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This paper is an exposition of various recently-developed results related to the

construction of the minimal telescopers for hypergeometric terms. A Maple library

which includes an implementation of these results is described. A comparison

between this implementation and other well-known implementations is also given.

1 Introduction

The sequences that are named hypergeometric terms (or simply terms) are very

often involved in various combinatorial sums. The characteristic property of

a term T (k) is that the ratio T (k + 1)=T (k) is a rational function in k. This

rational function, denoted by C

k

(T ); is the certi�cate of T (k). A term T (n; k)

in two variables n and k has two certi�cates C

n

(T ) = T (n + 1; k)=T (n; k)

and C

k

(T ) = T (n; k + 1)=T (n; k): They are named the n-certi�cate and the

k-certi�cate, respectively. These certi�cates are rational functions in n and

k. By using the notations E

n

; E

k

for the shift operators w.r.t. n and k, we

obtain C

n

(T ) = E

n

T=T and C

k

(T ) = E

k

T=T .

Given a term T (n; k) as input, Zeilberger's algorithm

11;13

, also known

as the method of creative telescoping, tries to construct for T (n; k) a Z-pair

(L;G) which consists of a linear recurrence operator with coe�cients which
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are polynomials in n over C

L = a

�

(n)E

�

n

+ � � �+ a

1

(n)E

1

n

+ a

0

(n)E

0

n

; (1)

i.e., L 2 C [n;E

n

]; and a term G(n; k) such that

LT (n; k) = (E

k

� 1)G(n; k): (2)

It is proven in

13

that if there exist Z-pairs for T (n; k) then Zeilberger's algo-

rithm terminates with one of the Z-pairs and the telescoper L in the returned

Z-pair is of minimal order. The minimal-order telescoper is unique up to a

left-hand factor P (n) 2 C [n]; and is called the minimal telescoper. The Z-pair

(L;G) where L is the minimal telescoper is called the minimal Z-pair.

Zeilberger's algorithm, named hereafter as Z, has a wide range of ap-

plications which include �nding closed forms of de�nite sums of hypergeo-

metric terms, veri�cation of combinatorial identities, and asymptotic esti-

mate

11;13;10

.

For a given term T (n; k); it was for a quite long period of time that the

question whether there exists a Z-pair for T (or whether Z terminates in �nite

time given T as input) was not conclusively answered, although a su�cient

condition was known via the \fundamental theorem"

11;12

. It states that a

Z-pair for T exists if T is a proper term (see Section 3 for a de�nition).

Z uses an item-by-item examination on the order � of the telescopers L.

It starts with the value of 0 for � and increases � until it is successful in �nding

a Z-pair (L;G) for T; provided that such a pair exists. It is easy to observe

that this strategy has two de�ciencies. First, Z tries to compute a Z-pair for

T when such a pair might not exist (Examples 2, 5). It is well-known that

the \fundamental theorem" does not provide a necessary condition for the

existence of a Z-pair. Secondly, let � be the order of the minimal telescoper

for T; then Z simply wastes resources trying to compute a Z-pair where the

guessed orders of the telescopers are less than � (Examples 4, 7).

The recent results

1;5;9

supply a theoretical foundation and algorithms

to overcome the aforementioned problems. The main focus of this paper is a

complete Maple implementation of these algorithms, in particular of a function

which constructs the minimal Z-pairs by combining all these algorithms.

We �rst summarize the results that help guarantee the existence and

expedite the construction of the minimal telescopers.

2 Additive Decomposition of Terms

We describe in this section the result on additive decomposition of terms in one

variable

2

. This decomposition is used as a basis for the follow-up algorithms.
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We consider an additive decomposition of a term T (k) (see Theorem 1

below) assuming that the certi�cate of T (k) is a rational function in k over

an arbitrary �eld K of characteristic 0:

De�nition 1

3

Let R 2 K(k) be a nonzero rational function. If there exist

nonzero polynomials f

1

; f

2

; v

1

; v

2

2 K[k] such that

(i) R = F �

E

k

V

V

where F =

f

1

f

2

; V =

v

1

v

2

; and gcd(v

1

; v

2

) = 1,

(ii) gcd(f

1

; E

h

k

f

2

) = 1 for all h 2Z;

then F �

E

k

V

V

is a rational normal form (RNF) of R.

