
Telescoping in the Context of Symbolic

Summation in Maple

S.A. Abramov a,1, J.J. Carette b, K.O. Geddes c,2, H.Q. Le c,∗,3

a Dorodnicyn Computing Centre, Russian Academy of Science,

Vavilova st. 40, 119991, Moscow, GSP-1, Russia

b Computing and Software, McMaster University, Hamilton, L8S 4L8, Canada

c Symbolic Computation Group, School of Computer Science,

University of Waterloo, Waterloo, N2L 3G1, Canada

Abstract

This paper is an exposition of different methods for computing closed forms of def-

inite sums. The focus is on recently-developed results on computing closed forms of
definite sums of hypergeometric terms. A design and an implementation of a soft-

ware package which incorporates these methods into the computer algebra system
Maple are described in detail.

1 Introduction

In order to compute closed forms of definite sums, one can apply one of at
least three methods: the classical telescoping method, the creative telescoping
method, or the conversion method. The classical telescoping method is based
on the computation of an anti-difference of the input summand T , or on the

∗ Corresponding author.
Email addresses: abramov@ccas.ru (S.A. Abramov), carette@mcmaster.ca

(J.J. Carette), kogeddes@scg.math.uwaterloo.ca (K.O. Geddes),

hqle@scg.math.uwaterloo.ca (H.Q. Le).
1 S.A. Abramov was partially supported by the French-Russian Lyapunov Institute
under grant 98-03.
2 K.O. Geddes was partially supported by Natural Sciences and Engineering Re-
search Council of Canada Grant No. RGPIN8967-01.
3 H.Q. Le was partially supported by Natural Sciences and Engineering Research

Council of Canada Grant No. CRD215442-98.

Preprint submitted to Elsevier Science 20 August 2003



construction of an additive decomposition of T ; the conversion method uses
hypergeometric series as an intermediate representation.

The creative telescoping method is principally based on Zeilberger’s algo-
rithm (Zeilberger, 1991). This method has proven itself to be a very useful tool
for computing closed forms of definite sums of hypergeometric terms which oc-
cur in many parts of mathematics including combinatorics, probability, num-
ber theory, and analysis of algorithms. Regardless of the extensive work on,
or related to Zeilberger’s algorithm (Wilf and Zeilberger (1992); Chyzak and
Salvy (1998); Chyzak (2000)), there still exist many interesting problems aris-
ing from the algorithm, and a number of them were not considered or solved
in the “classics”.

In addition to providing an outline of the three methods, this paper also in-
cludes a summary of some recent results by Abramov (2002a); Abramov and
Le (2002); Le (2001a) which supply a theoretical foundation as well as al-
gorithms to overcome, or at least alleviate, two key problems of Zeilberger’s
algorithm: (a) the limitations in the domain of applicability of Zeilberger’s al-
gorithm, and (b) the efficiency of the algorithm. The main focus of the paper,
however, is on the design of a software package which provides various tools,
based on the above-mentioned three methods, for computing closed forms of
indefinite and definite sums. For definite sums of hypergeometric terms, the
design starts with the module Telescopers for computing the minimal Z-pairs
of hypergeometric terms (Abramov and Geddes and Le, 2002). This module
forms a component of the module Hypergeometric (Abramov and Geddes and
Le, 2001), a toolbox for working with hypergeometric terms in general, and
for computing closed forms of indefinite and definite sums of hypergeometric
terms in particular. The module Hypergeometric, together with the modules
IndefiniteSum and DefiniteSum, form the main components of the mod-
ule SumTools (Abramov and Carette and Geddes and Le, 2002), a symbolic
summation toolbox in Maple (Monagan et al, 2001).

The organization of the paper is as follows. We discuss in Section 2 the classi-
cal telescoping method, and show the design of the module IndefiniteSum for
computing the anti-differences of various classes of summands. The first part
of Section 3 is essentially the work described in (Abramov and Geddes and Le,
2002). It is devoted to the design of the combination of algorithms for comput-
ing the minimal Z-pairs of hypergeometric terms. An implementation based
on this design results in the module Telescopers. A comparison between this
module and other related software packages is also given. The functions in
the module Telescopers form a component of the module Hypergeometric

which is the focus of the second part of Section 3. In Section 4 we discuss
the conversion method, and show the design of the module DefiniteSum for
finding closed forms of definite sums. The last section, Section 5, provides
the design and functional descriptions of the package SumTools. This package

2



encompasses all the modules described in previous sections.

This paper provides a substantial extension of a previous version of this paper
as presented at ICMS 2002 (Abramov and Geddes and Le, 2002). First, the
paper puts that work in the context of a specific method for computing closed
forms of definite sums of hypergeometric terms, namely the creative telescop-
ing method. Secondly, the paper includes descriptions of the design and imple-
mentation of two well-known methods: the classical telescoping method, and
the conversion method, as well as shows the combination of the three meth-
ods. The end result is the software package SumTools, a symbolic summation
toolbox in Maple.

Symbolic summation is a vast research area in computer algebra. It is necessary
to point out that our software package currently does not include implemen-
tation of all known algorithms. Various software packages on summation have
been developed (mainly in Maple and Mathematica). They include the work
on summation in difference fields (Schneider, 2001), multivariate hypergeo-
metric summation (Wegschaider, 1997), q-hypergeometric summation (Böing
and Koepf, 1999; Koornwinder, 1993; Riese, 1995), bibasic, multibasic and
mixed hypergeometric summation (Riese, 1997; Bauer and Petkovšek, 1999)
and tools for manipulation of (q-)hypergeometric series (Gauthier, 1999; Krat-
tenthaler, 1995).

Throughout the paper, K is a field of characteristic zero, C is the field of
complex numbers, Q is the field of rational numbers,Zand N denote the set of
integers and nonnegative integers, respectively. The symbols En, Ek denote the
shift operators with respect to n and k, respectively defined by EnT (n, k) =
T (n + 1, k), and EkT (n, k) = T (n, k + 1). Note that both univariate and
bivariate functions will be considered.

2 Classical telescoping

For a given function T (k) over K, the problem of indefinite summation asks if
there exists a function G(k) over K, or over some suitable extension of K, such
that (Ek − 1)G = T , and to compute such a G, provided that it exists. The
computed function G is called an anti-difference of T . Note that G is unique
up to any function C(k) such that C(k + 1) = C(k).

Consider the definite sum

b
∑

k=a

T (k), a ≤ b, b − a ∈ N. (1)

3



If an anti-difference G(k) of the summand T (k) can be computed, then by
writting out (1) in full, we have

b
∑

k=a

T (k) =
b
∑

k=a

(G(k + 1) −G(k)) = G(b + 1) − G(a).

In this case, we have computed a closed form of (1) using the classical telescop-
ing method by first computing an anti-difference G(k) of the summand T (k).
If either the non-existence within a class of functions of an anti-difference G
for the summand T is proven, or it is not known how to compute such a G,
then a plausible approach is to apply an algorithm which solves the additive
decomposition problem to decompose T in the form T (k) = (Ek − 1)T1 + T2

where T2 is simpler than T in some sense. Then the application of the classical
telescoping method to (Ek − 1)T1 results in

b
∑

k=a

T (k) = T1(b + 1) − T1(a) +
b
∑

k=a

T2(k).

