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This paper is an exposition of various recently-developed results related to the

construction of the minimal telescopers for hypergeometric terms. A Maple library

which includes an implementation of these results is described. A comparison

between this implementation and other well-known implementations is also given.

1 Introduction

The sequences that are named hypergeometric terms (or simply terms) are very

often involved in various combinatorial sums. The characteristic property of

a term T (k) is that the ratio T (k + 1)=T (k) is a rational function in k. This

rational function, denoted by C

k

(T ); is the certi�cate of T (k). A term T (n; k)

in two variables n and k has two certi�cates C

n

(T ) = T (n + 1; k)=T (n; k)

and C

k

(T ) = T (n; k + 1)=T (n; k): They are named the n-certi�cate and the

k-certi�cate, respectively. These certi�cates are rational functions in n and

k. By using the notations E

n

; E

k

for the shift operators w.r.t. n and k, we

obtain C

n

(T ) = E

n

T=T and C

k

(T ) = E

k

T=T .

Given a term T (n; k) as input, Zeilberger's algorithm

11;13

, also known

as the method of creative telescoping, tries to construct for T (n; k) a Z-pair

(L;G) which consists of a linear recurrence operator with coe�cients which
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are polynomials in n over C

L = a

�

(n)E

�

n

+ � � �+ a

1

(n)E

1

n

+ a

0

(n)E

0

n

; (1)

i.e., L 2 C [n;E

n

]; and a term G(n; k) such that

LT (n; k) = (E

k

� 1)G(n; k): (2)

It is proven in

13

that if there exist Z-pairs for T (n; k) then Zeilberger's algo-

rithm terminates with one of the Z-pairs and the telescoper L in the returned

Z-pair is of minimal order. The minimal-order telescoper is unique up to a

left-hand factor P (n) 2 C [n]; and is called the minimal telescoper. The Z-pair

(L;G) where L is the minimal telescoper is called the minimal Z-pair.

Zeilberger's algorithm, named hereafter as Z, has a wide range of ap-

plications which include �nding closed forms of de�nite sums of hypergeo-

metric terms, veri�cation of combinatorial identities, and asymptotic esti-

mate

11;13;10

.

For a given term T (n; k); it was for a quite long period of time that the

question whether there exists a Z-pair for T (or whether Z terminates in �nite

time given T as input) was not conclusively answered, although a su�cient

condition was known via the \fundamental theorem"

11;12

. It states that a

Z-pair for T exists if T is a proper term (see Section 3 for a de�nition).

Z uses an item-by-item examination on the order � of the telescopers L.

It starts with the value of 0 for � and increases � until it is successful in �nding

a Z-pair (L;G) for T; provided that such a pair exists. It is easy to observe

that this strategy has two de�ciencies. First, Z tries to compute a Z-pair for

T when such a pair might not exist (Examples 2, 5). It is well-known that

the \fundamental theorem" does not provide a necessary condition for the

existence of a Z-pair. Secondly, let � be the order of the minimal telescoper

for T; then Z simply wastes resources trying to compute a Z-pair where the

guessed orders of the telescopers are less than � (Examples 4, 7).

The recent results

1;5;9

supply a theoretical foundation and algorithms

to overcome the aforementioned problems. The main focus of this paper is a

complete Maple implementation of these algorithms, in particular of a function

which constructs the minimal Z-pairs by combining all these algorithms.

We �rst summarize the results that help guarantee the existence and

expedite the construction of the minimal telescopers.

2 Additive Decomposition of Terms

We describe in this section the result on additive decomposition of terms in one

variable

2

. This decomposition is used as a basis for the follow-up algorithms.
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We consider an additive decomposition of a term T (k) (see Theorem 1

below) assuming that the certi�cate of T (k) is a rational function in k over

an arbitrary �eld K of characteristic 0:

De�nition 1

3

Let R 2 K(k) be a nonzero rational function. If there exist

nonzero polynomials f

1

; f

2

; v

1

; v

2

2 K[k] such that

(i) R = F �

E

k

V

V

where F =

f

1

f

2

; V =

v

1

v

2

; and gcd(v

1

; v

2

) = 1,

(ii) gcd(f

1

; E

h

k

f

2

) = 1 for all h 2Z;

then F �

E

k

V

V

is a rational normal form (RNF) of R.

Note that every rational function has an RNF

3

which in general is not unique.

See

3

for a description of a construction of such a form.