Note that every rational function has an RNF

3

which in general is not unique.

See

3

for a description of a construction of such a form.

As presented in

2

, the algorithm to solve the additive decomposition prob-

lem for a term T (k) constructs two terms T

1

(k); T

2

(k) such that

T (k) = (E

k

� 1)T

1

(k) + T

2

(k); (3)

and either T

2

vanishes or C

k

(T

2

) has an RNF

f

1

f

2

E

k

(v

1

=v

2

)

(v

1

=v

2

)

(4)

with v

2

of minimal degree. Any RNF of C

k

(T

2

) of the form (4) has v

2

2 K[k]

of the same minimal degree.

Theorem 1

2

Let T (k) be a term and equality (3) be valid for some terms

T

1

(k); T

2

(k). Suppose that T

2

(k) 6= 0: Let (4) be an RNF of C

k

(T

2

). Then (3)

is an additive decomposition of T (k) i� for each irreducible p from K[k] such

that p j v

2

, the following three properties hold:

Pa : E

h

k

p j v

2

) h = 0; Pb : E

h

k

p j f

1

) h < 0; Pc : E

h

k

p j f

2

) h > 0: (5)

When working with terms in two variables n and k over C ; we can consider n

as a parameter, and hence can construct an additive decomposition w.r.t. k:

T (n; k) = (E

k

� 1)T

1

(n; k) + T

2

(n; k): (6)

If (4) is an RNF w.r.t k of C

k

(T

2

) with f

1

; f

2

; v

1

; v

2

2 C [n; k], then for each

irreducible p 2 C [n; k] such that p j v

2

, properties (5) hold. Here K is C (n);

and K(k) is C (n; k):

Example 1 Consider the term

T (n; k) = �

nk

nk + 1

�

n+ 1

k

�

+

�

n+ 1

k + 1

�

:
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An additive decomposition (T

1

; T

2

) of T (n; k) w.r.t. k that satis�es (6) is

 

2nk + 2n� 1

2n

k�1

Y

w=0

n� w + 1

w + 2

;

n

2

k + 5nk � 2k + 5n� 1

4n(nk + 1)

k�1

Y

w=0

n� w + 1

w + 3

!

:

It follows from (6) that if the term T

2

vanishes, then (1; T

1

) is the minimal Z-

pair for T: For the remainder of this paper, we assume that T

2

is not identically

zero. Also note that a telescoper for T exists i� a telescoper for T

2

exists, and

the minimal telescopers for these two terms are equal to each other.

3 Applicability of Zeilberger's Algorithm

This section provides a description of the result related to the applicability of

Z to terms

1

.

De�nition 2 A polynomial �(n; k) 2 C [n; k] is integer-linear if it has the

form an+ b k + c where a; b 2Zand c 2 C :

De�nition 3

11;12

A term T (n; k) is proper if it can be written in the form

P (n; k)

Q

l

i=1

�(�

i

(n; k))

Q

m

i=1

�(�

i

(n; k))

u

n

v

k

; (7)

where �

i

(n; k); �

i

(n; k) are integer-linear polynomials, l;m 2 N, u; v 2 C .

The following theorem provides a necessary and su�cient condition for

the termination of Z:

Theorem 2

1

Let T (n; k) be a term in n and k; and (6) be an additive

decomposition of T: Let (4) be an RNF w.r.t. k of C

k

(T

2

) with v

2

2 K[n; k].

Then a telescoper for T (n; k) exists i� each factor of v

2

(n; k) irreducible in

C [n; k] is an integer-linear polynomial, i.e., i� T

2

(n; k) is a proper term.

For a given polynomial f(n; k) 2 C [n; k]; a decision procedure for the factora-

bility of f into integer-linear polynomials is described in

6

. This procedure

does not require a complete factorization of f into irreducible factors.

Example 2 Consider the term T (n; k) in Example 1. It follows from the

computed additive decomposition of T that an RNF of C

k

(T

2

) of the form (4)

has v

2

= (n

2

+ 5n � 2)(nk + 1) which cannot be written as a product of

integer-linear polynomials. This is an example where the input term T is not

a proper term, and Z is not applicable to T either.