2.1 Indefinite sums

There are different algorithms for computing anti-differences for different
classes of summands. Lafon’s survey (Lafon, 1983) includes treatments for
polynomials, rational functions, hypergeometric terms, and indefinite summa-
tion using extensions of function domains. In addition to the above classes,
the following methods can also be included in the set of tools for solving the
indefinite summation problem:

(1) Koepf’s extension (Koepf, 1998) of Gosper’s algorithm (Gosper, 1977) to
j-fold hypergeometric terms;

(2) The extension of Gosper’s algorithm as described in (Petkovšek and Wilf
and Zeilberger, 1996, Chap. 5) to handle sums of hypergeometric terms;

(3) The method of accurate summation as presented in Abramov and Hoeij
(1999) to handle functions whose minimal annihilators can be computed.

2.2 Additive decomposition

For a given function T (k), an algorithm which solves the additive decomposi-
tion problem (ADP) constructs two functions T1(k) and T2(k) such that

T (k) = (Ek − 1)T1(k) + T2(k) (2)

4



where T2(k) is “simpler” than T (k) in some sense. The functions T1(k) and
T2(k) are called the summable and the non-summable parts of T (k), respec-
tively. It is important that any algorithm which solves the ADP should guar-
antee that if the input function T (k) is summable, then the computed non-
summable part T2(k) returned from the algorithm should be identically zero.
It is also desirable that T1(k) is in some sense “maximal”, in other words that
if T2(k) is given to that same algorithm solving the ADP, its summable part
should be identically zero.

Let T (k) be a rational function of k. Then the ADP for T was solved
in (Abramov, 1975) (see also Abramov (1995); Paule (1995); Pirastu and Strehl
(1995)). The characteristic property of the non-summable part T2(k) is that
its denominator has the lowest degree. In this case, one can express the indef-
inite sum of T2(k) in terms of the digamma and polygamma functions, and
the problem of computing a closed form for the indefinite sum of the input
rational function T (k) is solved.

Let T (k) be a hypergeometric term in k over K (or a term for short). Recall
that the characteristic property of a term T (k) is that the ratio T (k+1)/T (k)
is a rational function of k over K. This rational function, denoted by Ck(T ),
is the certificate of T (k). A term T (n, k) in two variables n and k over K has
two certificates Cn(T ) = T (n+ 1, k)/T (n, k) and Ck(T ) = T (n, k +1)/T (n, k).
They are named the n-certificate and the k-certificate, respectively. These
certificates are rational functions of n and k over K.

Definition 2.1 (Abramov and Petkovšek, 2001b) Let R ∈ K(k)\{0}. If there
are nonzero polynomials f1, f2, v1, v2 ∈ K[k] such that

(i) R = F · EkV

V
where F =

f1

f2
, V =

v1

v2
, and gcd(v1, v2) = 1,

(ii) gcd
(

f1, E
h
kf2

)

= 1 for all h ∈Z,

then F · Ek V

V
is a rational normal form (RNF) of R.

For every rational function one can construct an RNF (Abramov and
Petkovšek, 2001b) which in general is not unique.

As presented in (Abramov and Petkovšek, 2001a, 2002), the algorithm to solve
the ADP for a term T (k) constructs two terms T1(k), T2(k) such that (2) holds,
and either T2 vanishes or Ck(T2) has an RNF

f1

f2

Ek(v1/v2)

(v1/v2)
(3)

5



with v2 of minimal degree. Any RNF of Ck(T2) of the form (3) has v2 ∈ K[k]
of the same minimal degree.

Theorem 2.1 (Abramov and Petkovšek, 2001a) Let T (k) be a term and
equality (2) be valid for some terms T1(k), T2(k). Suppose that T2(k) 6= 0.
Let (3) be an RNF of Ck(T2). Then (2) is an additive decomposition of T (k)
iff for each irreducible p from K[k] such that p | v2, the following three proper-
ties hold:

Pa : Eh
kp | v2 ⇒ h = 0, Pb : Eh

kp | f1 ⇒ h < 0, Pc : Eh
kp | f2 ⇒ h > 0.(4)

When working with terms in two variables n and k over C , we can consider n as
a parameter, and hence can construct an additive decomposition with respect
to k:

T (n, k) = (Ek − 1)T1(n, k) + T2(n, k). (5)

If (3) is an RNF with respect to k of Ck(T2) with f1, f2, v1, v2 ∈ C [n, k], then
for each irreducible factor p ∈ C [n, k] of v2, properties (4) hold. Here K is
C (n), and K(k) is C (n, k).

2.3 Implementation

The functions for computing indefinite sums are grouped together into the
package IndefiniteSum:

> print(IndefiniteSum);

module()
export Polynomial, Rational, Hypergeometric, AccurateSummation,

Indefinite, AddIndefiniteSum, RemoveIndefiniteSum;
description “indefinite sums”;
end module

The diagram in Figure 1 provides the classes of summands the package can
handle, the corresponding algorithm which handles each class, and the or-
dering of these algorithms. They include the classes of polynomials, rational
functions, hypergeometric terms, j-fold hypergeometric terms, and functions
for which minimal annihilators can be constructed, e.g., d’Alembertian terms.
The main function Indefinite, which computes an indefinite sum of a given
input expression, is a combination of the algorithms handling these classes.
The two functions AddIndefiniteSum, RemoveIndefiniteSum provide a library
extension mechanism which allows the addition and removal of closed forms of

6



indefinite sums which the existing algorithms cannot yet handle (a modified
structural pattern-matching approach is employed). Currently the summands
that can be handled in this way include expressions containing the harmonic
function, the logarithmic function, the digamma and polygamma functions,
as well as the sine, cosine and exponential functions.

Fig. 1. Indefinite sum: a flowchart

rational?

polynomial?

Abramov’s

G(k)

G(k)

Y

N

Y

N N

Extension MechanismAbramov & Hoeij’s

Y

G(k)

Koepf-Gosper’sAbramov & Petkovsek’s

hypergeometric?

Y Y

N
summable?

Y

G(k)

N

G(k) + Σ
κ

summable?summable?

G(k)

Y

N
Σ
κ

hypergeometric?
j-fold

N

T(k)

T(k)

T(k)

Example 2.1

> T := binomial(k/2+n,n)*2^(-n);

T := 2−n

(

k/2 + n

n

)

Since T is a 2-fold term in k, i.e., T (k + 2)/T (k) is a rational function of k,
Koepf’s extension to Gosper’s algorithm is used:

> Sum(T,k) = Hypergeometric(T,k);

∑

k

2−n

(

k/2 + n

n

)

=
1

2(n + 1)
2−n

(

k

(

k/2 + n

n

)

+ (k + 1)

(

k/2 + 1/2 + n

n

))

Example 2.2

> T := k^2/binomial(2*k,k)/(k^2+3*k+2);

T :=
k2

(k2 + 3k + 2)
(

2 k

k

)

7



Although the term T is not summable, it is possible to apply the algorithm
which solves the ADP to express the indefinite sum of T in terms of the
indefinite sum of a simpler term T2 which is the non-summable part of T :

> Sum(T,k) = Hypergeometric(T,k);

∑

k

k2

(k2 + 3k + 2)
(

2k

k

) =− 6k2 − 11k − 125

9 (k + 1)

k−1
∏

i=1

i

2 (2 i + 1)
+

∑

k

457k + 250

54 (k + 1)

k−1
∏

i=1

i

2 (2 i + 3)

Note that a minimal multiplicative representation of T is

k2

2 (k + 1)(k + 2)

k−1
∏

i=1

i + 1

2 (2 i + 1)
.