As presented in

2

, the algorithm to solve the additive decomposition prob-

lem for a term T (k) constructs two terms T

1

(k); T

2

(k) such that

T (k) = (E

k

� 1)T

1

(k) + T

2

(k); (3)

and either T

2

vanishes or C

k

(T

2

) has an RNF

f

1

f

2

E

k

(v

1

=v

2

)

(v

1

=v

2

)

(4)

with v

2

of minimal degree. Any RNF of C

k

(T

2

) of the form (4) has v

2

2 K[k]

of the same minimal degree.

Theorem 1

2

Let T (k) be a term and equality (3) be valid for some terms

T

1

(k); T

2

(k). Suppose that T

2

(k) 6= 0: Let (4) be an RNF of C

k

(T

2

). Then (3)

is an additive decomposition of T (k) i� for each irreducible p from K[k] such

that p j v

2

, the following three properties hold:

Pa : E

h

k

p j v

2

) h = 0; Pb : E

h

k

p j f

1

) h < 0; Pc : E

h

k

p j f

2

) h > 0: (5)

When working with terms in two variables n and k over C ; we can consider n

as a parameter, and hence can construct an additive decomposition w.r.t. k:

T (n; k) = (E

k

� 1)T

1

(n; k) + T

2

(n; k): (6)

If (4) is an RNF w.r.t k of C

k

(T

2

) with f

1

; f

2

; v

1

; v

2

2 C [n; k], then for each

irreducible p 2 C [n; k] such that p j v

2

, properties (5) hold. Here K is C (n);

and K(k) is C (n; k):

Example 1 Consider the term

T (n; k) = �

nk

nk + 1

�

n+ 1

k

�

+

�

n+ 1

k + 1

�

:
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An additive decomposition (T

1

; T

2

) of T (n; k) w.r.t. k that satis�es (6) is

 

2nk + 2n� 1

2n

k�1

Y

w=0

n� w + 1

w + 2

;

n

2

k + 5nk � 2k + 5n� 1

4n(nk + 1)

k�1

Y

w=0

n� w + 1

w + 3

!

:

It follows from (6) that if the term T

2

vanishes, then (1; T

1

) is the minimal Z-

pair for T: For the remainder of this paper, we assume that T

2

is not identically

zero. Also note that a telescoper for T exists i� a telescoper for T

2

exists, and

the minimal telescopers for these two terms are equal to each other.

3 Applicability of Zeilberger's Algorithm

This section provides a description of the result related to the applicability of

Z to terms

1

.

De�nition 2 A polynomial �(n; k) 2 C [n; k] is integer-linear if it has the

form an+ b k + c where a; b 2Zand c 2 C :

De�nition 3

11;12

A term T (n; k) is proper if it can be written in the form

P (n; k)

Q

l

i=1

�(�

i

(n; k))

Q

m

i=1

�(�

i

(n; k))

u

n

v

k

; (7)

where �

i

(n; k); �

i

(n; k) are integer-linear polynomials, l;m 2 N, u; v 2 C .

The following theorem provides a necessary and su�cient condition for

the termination of Z:

Theorem 2

1

Let T (n; k) be a term in n and k; and (6) be an additive

decomposition of T: Let (4) be an RNF w.r.t. k of C

k

(T

2

) with v

2

2 K[n; k].

Then a telescoper for T (n; k) exists i� each factor of v

2

(n; k) irreducible in

C [n; k] is an integer-linear polynomial, i.e., i� T

2

(n; k) is a proper term.

For a given polynomial f(n; k) 2 C [n; k]; a decision procedure for the factora-

bility of f into integer-linear polynomials is described in

6

. This procedure

does not require a complete factorization of f into irreducible factors.

Example 2 Consider the term T (n; k) in Example 1. It follows from the

computed additive decomposition of T that an RNF of C

k

(T

2

) of the form (4)

has v

2

= (n

2

+ 5n � 2)(nk + 1) which cannot be written as a product of

integer-linear polynomials. This is an example where the input term T is not

a proper term, and Z is not applicable to T either.