Example 3 Consider the term

T (n; k) =

1

nk + n + 1

�

n

k + 1

�

+

nk � 2k � n + 2

n

2

k + 2nk

2

� nk + 2k + n� 1

�

n

k

�

:
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An additive decomposition of T (n; k) has v

2

= (2 k+ n� 3) which is integer-

linear. Hence, even though T (n; k) itself is not proper

4

, Z is applicable to T:

4 E�cient Algorithms to Compute the Minimal Telescopers

Let T (n; k) be a term. In this section we assume that Z is proven applicable

to T: For the case where T is also a rational function in n and k (the class of

rational functions is a proper subset of the class of terms), there exists a direct

algorithm

9

which constructs the minimal telescoper for T e�ciently without

using item-by-item examination. For the case where T is a non-rational term,

there exists an algorithm

5

which computes a lower bound � for the order

of the telescopers for T: This helps save the time to compute a telescoper of

order less than �:

4.1 Rational Function Case: a Direct Algorithm

Let T (n; k) 2 C (n; k): Consider an additive decomposition of T of the

form (6). First one constructs a special form of representation for T

2

as

stated in the following theorem.

Theorem 3

9

Set

T

2

=

t

X

i=1

m

i

X

j=1

r

ij

(n)

(a

i

n + b

i

k + c

i

)

j

; a

i

; b

i

2Z; b

i

> 0; c

i

2 C ; gcd(a

i

; b

i

) = 1;

(8)

r

ij

(n) 2 C (n): Then T

2

(n; k) can be represented in the form

M

1

F

1

+ � � �+M

s

F

s

; (9)

where each M

i

2 C (n)[E

n

; E

k

; E

�1

k

]; each F

i

= 1=(a

i

n + b

i

k + c

i

)

m

i

is such

that

a

i

; b

i

2Z; b

i

> 0; c

i

2 C ; gcd(a

i

; b

i

) = 1; m

i

2 N n f0g; (10)

and for all i 6= j; at least one of the following four relations is not satis�ed:

m

i

= m

j

; a

i

= a

j

; b

i

= b

j

; c

i

� c

j

2Zn f0g: (11)

T

2

can be written in the form (8) since Z is assumed to be applicable to T:

Once the representation (9) is constructed, one can compute the minimal tele-

scopers for each member M

i

F

i

2 C (n; k) directly and e�ciently

9

. The mini-

mal Z-pair for T

2

(n; k); and subsequently for T (n; k); can then be constructed

using Least Common Left Multiple (LCLM) computation. This direct algo-

rithm is in general more e�cient than the original Z. See Example 6 for a

result of our experimentation.
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4.2 Hypergeometric Case: a Lower Bound

Let T (n; k) be a non-rational term. Consider an additive decomposition of T

of the form (6). Since the minimal telescopers for T and T

2

are the same, the

focus can be shifted to computing a lower bound for the order of the telescopers

for the term T

2

: Let an RNF w.r.t. k of C

k

(T

2

) be of the form (4). For each

irreducible p such that p j v

2

; the three properties Pa, Pb, Pc in (5) hold.

De�nition 4

5

Let M 2 C [n;E

n

] be such that MT

2

6= 0; and there exists an

RNF F

0

E

k

V

0

V

0

; V

0

=

v

0

1

v

0

2

of C

k

(MT

2

) such that each of the irreducible factors

of v

0

2

does not have at least one of the three properties Pa, Pb, Pc. Then M

is a crushing operator for T

2

. The minimal crushing operator is a crushing

operator of minimal order.