Example 2.3 (Abramov and Hoeij, 1999)

> T := 1/5*((1/2+1/2*5^(1/2))^k-(1/2-1/2*5^(1/2))^k)^2;

T :=





1√
5





(

1 +
√

5

2

)k

−
(

1 −
√

5

2

)k








2

The complete factored minimal annihilator for T can be constructed us-
ing (Abramov and Zima, 1997), and the application of the method of accurate
summation (Abramov and Hoeij, 1999) provides a closed form for the indefi-
nite sum of T :

> Sum(T,k) = AccurateSummation(T,k);

∑

k





1√
5





(

1 +
√

5

2

)k

−
(

1 −
√

5

2

)k








2

=

1

5
(−1)k − 1

10

(

1 +
√

5
)

(

1 −
√

5

2

)2 k

− 1

10

(

1 −
√

5
)

(

3 +
√

5

2

)k

.

Note that instead of calling a specific routine corresponding to the given class
of summands as shown in the above three examples, calling the general routine
Indefinite should yield the same answers.

Example 2.4 Let

> T := 2^(2*k-1)/k/(2*k+1)/binomial(2*k,k)+

8



> (k+1)^2*4^(k+1)/(k+2)/(k+3);

T :=
1

k (2k + 1)
22 k−1

(

2k

k

)−1

+
(k + 1)2

(k + 2)(k + 3)
4k+1

Since T is a sum of terms, the extension of Gosper’s algorithm described
in (Petkovšek and Wilf and Zeilberger, 1996, Chap. 5) is used:

> Sum(T,k) = Indefinite(T,k);

∑

k





1

k (2k + 1)
22k−1

(

2k

k

)−1

+
(k + 1)2

(k + 2)(k + 3)
4k+1



 =

− 1

k
22 k−1

(

2k

k

)−1

+
(k − 1)

3 (k + 2)
4k+1

Example 2.5

> T := sin(k)*cos(k+1)-ln(2*k);

T := sin(k) cos(k + 1) − ln(2k)

Since knowledge about the functions sin, cos, and ln is known via the library
extension mechanism, it is possible to compute a closed form for

∑

k T :

> Sum(T,k) = Indefinite(T,k);

∑

k

(sin(k) cos(k + 1) − ln(2k)) =

− 1

2

k − k cos (1)2 + cos (k)2 + 2k ln (2) sin (1) + 2 ln (Γ (k)) sin (1)

sin (1)

Consider the problem of computing an anti-difference of the hyperbolic func-
tion sinh(ak) with respect to k:
> Indefinite(sinh(a*k),k);

∑

k

sinh(ak)

The use of library extension mechanism can help Maple solve the problem.
> sumsinh := proc(f,k) local a;

> if not type(f,’sinh’(linear(k))) or

> depends(op(f)/k,k) then

> FAIL

> else

> a := op(f)/k;

9



> -sinh(a*k)/2+sinh(a)*cosh(a*k)/2/(cosh(a)-1)

> end if;

> end proc:

> AddIndefiniteSum(’sinh’,sumsinh);

> Indefinite(sinh(a*k),k);

−1/2 sinh (3k) +
sinh(3)

2 (cosh(3) − 1)
cosh(3k)

3 Creative telescoping

The method of creative telescoping can be useful when the summand T is a
function of the summation index k and of a parameter n, i.e., T = T (n, k).
If it is not clear how to construct a function G(n, k) such that G(n, k + 1) −
G(n, k) = T (n, k), then a possible approach is to construct a telescoper for T ,
in other words an operator

L = aρ(n)Eρ
n + · · · + a1(n)En + a0(n) (6)

such that for the function T̃ (n, k) = LT (n, k) a corresponding function G(n, k)
can be computed. That is,

LT (n, k) = G(n, k + 1) −G(n, k). (7)

This provides an opportunity to find closed forms of definite sums of T̃ (n, k),
where the summation bounds can be functions which depend on n. However,
we are computing the sum of T̃ (n, k), instead of T (n, k). For the definite sum

of T (n, k), the application of the operator
∑v(n)

k=u(n) to both sides of (7) results
in

aρ(n)
v(n)
∑

k=u(n)

T (n + ρ, k) + · · · + a0(n)
v(n)
∑

k=u(n)

T (n, k) = H(n) (8)

where H(n) = G(n, v(n) + 1) − G(n, u(n)). If u(n), v(n) are polynomials of
degree 1 or constants (±∞ included), then by adding to H(n) a fixed number
of terms obtained from T (n, k), one can transform (8) to a recurrence

aρ(n)f(n + ρ) + · · · + a1(n)f(n + 1) + a0(n)f(n) = H∗(n), (9)

where f(n) =
∑v(n)

k=u(n) T (n, k). This recurrence can be used for finding f(n)
(if we are able to solve it), or to prove some properties of f(n) by induction
on n.

10



The theory of creative telescoping was initially designed by Zeilberger (Zeil-
berger, 1991) for the case when the summand T (n, k) is a hypergeometric
term. In this case, the operator L of the form (6) is an element from C [n, En],
and the function G(n, k) such that (7) holds is a hypergeometric term. The
theory includes an algorithm, called Zeilberger’s algorithm or Z for short, for
computing a Z-pair (L, G) for T . It was later generalized to holonomic func-
tions by Chyzak and Salvy (1998); Chyzak (2000). It should be noted that
even for the hypergeometric case, the construction of the Z-pairs can be very
expensive. It is therefore desirable that problems related to the efficiency of Z
be solved.

3.1 When does Zeilberger’s algorithm succeed ?

For a given term T (n, k), if Z terminates in finite time given T as input, and
succeeds in computing a Z-pair for T , then we say that “Z is applicable to T ”,
or “There exists a Z-pair for T ”.

Definition 3.1 A polynomial α(n, k) ∈ C [n, k] is integer-linear if it has the
form a n + b k + c where a, b ∈Zand c ∈ C .

Definition 3.2 (Petkovšek and Wilf and Zeilberger, 1996; Wilf and Zeil-
berger, 1992) A term T (n, k) is proper if it can be written in the form

P (n, k)

∏l
i=1 Γ(αi(n, k))

∏m
i=1 Γ(βi(n, k))

unvk, (10)

where αi(n, k), βi(n, k) are integer-linear, l, m ∈ N, u, v ∈ C , and P (n, k) ∈
C [n, k].

The question of whether Z is applicable to a term T was not conclusively
answered for quite some time, although a sufficient condition was known via
the “fundamental theorem” (Petkovšek and Wilf and Zeilberger, 1996; Wilf
and Zeilberger, 1992) which states that if T (n, k) is proper, then there exists
a Z-pair for T . The following theorem provides a necessary and sufficient
condition for the termination of Z.

Theorem 3.1 (Abramov, 2002a) Let T (n, k) be a term in n and k, and (5)
be an additive decomposition of T with respect to k. Let (3) be an RNF with
respect to k of Ck(T2) with v2 ∈ C [n, k]. Then a Z-pair for T (n, k) exists iff
each factor of v2(n, k) irreducible in C [n, k] is integer-linear.