Example 3 Consider the term

T (n; k) =

1

nk + n + 1

�

n

k + 1

�

+

nk � 2k � n + 2

n

2

k + 2nk

2

� nk + 2k + n� 1

�

n

k

�

:
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An additive decomposition of T (n; k) has v

2

= (2 k+ n� 3) which is integer-

linear. Hence, even though T (n; k) itself is not proper

4

, Z is applicable to T:

4 E�cient Algorithms to Compute the Minimal Telescopers

Let T (n; k) be a term. In this section we assume that Z is proven applicable

to T: For the case where T is also a rational function in n and k (the class of

rational functions is a proper subset of the class of terms), there exists a direct

algorithm

9

which constructs the minimal telescoper for T e�ciently without

using item-by-item examination. For the case where T is a non-rational term,

there exists an algorithm

5

which computes a lower bound � for the order

of the telescopers for T: This helps save the time to compute a telescoper of

order less than �:

4.1 Rational Function Case: a Direct Algorithm

Let T (n; k) 2 C (n; k): Consider an additive decomposition of T of the

form (6). First one constructs a special form of representation for T

2

as

stated in the following theorem.

Theorem 3

9

Set

T

2

=

t

X

i=1

m

i

X

j=1

r

ij

(n)

(a

i

n + b

i

k + c

i

)

j

; a

i

; b

i

2Z; b

i

> 0; c

i

2 C ; gcd(a

i

; b

i

) = 1;

(8)

r

ij

(n) 2 C (n): Then T

2

(n; k) can be represented in the form

M

1

F

1

+ � � �+M

s

F

s

; (9)

where each M

i

2 C (n)[E

n

; E

k

; E

�1

k

]; each F

i

= 1=(a

i

n + b

i

k + c

i

)

m

i

is such

that

a

i

; b

i

2Z; b

i

> 0; c

i

2 C ; gcd(a

i

; b

i

) = 1; m

i

2 N n f0g; (10)

and for all i 6= j; at least one of the following four relations is not satis�ed:

m

i

= m

j

; a

i

= a

j

; b

i

= b

j

; c

i

� c

j

2Zn f0g: (11)

T

2

can be written in the form (8) since Z is assumed to be applicable to T:

Once the representation (9) is constructed, one can compute the minimal tele-

scopers for each member M

i

F

i

2 C (n; k) directly and e�ciently

9

. The mini-

mal Z-pair for T

2

(n; k); and subsequently for T (n; k); can then be constructed

using Least Common Left Multiple (LCLM) computation. This direct algo-

rithm is in general more e�cient than the original Z. See Example 6 for a

result of our experimentation.
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4.2 Hypergeometric Case: a Lower Bound

Let T (n; k) be a non-rational term. Consider an additive decomposition of T

of the form (6). Since the minimal telescopers for T and T

2

are the same, the

focus can be shifted to computing a lower bound for the order of the telescopers

for the term T

2

: Let an RNF w.r.t. k of C

k

(T

2

) be of the form (4). For each

irreducible p such that p j v

2

; the three properties Pa, Pb, Pc in (5) hold.

De�nition 4

5

Let M 2 C [n;E

n

] be such that MT

2

6= 0; and there exists an

RNF F

0

E

k

V

0

V

0

; V

0

=

v

0

1

v

0

2

of C

k

(MT

2

) such that each of the irreducible factors

of v

0

2

does not have at least one of the three properties Pa, Pb, Pc. Then M

is a crushing operator for T

2

. The minimal crushing operator is a crushing

operator of minimal order.

It is simple to show that if L is a telescoper for T

2

; then L is also a crushing

operator for T

2

: Hence, the problem of computing a lower bound for the order

of the telescopers for T

2

is reduced to the problem of computing a lower bound

for the order of the minimal crushing operator for T

2

:

Theorem 4

5

Let C

k

(T

2

) have an RNF w.r.t. k F (E

k

V )=V of the form (4),

f

1

; f

2

; v

1

; v

2

2 C [n; k], and D = d

1

(n; k)=d

2

(n; k) be such that C

n

(T

2

) =

D(E

n

V )=V: Let there exist a crushing operator for T

2

of order �: Then for each

integer-linear factor p of v

2

; deg

k

p = 1; there exists an integer h such that

E

h

k

p jE

n

v

2

�E

2

n

v

2

� � �E

�

n

v

2

� d

2

�E

n

d

2

� � �E

��1

n

d

2

: (12)

As a consequence, if �

p

is the minimal positive value of � such that there exists

an h satisfying (12), then the order of any crushing operator for T

2

is not less

than � = max

p jv

2

�

p

:

Since Z is assumed to be applicable to the input T (n; k); it follows from Theo-

rem 2 that the polynomial v

2

2 K[n; k] factors into integer-linear polynomials.

By

4

, the polynomial d

2

2 K[n; k] in Theorem 4 also factors into integer-linear

polynomials. An algorithm, called LowerBound, which realizes Theorem 4 is

described in

5

. Once each of the two polynomials v

2

; d

2

is written as a prod-

uct of integer-linear polynomials (this does require a complete factorization of

monic univariate polynomials into irreducible factors, see

9

), the algorithm is

reduced to solving bivariate linear diophantine equations, a very inexpensive

operation.