It is simple to show that if L is a telescoper for T

2

; then L is also a crushing

operator for T

2

: Hence, the problem of computing a lower bound for the order

of the telescopers for T

2

is reduced to the problem of computing a lower bound

for the order of the minimal crushing operator for T

2

:

Theorem 4

5

Let C

k

(T

2

) have an RNF w.r.t. k F (E

k

V )=V of the form (4),

f

1

; f

2

; v

1

; v

2

2 C [n; k], and D = d

1

(n; k)=d

2

(n; k) be such that C

n

(T

2

) =

D(E

n

V )=V: Let there exist a crushing operator for T

2

of order �: Then for each

integer-linear factor p of v

2

; deg

k

p = 1; there exists an integer h such that

E

h

k

p jE

n

v

2

�E

2

n

v

2

� � �E

�

n

v

2

� d

2

�E

n

d

2

� � �E

��1

n

d

2

: (12)

As a consequence, if �

p

is the minimal positive value of � such that there exists

an h satisfying (12), then the order of any crushing operator for T

2

is not less

than � = max

p jv

2

�

p

:

Since Z is assumed to be applicable to the input T (n; k); it follows from Theo-

rem 2 that the polynomial v

2

2 K[n; k] factors into integer-linear polynomials.

By

4

, the polynomial d

2

2 K[n; k] in Theorem 4 also factors into integer-linear

polynomials. An algorithm, called LowerBound, which realizes Theorem 4 is

described in

5

. Once each of the two polynomials v

2

; d

2

is written as a prod-

uct of integer-linear polynomials (this does require a complete factorization of

monic univariate polynomials into irreducible factors, see

9

), the algorithm is

reduced to solving bivariate linear diophantine equations, a very inexpensive

operation.

Example 4 Consider the term

T (n; k) =

(n+ k + 2)!

(n

2

+ k + 2)(k + 3)!

�

(n+ k + 1)!

(n

2

+ k + 1)(2 + k)!

+

(n + k)!

(n+ 7 k� 2) k!

:

The computed lower bound for T as the result of applying LowerBound to

T (n; k) is 7 which is also equal to the order of the minimal telescoper for T .
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5 Implementation

We have implemented the algorithms described in Sections 2, 3, 4 in the

computer algebra system Maple 7. They are grouped together into a module

named Telescopers.

> eval(Telescopers);

module()

export AdditiveDecomposition, IsZApplicable, ZpairDirect,

LowerBound, Zeilberger, MinimalZpair;

option package;

description \Algorithms to compute the minimal telescopers for

hypergeometric terms";

end module

5.1 Functionalities

The exported local variables indicate the functions that are accessible to users.

Due to space limitations, we only briey describe the functions in the module.

See Section 6 for information on how to obtain the speci�cations for these

functions.

� AdditiveDecomposition(T; k) computes an additive decomposition of the

term T (k). The output is a list of two elements [T

1

; T

2

] representing the

two terms T

1

; T

2

in the decomposition (6);

� IsZApplicable(T; n; k) returns true if Z is applicable to the term T (n; k),

false otherwise;

� ZpairDirect(T; n; k;E

n

) computes the minimal Z-pair for the rational

function T (n; k): The output is a list of two elements [L;G] representing

the minimal Z-pair (L;G) for T , or an error message if it is proven that

Z is not applicable to T ;

� LowerBound(T; n; k) returns � 2 N which is the computed lower bound

for the order of the telescopers for the term T (n; k), or an error message

if it is proven that Z is not applicable to T ;

� Zeilberger(T; n; k;E

n

) returns a list of two elements [L;G] representing

the minimal Z-pair (L;G) for the input term T (n; k). Note that an upper

bound � for the order of the telescopers for T (n; k) needs to be speci�ed

in advance (the default value is 6). The function returns an error message

if no telescoper of order less than or equal to � exists.
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The main function of the module is MinimalZpair: It has the calling se-

quence \MinimalZpair(T; n; k;E

n

)" where T is a term in n and k; and E

n

denotes the shift operator which acts on n: This function combines the func-

tionalities of all functions in the above list. For an input term T (n; k); the

execution steps can be described as follows.

1. determine the applicability of Z to T ;

2. if it is proven in step 1 that a Z-pair for T does not exist, return the

conclusive error message \There does not exist a Z-pair for T"; Otherwise,

a. if T is a rational function in n and k; apply the direct algorithm to

compute the minimal Z-pair;

b. T is a non-rational term. First compute a lower bound � for the

order of the telescopers for T: Then compute the minimal Z-pair

using Z with � as the starting value for the guessed orders.