For a given polynomial f(n, k) ∈ C [n, k], a decision procedure for the fac-
torability of f into integer-linear polynomials is described in (Abramov and

11



Le, 2000). This procedure does not require a complete factorization of f into
irreducible factors.

3.2 Efficient algorithms for computing the minimal Z-pairs

Let T (n, k) be a term. In this section we assume that Z is proven applicable
to T. The algorithm uses an item-by-item examination on the order ρ of the
telescopers L. It starts with the value of 0 for ρ and increases ρ until it is
successful in finding a Z-pair (L, G) for T . Since the computed telescoper is of
minimal possible order, it is called the minimal telescoper, and the computed
Z-pair is called the minimal Z-pair. Note that it is not necessarily true that
the recurrence (9) obtained by summing both sides of (7) over k is of minimal
possible order (Paule and Schorn, 1995).

Let ρ be the order of the minimal telescoper for T, then Z simply wastes re-
sources trying to compute a Z-pair where the guessed orders of the telescopers
are less than ρ.

For the case where T is also a rational function of n and k (the class of
rational functions is a proper subset of the class of terms), there exists a
direct algorithm (Le, 2001a, 2003) which constructs the minimal Z-pair for T
efficiently without using item-by-item examination. For the case where T is a
non-rational term, there exists an algorithm (Abramov and Le, 2002) which
computes a lower bound µ for the order of the telescopers for T. This helps
avoid the time to compute a telescoper of order less than µ.

3.2.1 A direct algorithm for the rational case

Let T (n, k) ∈ C (n, k). Consider an additive decomposition of T with respect
to k of the form (5). First one constructs a special representation for the
non-summable part T2 as stated in the following theorem.

Theorem 3.2 (Le, 2001a) Set

T2 =
t
∑

i=1

mi
∑

j=1

rij(n)

(ain + bik + ci)j
, ai, bi ∈Z, bi > 0, gcd(ai, bi) = 1, ci ∈ C ,(11)

rij(n) ∈ C (n). Then T2(n, k) can be represented in the form

M1F1 + · · · + MsFs, (12)

12



where each Mi ∈ C (n)[En, Ek, E
−1
k ], each Fi = 1/(ain+bik+ci)

mi is such that
ai, bi ∈ Z, bi > 0, gcd(ai, bi) = 1, ci ∈ C , mi ∈ N \ {0}, and for all i 6= j, at
least one of the following four relations is not satisfied:

mi = mj, ai = aj, bi = bj, ci − cj ∈Z\ {0}.

T2 can be written in the form (11) since Z is assumed to be applicable to T.
Once the representation (12) is constructed, one can compute the minimal
telescopers for each MiFi ∈ C (n, k) directly and efficiently. The minimal Z-
pair for T2(n, k), and subsequently for T (n, k), can then be constructed using
Least Common Left Multiple computation. This direct algorithm is in general
more efficient than the original Z.

3.2.2 Computation of a lower bound for the general hypergeometric case

Let T (n, k) be a non-rational term. Consider an additive decomposition of T
with respect to k of the form (5). Since the minimal telescopers for T and its
non-summable part T2 are the same, the focus is shifted to computing a lower
bound for the order of the telescopers for T2. Let an RNF with respect to k
of Ck(T2) be of the form (3). For each irreducible p such that p | v2, the three
properties Pa, Pb, Pc in (4) hold.

Definition 3.3 (Abramov and Le, 2002) Let M ∈ C [n, En] be such that

MT2 6= 0, and there exists an RNF F ′EkV ′

V ′
, V ′ =

v′
1

v′
2

of Ck(MT2) such that

each of the irreducible factors of v′
2 does not have at least one of the three

properties Pa, Pb, Pc. Then M is a crushing operator for T2. The minimal
crushing operator is a crushing operator of minimal order.

It is simple to show that if L is a telescoper for T2, then L is also a crushing
operator for T2. Hence, the problem of computing a lower bound for the order
of the telescopers for T2 is reduced to the problem of computing a lower bound
for the order of the minimal crushing operator for T2.

Theorem 3.3 (Abramov and Le, 2002) Let Ck(T2) have an RNF with re-
spect to k F (EkV )/V of the form (3), f1, f2, v1, v2 ∈ C [n, k], and D =
d1(n, k)/d2(n, k), d1, d2 ∈ C [n, k], be such that Cn(T2) = D(EnV )/V. Let there
exist a crushing operator for T2 of order ρ. Then for each integer-linear factor
p of v2, degk p = 1, there exists an integer h such that

Eh
k p |Env2 · E2

nv2 · · ·Eρ
nv2 · d2 · End2 · · ·Eρ−1

n d2. (13)

As a consequence, if ρp is the minimal positive value of ρ such that there exists
an h satisfying (13), then the order of any crushing operator for T2 is not less
than µ = maxp | v2

ρp.

13



Since Z is assumed to be applicable to the input term T (n, k), it follows
from Theorem 3.1 that the polynomial v2 ∈ C [n, k] factors into integer-linear
polynomials. By (Abramov and Petkovšek, 2001c), the polynomial d2 ∈ C [n, k]
in Theorem 3.3 also factors into integer-linear polynomials. An algorithm,
called LowerBound, which realizes Theorem 3.3 is described in (Abramov and
Le, 2002). Once each of the two polynomials v2, d2 is written as a product of
integer-linear polynomials (this does require a complete factorization of monic
univariate polynomials into irreducible factors, see (Le, 2001a)), the algorithm
is reduced to solving bivariate linear diophantine equations, a very inexpensive
operation.

3.3 Implementation

3.3.1 Construction of the minimal Z-pairs

The algorithms presented in this section, when combined with the original Z,
provide us with a design of a group of functions for computing minimal Z-pairs
for terms. The diagram in Figure 2 shows a sketch of the design.

Fig. 2. Algorithms for computing minimal Z-pairs

T(n,k)
Applicable?

N

ERROR

Y Y
Rational?

N

Lower Bound

Zeilberger’s

(L,G)

Direct Algorithm (L,G)

In our implementation, this group of functions forms the module Telescopers:

> print(Telescopers);

module()
export AdditiveDecomposition, IsZApplicable, ZpairDirect, LowerBound,

Zeilberger, MinimalZpair;
option package;
description “Algorithms for computing minimal Z-pairs for terms”;
end module

The exported variables indicate the functions that are accessible to users. They
have the following descriptions:

14



(1) AdditiveDecomposition(T, k) computes an additive decomposition of the
term T in k. The output is a list of two elements [T1, T2] representing the
two terms T1, T2 in an additive decomposition of T ;

(2) IsZApplicable(T, n, k) returns true if Z is applicable to the term T (n, k),
false otherwise;

(3) ZpairDirect(R, n, k, En) computes the minimal Z-pair for the rational
function R(n, k) using the direct algorithm. The output is a list of two
elements [L, G] representing the minimal Z-pair (L, G) for R, or an error
message if it is proven that Z is not applicable to R;

(4) LowerBound(T, n, k) returns µ ∈ N which is the computed lower bound
for the order of the telescopers for the term T (n, k), or an error message
if it is proven that Z is not applicable to T ;

(5) Zeilberger (T, n, k, En) returns a list of two elements [L, G] representing
the minimal Z-pair (L, G) for the input term T (n, k). This is an imple-
mentation of the original Z. Note that an upper bound ρ for the order of
the telescopers for T (n, k) needs to be specified in advance (the default
value is 6). The function returns an error message if no telescoper of order
less than or equal to ρ exists.