Example 4 Consider the term

T (n; k) =

(n+ k + 2)!

(n

2

+ k + 2)(k + 3)!

�

(n+ k + 1)!

(n

2

+ k + 1)(2 + k)!

+

(n + k)!

(n+ 7 k� 2) k!

:

The computed lower bound for T as the result of applying LowerBound to

T (n; k) is 7 which is also equal to the order of the minimal telescoper for T .
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5 Implementation

We have implemented the algorithms described in Sections 2, 3, 4 in the

computer algebra system Maple 7. They are grouped together into a module

named Telescopers.

> eval(Telescopers);

module()

export AdditiveDecomposition, IsZApplicable, ZpairDirect,

LowerBound, Zeilberger, MinimalZpair;

option package;

description \Algorithms to compute the minimal telescopers for

hypergeometric terms";

end module

5.1 Functionalities

The exported local variables indicate the functions that are accessible to users.

Due to space limitations, we only brie
y describe the functions in the module.

See Section 6 for information on how to obtain the speci�cations for these

functions.

� AdditiveDecomposition(T; k) computes an additive decomposition of the

term T (k). The output is a list of two elements [T

1

; T

2

] representing the

two terms T

1

; T

2

in the decomposition (6);

� IsZApplicable(T; n; k) returns true if Z is applicable to the term T (n; k),

false otherwise;

� ZpairDirect(T; n; k;E

n

) computes the minimal Z-pair for the rational

function T (n; k): The output is a list of two elements [L;G] representing

the minimal Z-pair (L;G) for T , or an error message if it is proven that

Z is not applicable to T ;

� LowerBound(T; n; k) returns � 2 N which is the computed lower bound

for the order of the telescopers for the term T (n; k), or an error message

if it is proven that Z is not applicable to T ;

� Zeilberger(T; n; k;E

n

) returns a list of two elements [L;G] representing

the minimal Z-pair (L;G) for the input term T (n; k). Note that an upper

bound � for the order of the telescopers for T (n; k) needs to be speci�ed

in advance (the default value is 6). The function returns an error message

if no telescoper of order less than or equal to � exists.
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The main function of the module is MinimalZpair: It has the calling se-

quence \MinimalZpair(T; n; k;E

n

)" where T is a term in n and k; and E

n

denotes the shift operator which acts on n: This function combines the func-

tionalities of all functions in the above list. For an input term T (n; k); the

execution steps can be described as follows.

1. determine the applicability of Z to T ;

2. if it is proven in step 1 that a Z-pair for T does not exist, return the

conclusive error message \There does not exist a Z-pair for T"; Otherwise,

a. if T is a rational function in n and k; apply the direct algorithm to

compute the minimal Z-pair;

b. T is a non-rational term. First compute a lower bound � for the

order of the telescopers for T: Then compute the minimal Z-pair

using Z with � as the starting value for the guessed orders.

For case 2b, since the term T

2

in the additive decomposition (6) is \simpler"

than T in some sense, we �rst apply Z to T

2

to obtain the minimal Z-pair

(L;G) for T

2

: It is easy to show that (L;LT

1

+ G) is the minimal Z-pair for

the input term T (Example 7).

Example 5 Consider the term

T (n; k) =

1

nk + 1

�

2n

2 k

�

:

Apply MinimalZpair and Zeilberger to T (n; k), and record the time required

a

.

MinimalZpair �rst checks for the applicability of Z to T (step 1). It

recognizes that Z is not applicable to T and returns the conclusive answer

\Error, (in MinimalZpair) There does not exist a Zpair for T" in 0.56 sec-

onds. Zeilberger, on the other hand, does not know if a Z-pair (L;G) for T

exists. It tries to compute one and returns the inconclusive answer \Error,

(in Zeilberger) No telescoper of order 6 was found" in 30.55 seconds. Since

there does not exist a Z-pair for T; the higher the value of the upper bound

for the order of L is set, the more time and memory are wasted.