For case 2b, since the term T

2

in the additive decomposition (6) is \simpler"

than T in some sense, we �rst apply Z to T

2

to obtain the minimal Z-pair

(L;G) for T

2

: It is easy to show that (L;LT

1

+ G) is the minimal Z-pair for

the input term T (Example 7).

Example 5 Consider the term

T (n; k) =

1

nk + 1

�

2n

2 k

�

:

Apply MinimalZpair and Zeilberger to T (n; k), and record the time required

a

.

MinimalZpair �rst checks for the applicability of Z to T (step 1). It

recognizes that Z is not applicable to T and returns the conclusive answer

\Error, (in MinimalZpair) There does not exist a Zpair for T" in 0.56 sec-

onds. Zeilberger, on the other hand, does not know if a Z-pair (L;G) for T

exists. It tries to compute one and returns the inconclusive answer \Error,

(in Zeilberger) No telescoper of order 6 was found" in 30.55 seconds. Since

there does not exist a Z-pair for T; the higher the value of the upper bound

for the order of L is set, the more time and memory are wasted.

Example 6 (rational function case) This example is a comparison between

the original Zeilberger's algorithm and the direct algorithm (case 2a of

MinimalZpair). The test samples are the same as those used in Example 5

in

9

. Three set of tests each of which consists of 20 rational functions in n

a

All the reported timings were obtained on a 400Mhz SUN SPARC SOLARIS with 1Gb

RAM.
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and k were randomly generated. Each rational function where the numera-

tor and the denominator are in expanded forms is of the form (9). We ran

MinimalZpair (M), Zeilberger (Z) on these tests, and collected resource re-

quirements. We also enforced a limit of 2,000 seconds on each input rational

function in the tests. Note that we only recorded the time and space require-

ments for the tests that ran under this time limit.

Table 1 shows the time and space requirements to run the three sets of

tests S

1

; S

2

and S

3

:

Table 1. Time and space requirements forM and Z (Example 6).

Completed Timing (seconds) Memory (kilobytes)

M Z M Z M Z

S

1

20 15 12.15 3127.84 54,159 8,095,930

S

2

20 18 12.43 2635.94 54,653 7,873,146

S

3

20 0 959.07 { 3,864,026 {

Example 7 (hypergeometric case) For b 2 N n f0g; j 2 f1; 3g; let

T

1

=

1

(nk � 1)(n � bk � 2)

j

(2n+ k + 3)!

; T

2

=

1

(n� bk � 2)(2n+ k + 3)!

:

Consider the term T (n; k) = (E

k

� 1)T

1

(n; k) + T

2

(n; k): This example is

a comparison between the original Zeilberger's algorithm and case 2b of

MinimalZpair: The computed lower bound for the order of the telescopers

is b, while the order of the minimal telescoper is b + 1: Let � 2 N be the

starting value for the guessed order of the telescopers. Recall that the func-

tion Zeilberger applies Z to the input term T with � = 0; while MinimalZpair

applies Z to the term T

2

in the decomposition (6) with � = b: Table 2 shows

the time and space requirements. As one can easily notice, as b and/or j

increase, the relative performance of Zeilberger (compared to MinimalZpair)

quickly worsens.

5.2 A Comparison

There exist di�erent Maple implementations of Z such as Zeil in the EKHAD

package

11

, sumrecursion in the sumtools package

8

, SummandToRec in the

HYPERG package

7

. A Mathematica implementation (the function Zb) is

described in

10

. Due to the lack of a criterion for the applicability of Z at the

time these programs were implemented, the item-by-item examination strat-

egy is employed (these programs are in principal equivalent to the program

ICMS_AGL: submitted to World Scienti�c on April 6, 2002 9



Table 2. Time and space requirements forM and Z (Example 7).

Timing (seconds) Memory (kilobytes)

j b M Z M Z

1 6.49 5.35 27,838 24,702

2 8.34 34.64 33,066 142,889

1 3 11.13 124.53 44,233 535,736

4 14.46 570.02 56,410 1,882,730

5 25.79 2999.22 97,506 6,536,309

1 14.64 16.40 62,566 73,830

2 17.24 228.59 68,304 770,529

3 3 20.15 1286.51 78,701 3,074,051

4 24.08 8771.08 91,844 10,766,646

5 38.60 77663.68 139,823 33,423,168

Zeilberger in our package). This strategy leads to the two de�ciencies which

are discussed in Section 1, and which are illustrated by the examples in this

paper.