The main function of the module is MinimalZpair. It has the calling sequence
“MinimalZpair(T, n, k, En)” where T is a term in n and k, and En denotes the
shift operator with respect to n. This function follows the design as sketched
in Figure 2. For an input term T (n, k), the execution steps can be described
as follows.

1. determine the applicability of Z to T ;
2. if it is proven in step 1 that a Z-pair for T does not exist, return the con-

clusive error message “There does not exist a Z-pair for T ”; Otherwise,
a. if T is a rational function of n and k, apply the direct algorithm to compute

the minimal Z-pair for T ;
b. T is a non-rational term. First compute a lower bound µ for the order of

the telescopers for T. Then compute the minimal Z-pair using the original
Z with µ as the starting value for the guessed orders.

For case 2b, let (T1, T2) be an additive decomposition of T with respect to
k. Since the non-summable part T2 is simpler than T in some sense, we first
apply Z to T2 to obtain the minimal Z-pair (L, G) for T2. It can be shown
that (L, LT1 + G) is the minimal Z-pair for the input term T .

Example 3.1 This example is a comparison between the original Z and the
direct algorithm (case 2a of MinimalZpair). The test samples are the same
as those used in Example 5 in Le (2001a). Three sets of tests (S1,S2,S3),
each of which consists of 20 rational functions of n and k, were randomly
generated. Each rational function is generated to be of the form (12), but is
given to the algorithm with numerator and denominator in expanded form.

15



We ran MinimalZpair, Zeilberger (denoted by M and Z respectively) on
these tests, and collected resource requirements 4 . We also enforced a limit of
2,000 seconds on each input rational function in the tests. Note that we only
recorded the time and space requirements for the tests that ran under this
time limit.

Table 1 shows the time and space requirements for tests S1, S2 and S3.

Table 1
Time and space requirements for MinimalZpair and Zeilberger.

Completed Timing (seconds) Memory (kilobytes)

M Z M Z M Z

S1 20 15 12.15 3127.84 54,159 8,095,930

S2 20 18 12.43 2635.94 54,653 7,873,146

S3 20 0 959.07 – 3,864,026 –

Example 3.2 Consider the term

T (n, k) =
1

nk + 1

(

2n

2k

)

.

It takes LowerBound 0.62 seconds and 3,045 kilobytes to return the error mes-
sage “Error, (in LowerBound) Zeilberger’s algorithm is not applicable”. The
function recognizes that the polynomial v2(n, k) in Theorem (3.1) is (nk+1)
which does not factor into a product of integer-linear polynomials, and re-
turns the conclusive answer quickly. On the other hand, it takes Zeilberger
33.95 seconds and 166,396 kilobytes to return the error message “Error, (in
Zeilberger) No recurrence of order 6 was found”. The function does not know
if a Z-pair for T exists. It tries to compute one and returns an inconclusive
answer. Since there does not exist a Z-pair for T, the higher the value of the
upper bound for the order of L is set, the more time and memory are wasted.

Example 3.3 For b ∈ N \ {0}, j ∈ {1, 3}, let

T1 =
1

(nk − 1)(n − bk − 2)j(2n + k + 3)!
, T2 =

1

(n − bk − 2)(2n + k + 3)!
.

Consider the term T (n, k) = (Ek − 1)T1(n, k) + T2(n, k). This example is a
comparison between Zeilberger and case 2b of MinimalZpair. The computed
lower bound for the order of the telescopers is b, while the order of the minimal
telescoper is b+1. Let µ ∈ N be the starting value for the guessed order of the
telescopers. Recall that the function Zeilberger applies Z to the input term T

4 All the reported timings were obtained on a 400Mhz SUN SPARC SOLARIS with

1Gb RAM.

16



with µ = 0, while MinimalZpair applies Z to the non-summable term T2 in the
decomposition (5) with µ = b. Table 2 shows the time and space requirements.
As one can easily notice, as b and/or j increase, the relative performance of
Zeilberger (compared to MinimalZpair) quickly worsens.

Table 2
Time and space requirements of MinimalZpair and Zeilberger.

Timing (seconds) Memory (kilobytes)

j b MinimalZpair Zeilberger MinimalZpair Zeilberger

1 6.49 5.35 27,838 24,702

2 8.34 34.64 33,066 142,889

1 3 11.13 124.53 44,233 535,736

4 14.46 570.02 56,410 1,882,730

5 25.79 2999.22 97,506 6,536,309

1 14.64 16.40 62,566 73,830

2 17.24 228.59 68,304 770,529

3 3 20.15 1,286.51 78,701 3,074,051

4 24.08 8,771.08 91,844 10,766,646

5 38.60 77,663.68 139,823 33,423,168

3.4 A comparison

There exist different Maple implementations of Z such as Zeil in the EKHAD
package (Petkovšek and Wilf and Zeilberger, 1996), sumrecursion in the sum-
tools package (Koepf, 1998), SummandToRec in the HYPERG package (Gau-
thier, 1999). A Mathematica implementation (the function Zb) is described
in (Paule and Schorn, 1995). These programs are in principle equivalent to
the program Zeilberger in the module Telescopers. They do not include an
implementation of the criterion for the applicability of Z.

For the case where the input is a rational function, a program such as Zb
“accepts an input if the irreducible factors of the denominator are integer-
linear” (Paule and Schorn, 1995). This is equivalent to the condition that the
input be a proper term. By Theorem 3.1, such a program prevents the com-
putation of a Z-pair when such a pair exists. Note that we also implemented
in the program MinimalZpair a direct and efficient algorithm to compute the
minimal Z-pairs.

For the case where the input T (n, k) is a non-rational term, all the aforemen-
tioned programs apply Z directly to T. On the other hand, MinimalZpair first

17



computes a lower bound µ for the order of the telescopers (a fairly low-cost op-
eration), and then applies Z to the term T2 in the additive decomposition (5)
using µ as the starting value for the guessed orders of the telescopers (note
that the existence of a Z-pair is guaranteed). The minimal Z-pair for T can
then be easily obtained. Experimentation shows that this proposed approach
helps expedite the construction of the minimal Z-pairs.

3.4.1 The Maple package Hypergeometric

The package Hypergeometric provides tools for working with terms in gen-
eral, and for finding closed forms of indefinite and definite sums of terms in
particular. It includes the Telescopers package.

> print(Hypergeometric);

module()
export IsHypergeometricTerm, AreSimilar, PolynomialNormalForm,

RationalCanonicalForm, MultiplicativeDecomposition,
AdditiveDecomposition, Gosper, ExtendedGosper, Zeilberger,
ZeilbergerRecurrence, IsZApplicable, KoepfGosper, KoepfZeilberger,
ExtendedZeilberger, ZpairDirect, LowerBound, MinimalZpair,
ConjugateRTerm, WZMethod, IndefiniteSum, DefiniteSum;

option package;
description “Tools for working with hypergeometric terms”;
end module

The module consists of three main components.

