \sum 0$ (in the difference case) is the general solution of equation $L y=0$ then

$$
\begin{equation*}
\frac{1}{a_{n} \varphi_{n} \varphi_{n-1} \ldots \varphi_{1}} \int \varphi_{n} \int \varphi_{n-1} \ldots \int \varphi_{2} \int 0 \tag{25}
\end{equation*}
$$

respectively

$$
\begin{equation*}
\frac{1}{a_{n} E \varphi_{n} E^{2} \varphi_{n-1} \ldots E^{n} \varphi_{1}} \sum E \varphi_{n} \sum E^{2} \varphi_{n-1} \ldots \sum E^{n-1} \varphi_{2} \sum 0 \tag{26}
\end{equation*}
$$

is the general solution of the adjoint equation $L^{*} y=0$.
Proof: According to (11),

$$
L=a_{n} R_{n} R_{n-1} \cdots R_{1}
$$

where R_{i} are monic first-order operators such that $R_{i} h_{i}=0$. In the differential case, let $R_{i}^{*} h_{i}^{*}=0$ where $h_{i}^{*}=1 / h_{i}$ as in (23). Since $L^{*}=R_{1}^{*} R_{2}^{*} \cdots R_{n}^{*} a_{n}$, the general solution of $L^{*} y=0$ is, by (3),

$$
\frac{h_{n}^{*}}{a_{n}} \int \frac{h_{n-1}^{*}}{h_{n}^{*}} \int \ldots \frac{h_{1}^{*}}{h_{2}^{*}} \int 0=\frac{1}{a_{n} h_{n}} \int \frac{h_{n}}{h_{n-1}} \int \ldots \frac{h_{2}}{h_{1}} \int 0
$$

which, using (12), gives (25).
In the difference case, $L^{*}=\left(E^{n-1} R_{1}^{*} E^{-(n-1)}\right)\left(E^{n-2} R_{2}^{*} E^{-(n-2)}\right) \cdots\left(R_{n}^{*}\right) a_{n}$. Here we use (24) instead of (23) and (5) instead of (3). We also take into account the fact that R_{i}^{*} is not monic but rather has leading coefficient equal to $-E^{2} h_{i} / E h_{i}$.

Example 5 Consider again equation (14). The adjoint equation of (17)

$$
x y^{\prime \prime \prime}+(3 x+5) y^{\prime \prime}+\left(x^{2}+3 x+10\right) y^{\prime}+\left(x^{2}+4 x+5\right) y=0
$$

has general solution

$$
\begin{equation*}
\frac{e^{-x}}{x^{3}} \int \xi_{1} \int \xi_{2} \int 0 \tag{27}
\end{equation*}
$$

where $\int \xi_{1} \int \xi_{2} \int 0$ is the general solution of equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(x^{3}+6\right) y=0 \tag{28}
\end{equation*}
$$

which has no Liouvillian solution. By Theorem 7,

$$
\frac{x^{2} e^{x}}{\xi_{1} \xi_{2}} \int \xi_{1} \int \xi_{2} \int 0
$$

is the general solution of (17), hence

$$
e^{x} \int e^{-2 x} \int \frac{x^{2} e^{x}}{\xi_{1} \xi_{2}} \int \xi_{1} \int \xi_{2} \int 0
$$

is the general solution of (14).

Note that this approach is also suitable in the case of a nonhomogeneous equation.
Adjoint equations give convenient possibilities to parallelize the solving process. Consider the original equation $L y=0$ together with the adjoint equation $L^{*} y=0$ and begin to search for particular solutions of both of them in parallel. If a particular solution of one of them is found then we reduce the order of the equation and begin to search for particular solutions of the new equation and its adjoint. If some branch leads to a an equation of order zero we use formulae (25) and (18) to obtain the general solution of the original equation.

5 Concluding remarks

Call an operator $L \in k[X]$ rational if $\operatorname{Ker} L$ has a basis in k. If in the definition of complete factorability the factors are required to be both first-order and rational, then all our results remain valid provided that hyperexponential solutions are everywhere replaced by solutions in k, and that in algorithm \mathbf{A}, in place of algorithm \mathbf{H} an algorithm for finding solutions in k is used. In the case when $k=F(x)$ such algorithms are given in [Abr89b] both for differential and for difference equations.

References

[Abr89a] S.A. Abramov (1989): Problems of computer algebra involved in the search for polynomial solutions of linear differential and difference equations Moscow Univ. Comput. Math. and Cybernet., no. 3, 63-68, transl. from Vestn. Moskov. univ. Ser. XV. Vychisl. mat. kibernet., no. 3, 56-60.
[Abr89b] S.A. Abramov (1989): Rational solutions of linear difference and differential equations with polynomial coefficients, USSR Comput. Maths. Math. Phys., vol. 29, 7-12, transl. from Zl. Vychislit. matem. mat. fiz., vol. 29, 1611-1620.
[Abr91] S.A. Abramov (1991): A problem of computer algebra connected with solving of linear differential and difference equations, Cybernetics, no. 2, 198-207, transl. from Kibernetika, no. 2, 30-37.
[Abr\&Kva91] S.A. Abramov, K.Yu. Kvashenko (1991): Fast algorithm to search for the rational solutions of linear differential equations, Proc. ISSAC'91, 267-270.
[Abr93a] S.A. Abramov (1993): On d'Alembert substitution, Proc. ISSAC'93, 20-26.
[Abr93b] S.A. Abramov (1993): D'Alembert substitution and adjoint equation (computer algebra aspect), Comput. Maths. Math. Phys. 34. In print.
[Bro92] M. Bronstein (1992): Linear differential equations: breaking though the order 2 barrier, Proc. ISSAC'92, 42-48.
[Bro\&Pet94] M. Bronstein, M. Petkovšek (1994): On Ore rings, linear operators and factorisation, Programmirovanie No. 1. To appear.
[Coh71] P. M. Cohn (1971): Free Rings and their Relations, Academic Press, London - New York.
[Gos78] R.W. Gosper, Jr. (1978): Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA 75, 40-42.
[Koo91] R.J. Kooman (1991): Convergence properties of recurrence sequence, Centrum voor Wiskunde en Informatica, CWI Tract 83, Amsterdam.
[Ore33] O. Ore (1933): Theory of non-commutative polynomials, Annals of Mathematics 34, 480-508.
[Pet90] M. Petkovšek (1990): Finding Closed-Form Solutions of Difference Equations by Symbolic Methods, Ph.D. Thesis, Carnegie Mellon University, CMU-CS-91-103, Pittsburgh, PA.
[Pet92] M. Petkovšek (1992): Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symb. Comp., vol. 14, 243-264.
[Sch89] F. Schwarz (1989): A factorization algorithm for linear ordinary differential equations, Proc. ISSAC'89, 17-25.
[Sin78] M.F. Singer (1978): Algebraic solutions of n-th order linear differential equations, Proc. 1979 Queen University Conference on Number Theory.
[Sin91] M.F. Singer (1991): Liouvillian solutions of linear differential equations with Liouvillian coefficients, J. Symb. Comp., vol. 11, 251-273.