For the case where the input is a rational function, a program such as

Zb \accepts an input if the irreducible factors of the denominator are integer-

linear"

10

. This is equivalent to the condition that the input be a proper

term. By Theorem 2, such a program prevents the computation of a Z-pair

when such a pair exists. Note that we also implemented in the program

MinimalZpair a direct and e�cient algorithm to compute the minimal Z-

pairs.

For the case where the input T (n; k) is a non-rational term, all the afore-

mentioned programs apply Z directly to T: On the other hand, MinimalZpair

�rst computes a lower bound � for the order of the telescopers (a fairly low-

cost operation), and then applies Z to the term T

2

in the additive decomposi-

tion (6) using � as the starting value for the guessed orders of the telescopers

(note that the existence of a Z-pair is guaranteed). The minimal Z-pair for

T can then be easily obtained. Experimentation shows that this proposed

approach helps expedite the construction of the minimal Z-pairs.

6 Availability

Information on the availability of the library archive, functional speci�cations,

test samples used in this paper can be found at the URL

www.scg.math.uwaterloo.ca/~hqle/code/Telescopers/Telescopers.html

ICMS_AGL: submitted to World Scienti�c on April 6, 2002 10



Acknowledgements

This work is partially supported by the French-Russian Lyapunov Institute

under grant 98-03, by Natural Sciences and Engineering Research Council of

Canada Grant No. RGPIN8967-01, and No. CRD215442-98. The authors

wish to express their thanks to R.F. Burger for his careful reading of a pre-

liminary version of this paper.

References

1. S.A. Abramov, Applicability of Zeilberger's Algorithm to Hypergeometric

Terms, to appear in Proc. ISSAC'2002.

2. S.A. Abramov, M. Petkov�sek, Minimal Decomposition of Inde�nite Hy-

pergeometric Sums, Proc. ISSAC'2001, 2001, 7{14.

3. S.A. Abramov, M. Petkov�sek, Canonical Representations of Hypergeo-

metric Terms. Proc. FPSAC'2001, 2001, 1{10.

4. S.A. Abramov, M. Petkov�sek, Proof of a Conjecture of Wilf and Zeil-

berger. Preprint Series of the Institute of Mathematics, Physics and

Mechanics 39, 2001, no. 748, Ljubljana, March 9, 2001.

5. S.A. Abramov, H.Q. Le, A Lower Bound for the Order of Telescopers for

a Hypergeometric Term, to appear in Proc. FPSAC'2002.

6. S.A. Abramov, H.Q. Le, Applicability of Zeilberger's Algorithm to Ratio-

nal Functions, Proc. FPSAC'2000, Springer{Verlag LNCS, 2000, 91{102.

7. B. Gauthier, HYPERG, Maple Package, User's Reference Manual. Ver-

sion 1.0, http://www-igm.univ-mlv.fr/~gauthier/HYPERG.html.

8. W. Koepf, Hypergeometric Summation: An Algorithmic Approach to

Summation and Special Function Identities, Vieweg, 1998.

9. H.Q. Le, A Direct Algorithm to Construct Zeilberger's Recurrences for

Rational Functions, Proc. FPSAC'2001, 2001, 303{312.

10. P. Paule, M. Schorn, A Mathematica Version of Zeilberger's Algorithm

for Proving Binomial Coe�cient Identities. J. Symb. Comput. 20, 1995,

673{698.

11. M. Petkov�sek, H. Wilf, D. Zeilberger, A=B, A.K. Peters, Wellesley, Mas-

sachusetts, 1996.

12. H. Wilf, D. Zeilberger, An Algorithmic Proof Theory for Hypergeometric

(ordinary and \q") Multisum/Integral Identities, Inventiones Mathemat-

icae, 108, 1992, 575{633.

13. D. Zeilberger, The Method of Creative Telescoping, J. Symb. Comput.

11, 1991, 195{204.

ICMS_AGL: submitted to World Scienti�c on April 6, 2002 11