(1) The first component includes functions for computing normal forms
of rational functions and of terms: PolynomialNormalForm, Ratio-
nalCanonicalForm, MultiplicativeDecomposition, and AdditiveDecomposi-
tion. See (Abramov and Geddes and Le, 2001) for functional specifications
of these functions;

(2) The second component includes functions for indefinite and definite sums
of terms. For indefinite sums, they are Gosper, KoepfGosper, Extended-
Gosper, and AdditiveDecomposition, and are described in Section 2.3.
For definite sums, in addition to the functions as described in 3.3.1, the
function ZeilbergerRecurrence is also included in the set of tools for def-
inite sums of terms. ZeilbergerRecurrence(T, n, k, f, l..u) constructs the
induced recurrence for the definite sum f(n) =

∑u
k=l T (n, k) where T is

a term in n and k;
(3) The functions in the first two components, when combined with the exist-

ing functions of the Maple system, allow one to compute closed forms of
indefinite and definite sums of terms. The two functions in the third com-
ponents are IndefiniteSum and DefiniteSum. IndefiniteSum is described

18



in 3.3.1. DefiniteSum has the calling sequence DefiniteSum (T, n, k, l..u).
The function tries to compute a closed form of the definite sum f(n) =
∑u

k=l T (n, k) where T (n, k) is a term in n and k. The four types of definite
sums supported are

un+v
∑

k=rn+s

T (n, k),
∞
∑

k=rn+s

T (n, k),
un+v
∑

k=−∞

T (n, k),
∞
∑

k=−∞

T (n, k), r, s, u, v ∈Z.

The diagram in Figure 3 shows the combination of algorithms for computing
closed forms of definite sums of terms.

Fig. 3. Definite sums of hypergeometric terms

Minimal Z-pair (L,G)?

Hoeij’s

Abramov & Zima’s

Y

N

Success?
Y

N

k=a(n)
Σ

b(n)

T(n,k)
f(n)

T(n,k)

The combination of Z and Petkovšek’s algorithm Hyper (Petkovšek, 1992)
plays an important role in the study of definite sums of terms. For a given
term T (n, k), we are interested in knowing if there exists a closed form of
∑b(n)

k=a(n) T (n, k). By closed form, we mean the sum can be expressed as a
linear combination of a fixed number of terms. First, the application of Z to
T (n, k) yields a linear recurrence operator L ∈ C [n, En] of the form (6) and a
term G(n, k) such that relation (7) holds. By summing both sides of (7) over a
specified range of k, we obtain in general an inhomogeneous linear recurrence
equation with polynomial coefficients of the form (9). As an example, let

f(n) =
un+v
∑

k=rn+s

T (n, k), r, s, u, v ∈Z.

Then (9) becomes

ρ
∑

i=0

ai(n)f(n + i)=G(n, un + v + 1) − G(n, rn + s) + (14)

ρ
∑

i=0

ai(n)





rn+s−1
∑

k=rn+s+ri

T (n + i, k) +
un+v+ui
∑

k=un+v+1

T (n + i, k)



 .

Hyper now comes into play (see also (Hoeij, 1999)). If the recurrence (9) has
a solution f(n) which is a linear combination of a fixed number of terms in
n, then Hyper will find such a solution, otherwise it returns the message “No

19



such solution exists.” It is not surprising that closed forms of many sums with
binomial coefficients as summands in (Gould, 1972; Riordan, 1968) can be
obtained by first using Z, and then Hyper.

Example 3.4 (Riordan, 1968, Ex. 11, p. 164) Let T be the hypergeometric
term
> T := binomial(2*n,2*k)^2;

T :=

(

2n

2k

)2

Then

> Sum(T,k=0..n) = DefiniteSum(T,n,k,0..n);

n
∑

k=0

(

2n

2k

)2

=
1

2

4n

(

Γ
(

2n + 1
2

)√
π + (−1)

n
Γ
(

n + 1
2

)2
)

√
πΓ

(

n + 1
2

)

Γ (n + 1)

Note that we can enlarge the domain of closed forms by including
d’Alembertian terms – a d’Alembertian term can be described as nested in-
definite sums of hypergeometric terms, or equivalently, as a term which is
annihilated by a product of first-order difference operators (see Abramov and
Zima (1996)). The function DefiniteSum can handle this case as well.

4 Definite summation

In addition to the classical and the creative telescoping methods, it is a stan-
dard practice to have a front-end, principally based on a pattern-matching
approach, to recognize certain specific types of definite sums. We also employ
another quite powerful method: the conversion method which is a combination
of both algorithmic and pattern-matching approaches.

4.1 The conversion method

For a given definite sum, the conversion method consists of two steps:

(1) conversion of the given definite sum to an expression involving hyperge-
ometric series. See, for example, the hypergeometric series lookup algo-
rithm from (Petkovšek and Wilf and Zeilberger, 1996, Chap. 3),

(2) conversion of the hypergeometric series produced in step (1) to stan-
dard special and elementary functions. Examples of these standard func-
tions include Bessel functions, Legendre functions, and elliptic integrals.

20



The process is a combination of the algorithmic approach as developed
in (Roach, 1996) and a pattern-matching approach from a hypergeometric
database such as (Prudnikov and Brychkov and Marichev, 1990).

4.2 Implementation

The package DefiniteSum consists of functions for computing closed forms of
definite sums:

> print(SumTools:-DefiniteSum);

module()
export Telescoping, CreativeTelescoping, pFqToStandardFunctions, Definite;
description “definite sums”;
end module

The exported functions Telescoping, CreativeTelescoping, pFqToStandard-
Functions compute closed forms of definite sums using the classical telescoping
method, the creative telescoping method, and the conversion method respec-
tively. The main function Definite is the combination of these methods with
the ordering as shown in Figure 4.

Fig. 4. Definite sum: a flowchart

pFq -> std func.

summable? summable? summable?

G(n)
k=a(n)

b(n)

N

Y

N

Y Y

N

Σ

Telescoping Creative Telescoping

T(n,k)

T(n,k)

Example 3.4 illustrates the use of the creative telescoping method for comput-
ing closed forms of definite sums. We now provide some examples of definite
sums whose closed forms are computed using other methods.

Example 4.1 Let

21



> T := (2+k)^(k-2)*(1+n-k)^(n-k)/(k!*(n-k)!);

T :=
(2 + k)

k−2
(1 + n − k)

n−k

k! (n − k)!

Consider the problem of computing a closed form of f(n) =
∑n

k=0 T . The front-
end (based on a pattern-matching approach) recognizes that the summand is
of Abel’s type, and hence a closed form for f(n) is computed as:

> Sum(T,k=0..n) = Definite(T,k=0..n);

n
∑

k=0

(2 + k)k−2 (1 + n − k)n−k

k! (n − k)!
=

1

4

(3 + n)n

n!
− 1

6

(3 + n)n−1

(n − 1)!