Example 6 (rational function case) This example is a comparison between

the original Zeilberger's algorithm and the direct algorithm (case 2a of

MinimalZpair). The test samples are the same as those used in Example 5

in

9

. Three set of tests each of which consists of 20 rational functions in n

a

All the reported timings were obtained on a 400Mhz SUN SPARC SOLARIS with 1Gb

RAM.
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and k were randomly generated. Each rational function where the numera-

tor and the denominator are in expanded forms is of the form (9). We ran

MinimalZpair (M), Zeilberger (Z) on these tests, and collected resource re-

quirements. We also enforced a limit of 2,000 seconds on each input rational

function in the tests. Note that we only recorded the time and space require-

ments for the tests that ran under this time limit.

Table 1 shows the time and space requirements to run the three sets of

tests S

1

; S

2

and S

3

:

Table 1. Time and space requirements forM and Z (Example 6).

Completed Timing (seconds) Memory (kilobytes)

M Z M Z M Z

S

1

20 15 12.15 3127.84 54,159 8,095,930

S

2

20 18 12.43 2635.94 54,653 7,873,146

S

3

20 0 959.07 { 3,864,026 {

Example 7 (hypergeometric case) For b 2 N n f0g; j 2 f1; 3g; let

T

1

=

1

(nk � 1)(n � bk � 2)

j

(2n+ k + 3)!

; T

2

=

1

(n� bk � 2)(2n+ k + 3)!

:

Consider the term T (n; k) = (E

k

� 1)T

1

(n; k) + T

2

(n; k): This example is

a comparison between the original Zeilberger's algorithm and case 2b of

MinimalZpair: The computed lower bound for the order of the telescopers

is b, while the order of the minimal telescoper is b + 1: Let � 2 N be the

starting value for the guessed order of the telescopers. Recall that the func-

tion Zeilberger applies Z to the input term T with � = 0; while MinimalZpair

applies Z to the term T

2

in the decomposition (6) with � = b: Table 2 shows

the time and space requirements. As one can easily notice, as b and/or j

increase, the relative performance of Zeilberger (compared to MinimalZpair)

quickly worsens.

5.2 A Comparison

There exist di�erent Maple implementations of Z such as Zeil in the EKHAD

package

11

, sumrecursion in the sumtools package

8

, SummandToRec in the

HYPERG package

7

. A Mathematica implementation (the function Zb) is

described in

10

. Due to the lack of a criterion for the applicability of Z at the

time these programs were implemented, the item-by-item examination strat-

egy is employed (these programs are in principal equivalent to the program

ICMS_AGL: submitted to World Scienti�c on April 6, 2002 9



Table 2. Time and space requirements forM and Z (Example 7).

Timing (seconds) Memory (kilobytes)

j b M Z M Z

1 6.49 5.35 27,838 24,702

2 8.34 34.64 33,066 142,889

1 3 11.13 124.53 44,233 535,736

4 14.46 570.02 56,410 1,882,730

5 25.79 2999.22 97,506 6,536,309

1 14.64 16.40 62,566 73,830

2 17.24 228.59 68,304 770,529

3 3 20.15 1286.51 78,701 3,074,051

4 24.08 8771.08 91,844 10,766,646

5 38.60 77663.68 139,823 33,423,168

Zeilberger in our package). This strategy leads to the two de�ciencies which

are discussed in Section 1, and which are illustrated by the examples in this

paper.

For the case where the input is a rational function, a program such as

Zb \accepts an input if the irreducible factors of the denominator are integer-

linear"

10

. This is equivalent to the condition that the input be a proper

term. By Theorem 2, such a program prevents the computation of a Z-pair

when such a pair exists. Note that we also implemented in the program

MinimalZpair a direct and e�cient algorithm to compute the minimal Z-

pairs.

For the case where the input T (n; k) is a non-rational term, all the afore-

mentioned programs apply Z directly to T: On the other hand, MinimalZpair

�rst computes a lower bound � for the order of the telescopers (a fairly low-

cost operation), and then applies Z to the term T

2

in the additive decomposi-

tion (6) using � as the starting value for the guessed orders of the telescopers

(note that the existence of a Z-pair is guaranteed). The minimal Z-pair for

T can then be easily obtained. Experimentation shows that this proposed

approach helps expedite the construction of the minimal Z-pairs.

6 Availability

Information on the availability of the library archive, functional speci�cations,

test samples used in this paper can be found at the URL

www.scg.math.uwaterloo.ca/~hqle/code/Telescopers/Telescopers.html
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