Example 4.2

> T := binomial(2*n-2*k,n-k)*2^(4*k)*

((2*k)*(2*k+1)*binomial(2*k,k));

T :=
1

2

(

2 n−2 k

n−k

)

24 k

k (2k + 1)
(

2 k

k

)

Since T is summable with respect to k, a closed form of
∑n

k=1 T can be com-
puted using the classical telescoping method:

> Sum(T,k=1..n) = Definite(T,k=1..n);

n
∑

k=1

1

2

(

2n−2 k

n−k

)

24 k

k (2k + 1)
(

2 k

k

) = 4
(2n − 1)

(

2 n−2
n−1

)

2n + 1

Example 4.3 Let

> T := 2^(2*k)/Pi^(1/2)*GAMMA(k-n)*GAMMA(k+n)/GAMMA(2*k+1)*z^k;

T :=
22 k Γ (k − n) Γ (k + n) zk

√
π Γ (2k + 1)

In order to compute a closed form of f(n) =
∑∞

k=0 T , the func-
tion Definite uses the conversion method by first converting f(n) to
(−√

π/(sin(π n)n) 2F1(n,−n; 1/2; z), which is then converted to standard
functions:

> Sum(T,k=0..infinity) = Definite(T,k=0..infinity);

∞
∑

k=0

22 k Γ (k − n) Γ (k + n) zk

√
π Γ (2k + 1)

= −
√

π cos (2n arcsin (
√

z)) csc (π n)

n

22



5 The SumTools package

Computing a closed form of a sum is one of the basic operations in general
computer algebra systems such as Maple, Mathematica, Macsyma, MuPAD.
We propose in this section a re-design of summation in Maple. The focus is on a
smooth integration of independent blocks of code, and on the implementation
of recently-developed algorithms. Its design is based on four requirements:
applicability, simplicity, extensibility, and performance.

5.1 Non-functional requirements

(1) Applicability. The package should cover a wide range of (potentially
overlapping) algorithms which handle various classes of summands. If a
sum is both (1) present in some form in a standard text covering summa-
tion, and (2) can be summed by a published algorithm, then this package
should succeed in computing a closed form for that case.

(2) Simplicity. The output of the main entry points for summation
(DefiniteSummation and IndefiniteSummation) for the package
should be as simple as possible. Simplicity is expected to be defined
externally to this package, but also to be a concept compatible with
summation.

(3) Extensibility. New algorithms should be easy to incorporate into this
package. As well, choosing the ordering in which to insert new algorithms
should be objectively decidable. For example, assuming algorithms are
known for them, it should be simple to add new code for implementing
the many formulas that appear in large collections such as those in Gould
(1972); Riordan (1968); Prudnikov and Brychkov and Marichev (1990).

(4) Performance. The algorithms for any given class of summands should
be the most efficient ones known. Performance benchmarks to verify that
each class of summands is summed in the appropriate complexity class
need to be built.

Note that a number of these requirements are opposites. For example, sim-
plicity and performance are often incompatible. Thus compromises have to be
made to balance out these requirements against one another. These natural-
sounding requirements actually have some deep implications for various as-
pects of the implementation. For instance, extensibility and applicability im-
ply a high level of uniform modularization of the algorithms, as well as a
control structure which is quite extensible. In other words, although opera-
tionally Figure 1 and Figure 4 describe the current control flow, the actual
control structure cannot be so hard-coded. Another point is that there needs
to be a precise design philosophy carefully documented, so as to guide future

23



developers in how to decide objectively where their new algorithms should be
inserted into the existing scheme.

5.2 Functional description

The package SumTools exports three functions and three sub-packages:

> print(SumTools);

module()
export Hypergeometric, IndefiniteSum, DefiniteSum,

IndefiniteSummation, DefiniteSummation, Summation;
local Preprocess, Tools, LimitRootOf, Floats;
option package;
description “summation tools”;
end module

The three exported functions are IndefiniteSummation, DefiniteSummation,
and Summation. IndefiniteSummation(f, k) computes a closed form of an in-
definite sum of f with respect to k; DefiniteSummation(f, k = m..n) computes
a closed form of the definite sum of f over the specified range m..n of the sum-
mation index k; Summation(f, k) or Summation(f, k = m..n) handles both
indefinite and definite sums.

The sub-packages IndefiniteSum, Hypergeometric, and DefiniteSum are
described in Sections 2, 3, and 4, respectively.

5.3 Code structure and dependency

Figure 5 shows code structure and code dependency of the package SumTools.
The Preprocess function classifies the given sum into one of the two types (in-
definite or definite). Each type is handled by the corresponding independent
sub-module. This allows easy extensibility of functionalities. The integrability
of the package as a whole is shown by the dependency of the sub-modules:
Hypergeometric provides functionalities, while Tools provides various aux-
iliary tools to IndefiniteSum and DefiniteSum; Extensibility provides a
library extension mechanism to IndefiniteSum which in turn provides func-
tionality to DefiniteSum.

24



Fig. 5. SumTools package: code structure and code dependency

Extensibility

. . .

. . .

IndefiniteSum

Tools

Polynomial.mm

Rational.mm

Hypergeometric.mm

AccurateSummation.mm

Indefinite.mm

Harmonic.mm

Ln.mm

Polygamma.mm

SinCosExp.mm

ArgumentList.mm

FindSubs.mm

Singular.mm

CheckEndPoint.mm

DefiniteSum.mm

IndefiniteSum.mm

IndefiniteSum.mm Summation.mm DefiniteSum.mm

Hypergeometric

DefiniteSum

FrontEnd.mm

Telescoping.mm

CreativeTelescoping.mm

Definite.mm

Preprocess.mm

pFqToStandardFunction.mm

5.4 Testing

The goal is to include as many tests from different sources as possible. We
have prepared a number of tests. Many of them are taken from Gould (1972);
Riordan (1968). For the indefinite case, 618 summands are tested: 30 polyno-
mials, 60 rational functions, 477 hypergeometric terms, and 51 others used for
accurate summation. For the definite case, 177 summands are used to test the
three main methods.

5.5 Remarks on the package

We have presented in this section a design and implementation of the SumTools
package. When the package is completed, the function Summation is expected
to replace the current command sum in Maple. In terms of functionality, the
package includes algorithms for accurate summation and of additive decom-
position of hypergeometric terms for the indefinite case, as well as the inte-
gration of the sub-package SumTools:-Hypergeometric and of the function
convert/StandardFunctions (used in the conversion method) for the definite
case. These algorithms are not implemented or not incorporated in the current
sum (as of Maple 9).

25



Although the code structure is new, we should stress that we re-use good
pieces of code written by various Maple developers throughout many years.
Hence, this work is a collective contribution of many Maple developers. Of
equal importance, the design also focuses on integrability and extensibility.
This hopefully will help with the maintenance and future development.

References

S.A. Abramov (1975). Rational component of the solutions of a first-order
linear recurrence relation with a rational right-hand side. USSR Comput.
Math. Phys., Transl. from Zh. vychisl. mat. mat. fyz. 14, 1035–1039.

S.A. Abramov (1995). Indefinite sums of rational functions. Proc. Int. Symp.
on Symbolic and Algebraic Computation (ISSAC 1995), Montreal, Canada,
ACM Press, 303–308.

S.A. Abramov (2002). Applicability of Zeilberger’s algorithm to hypergeomet-
ric terms. Proc. Int. Symp. on Symbolic and Algebraic Computation (ISSAC
2002), Lille, France, ACM Press, 1–7.

S.A. Abramov (2002). When does Zeilberger’s algorithm succeed? Advances
in Applied Mathematics 30 424–441.

S.A. Abramov, J.J. Carette, K.O. Geddes, H.Q. Le (2002). Symbolic summa-
tion in Maple. Technical Report CS-2002-32, School of Computer Science,
University of Waterloo, Ontario, Canada.

S.A. Abramov, K.O. Geddes, H.Q. Le (2002). Computer algebra library for
the construction of the minimal telescopers. In A.M. Cohen, X. Gao, N.
Takayama, Eds., International Congress of Mathematical Software, World
Scientific, 319–329.

S.A. Abramov, K.O. Geddes, H.Q. Le (2001). HypergeometricSum: a Maple
package for finding closed forms of indefinite and definite sums of hyper-
geometric type. Technical Report CS-2001-24, School of Computer Science,
University of Waterloo, Ontario, Canada.

S.A. Abramov, M.v. Hoeij (1999). Integration of solutions of linear functional
equations. Integral Transformations and Special Functions, 8, No. 1-2, 3–12.

S.A. Abramov, M. Petkovšek (2001a). Minimal decomposition of indefinite
hypergeometric sums. Proc. Int. Symp. on Symbolic and Algebraic Compu-
tation (ISSAC 2001), London, Canada, ACM Press, 7–14.

S.A. Abramov, M. Petkovšek (2001b). Canonical representations of hyper-
geometric terms. Proc. Formal Power Series and Algebraic Combinatorics
(FPSAC 2001), Arizona, U.S.A., 1-10.

S.A. Abramov, M. Petkovšek (2001c). Proof of a conjecture of Wilf and Zeil-
berger. Preprint Series of the Institute of Mathematics, Physics and Me-
chanics 39, 2001, no. 748, Ljubljana, March 9, 2001.

S.A. Abramov, M. Petkovšek (2002). Rational normal forms and minimal de-
compositions of hypergeometric terms. J. Symb. Comput. 33, No. 5, 521–

26



543.
S.A. Abramov, H.Q. Le (2002). A lower bound for the order of telescopers for

a hypergeometric term. Proc. Formal Power Series and Algebraic Combi-
natorics (FPSAC 2002), Sydney, Australia, CD.

S.A. Abramov, H.Q. Le (2000). Applicability of Zeilberger’s algorithm to ra-
tional functions. Proc. Formal Power Series and Algebraic Combinatorics
(FPSAC 2000), Moscow, Russia, Springer–Verlag LNCS, 91–102.

S.A. Abramov, E.V. Zima (1996). D’Alembertian solutions of inhomogeneous
linear equations (differential, difference, and some other). Proc. Int. Symp.
on Symbolic and Algebraic Computation (ISSAC 1996), Zürich, Switzerland,
ACM Press, 232–240.

S.A. Abramov, E.V. Zima (1997). Minimal completely factorable annihilators.
Proc. Int. Symp. on Symbolic and Algebraic Computation (ISSAC 1997),
Maui, Hawaii, USA, ACM Press, 290–297.

A. Bauer, M. Petkovšek (1999). Multibasic and mixed hypergeometric Gosper
type algorithm. J. Symb. Comput. 28, 711–736.

H. Böing, W. Koepf (1999). Algorithms for q-hypergeometric summation in
computer algebra. J. Symb. Comput. 11, 1–23.

F. Chyzak, B. Salvy (1998). Non-commutative elimination in Ore algebras
proves multivariate identities. J. Symb. Comput. 26, no. 2, 187–227.

F. Chyzak (2000). An extension of Zeilberger’s fast algorithm to general holo-
nomic functions. Discrete Mathematics 217 no. 1-3, 115-134.

B. Gauthier (1999). HYPERG, Maple package, user’s reference manual. Ver-
sion 1.0, http://www-igm.univ-mlv.fr/~gauthier/HYPERG.html.

R.W. Gosper, Jr. (1977). Decision procedure for indefinite hypergeometric
summation. Proc. Natl. Acad. Sci. USA 75, 40–42.

H.W. Gould (1972). Combinatorial identities. Morgantown, W. Va.
M.v. Hoeij (1999). Finite singularities and hypergeometric solutions of linear

recurrence equations. Journal of Pure and Applied Algebra 139, 109-131.
W. Koepf (1998). Hypergeometric summation: an algorithmic approach to

summation and special function identities, Vieweg.
T.H. Koornwinder (1993). On Zeilberger’s algorithm and its q-analogue. Jour-

nal of Computational and Applied Mathematics 48, 91–111.
C. Krattenthaler (1995). HYP and HYPQ – Mathematica packages for the

manipulation of binomial sums and hypergeometric series, respectively q-
binomial sums and basic hypergeometric series. J. Symb. Comput. 20, 737–
744.

J.C. Lafon (1983). Summation in finite terms. In B. Buchberger, G.E. Collins,
R. Loos, Eds., Computer Algebra: Symbolic and Algebraic Computation, 71–
77. Springer–Verlag, Wien–New York.

H.Q. Le (2001). A direct algorithm to construct Zeilberger’s recurrences for
rational functions. Proc. Formal Power Series and Algebraic Combinatorics
(FPSAC 2001), Arizona, U.S.A., 303–312.

H.Q. Le (2003). A direct algorithm to construct the minimal Z-pairs for ra-
tional functions. Advances in Applied Mathematics 30 137–159.

27



M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. Mc-
Carron, P. DeMarco (2002). Maple 8 introductory programming guide. Wa-
terloo Maple Inc., Waterloo, Ontario, Canada.

P. Paule (1995). Greatest factorial factorization and symbolic summation. J.
Symb. Comput. 20, 235–268.

P. Paule, M. Schorn (1995). A Mathematica version of Zeilberger’s algorithm
for proving binomial coefficient identities. J. Symb. Comput. 20, 673–698.

M. Petkovšek (1992). Hypergeometric solutions of linear recurrences with poly-
nomial coefficients. J. Symb. Comput. 14, 243–264.

M. Petkovšek, H. Wilf, D. Zeilberger (1996), A=B, A.K. Peters, Wellesley,
Massachusetts.

R. Pirastu, V. Strehl (1995). Rational summation and Gosper-Petkovšek rep-
resentation. J. Symb. Comput. 20, 617–635.

A.P. Prudnikov, Yu. Brychkov, O. Marichev (1990). Integrals and series, vol-
ume 3: more special functions. Gordon and Breach Science Publishers.

A. Riese (1995). A Mathematica q-analogue of Zeilberger’s algorithm for prov-
ing q-hypergeometric identities. Master’s thesis, Research Institute for Sym-
bolic Computation, J. Kepler University, Linz, Austria.

A. Riese (1997). Contributions to symbolic q-hypergeometric summation. PhD
thesis, Research Institute for Symbolic Computation, J. Kepler University,
Linz, Austria.

J. Riordan (1968). Combinatorial identities. John Wiley & Sons.
K. Roach (1996). Hypergeometric function representations. Proc. Int. Symp.

on Symbolic and Algebraic Computation (ISSAC 1996), Zürich, Switzerland,
ACM Press, 301–308.

C. Schneider (2001). Symbolic summation in difference fields. PhD thesis,
Research Institute for Symbolic Computation, J. Kepler University, Linz,
Austria.

K. Wegschaider (1997). Computer Generated Proofs of Binomial Multi-Sum
Identities. Master’s thesis, Research Institute for Symbolic Computation,
J. Kepler University, Linz, Austria.

H. Wilf, D. Zeilberger (1992). An algorithmic proof theory for hypergeometric
(ordinary and “q”) multisum/integral identities, Inventiones Mathematicae,
108, 575–633.

D. Zeilberger (1991). The method of creative telescoping, J. Symb. Comput.
11, 195–204.

28


