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This paper is an exposition of various recently-developed results related to the
construction of the minimal telescopers for hypergeometric terms. A Maple library
which includes an implementation of these results is described. A comparison
between this implementation and other well-known implementations is also given.

1 Introduction

The sequences that are named hypergeometric terms (or simply terms) are very
often involved in various combinatorial sums. The characteristic property of
a term T'(k) is that the ratio T'(k 4+ 1)/T'(k) is a rational function in k. This
rational function, denoted by Ci(T), is the certificate of T'(k). A term T'(n, k)
in two variables n and k has two certificates Cp(T) = T(n + 1,k)/T(n, k)
and Cx(T) = T(n,k + 1)/T(n, k). They are named the n-certificate and the
k-certificate, respectively. These certificates are rational functions in n and
k. By using the notations E,, Ej for the shift operators w.r.t. n and k, we
obtain C,, (T) = E,T/T and Ci(T) = ExT/T.

Given a term T'(n, k) as input, Zeilberger’s algorithm , also known
as the method of creative telescoping, tries to construct for T'(n, k) a Z-pair
(L, G) which consists of a linear recurrence operator with coefficients which

11,13
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are polynomials in n over C

L=a,(n)E? +---+ai(n)EL + ag(n)E}, (1)
i.e., L € C[n, E,], and a term G(n, k) such that
LT(n, k) = (Er — 1)G(n, k). (2)

It is proven in '3 that if there exist Zpairs for T'(n, k) then Zeilberger’s algo-
rithm terminates with one of the Z-pairs and the telescoper L in the returned
Z-pair is of minimal order. The minimal-order telescoper is unique up to a
left-hand factor P(n) € C[n], and is called the minimal telescoper. The Z-pair
(L, G) where L is the minimal telescoper is called the minimal Z-pair.

Zeilberger’s algorithm, named hereafter as Z, has a wide range of ap-
plications which include finding closed forms of definite sums of hypergeo-
metric terms, verification of combinatorial identities, and asymptotic esti-
mate 11,13,10

For a given term T'(n, k), it was for a quite long period of time that the
question whether there exists a Z-pair for T' (or whether Z terminates in finite
time given T as input) was not conclusively answered, although a sufficient
condition was known via the “fundamental theorem” 1112, It states that a
Z-pair for T exists if T' is a proper term (see Section 3 for a definition).

Z uses an 1tem-by-item examination on the order p of the telescopers L.
It starts with the value of 0 for p and increases p until it is successful in finding
a Z-pair (L, G) for T, provided that such a pair exists. It is easy to observe
that this strategy has two deficiencies. First, Z tries to compute a Z-pair for
T when such a pair might not exist (Examples 2, 5). It is well-known that
the “fundamental theorem” does not provide a necessary condition for the
existence of a Z-pair. Secondly, let p be the order of the minimal telescoper
for T, then 2 simply wastes resources trying to compute a Z-pair where the
guessed orders of the telescopers are less than p (Examples 4, 7).

The recent results 1%° supply a theoretical foundation and algorithms
to overcome the aforementioned problems. The main focus of this paper is a
complete Maple implementation of these algorithms, in particular of a function
which constructs the minimal Z-pairs by combining all these algorithms.

We first summarize the results that help guarantee the existence and
expedite the construction of the minimal telescopers.

2 Additive Decomposition of Terms

We describe in this section the result on additive decomposition of terms in one
variable 2. This decomposition is used as a basis for the follow-up algorithms.
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We consider an additive decomposition of a term T'(k) (see Theorem 1
below) assuming that the certificate of T'(k) is a rational function in k over
an arbitrary field K of characteristic 0.

Definition 1 ® Let R € K (k) be a nonzero rational function. If there exist
nonzero polynomials f1, f2,v1,v2 € K[k] such that

(i) R=F- E";V where F = ;—;, V= z—;, and ged(vy,v2) = 1,

(ii) ged(f1, B f2) =1 for all h € Z,

then F - E@.V is a rational normal form (RNF) of R.
Note that every rational function has an RNF 2 which in general is not unique.
See 3 for a description of a construction of such a form.

As presented in 2, the algorithm to solve the additive decomposition prob-
lem for a term T'(k) constructs two terms T4 (k), Tz(k) such that

T(k) = (Ex — 1) Ta(k) + Ta(k), (3)

and either Ty vanishes or Cp(73) has an RNF
ﬁ Ek (Ul/vg)

Fo (0n/2) @)

with vz of minimal degree. Any RNF of C;(T%) of the form (4) has v, € K[k]
of the same minimal degree.

Theorem 1 2 Let T(k) be a term and equality (3) be valid for some terms
Ti(k), Tz (k). Suppose that To(k) # 0. Let (4) be an RNF of C,(T2). Then (3)
is an additive decomposition of T(k) iff for each irreducible p from K[k] such
that p | va, the following three properties hold:

Pa: Elp|lva=h=0, Pb: Elp|fi=>h <0, Pc: Efp|fa=h>0. (5)

When working with terms in two variables n and k over C, we can consider n
as a parameter, and hence can construct an additive decomposition w.r.t. k:

T(n, k) = (B — 1) Ta(n, k) + To(n, k). (6)

If (4) is an RNF w.r.t k of Cx(T:) with fi, f2,v1,v2 € C|n, k], then for each
irreducible p € Cln, k] such that p|vs, properties (5) hold. Here K is C(n),
and K (k) is C(n, k).

Example 1 Counsider the term

nk n+1 n+1
T(n, k) = — .
(n, k) nk—|—1< k >+<k+1>
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An additive decomposition (T, T2) of T'(n, k) w.r.t. k that satisfies (6) is

2nk—|—2n—1kl:[1n—w—|—1 n2k+5nk—2k—|—5n—1k1:[1n—w—|—l
2n ot w+2 dn(nk +1) it w+3 )

It follows from (6) that if the term 75 vanishes, then (1,7}) is the minimal Z-
pair for T. For the remainder of this paper, we assume that 75 is not identically
zero. Also note that a telescoper for T exists iff a telescoper for T3 exists, and
the minimal telescopers for these two terms are equal to each other.

3 Applicability of Zeilberger’s Algorithm

This section provides a description of the result related to the applicability of
Z to terms 1.

Definition 2 A polynomial a(n,k) € C[n, k] is integer-linear if it has the
form an + bk +c where a, b € Z and ¢ € C.

Definition 3 112 A term T(n, k) is proper if it can be written in the form

[TieiT(ei(n k), y
P(n, k) == uv® (7)
[Liz: T (Bi(n, k)
where ai(n, k), Bi(n, k) are integer-linear polynomials, I,m € N, u,v € C.

The following theorem provides a necessary and sufficient condition for
the termination of Z.

Theorem 2 ! Let T(n,k) be a term in n and k, and (6) be an additive
decomposition of T. Let (4) be an RNF w.r.t. k of Cr,(T2) with va € K[n, k].
Then a telescoper for T(n, k) exists iff each factor of va(n, k) irreducible in
Cln, k] is an integer-linear polynomial, i.e., iff To(n, k) is a proper term.

For a given polynomial f(n, k) € Cln, k], a decision procedure for the factora-
bility of f into integer-linear polynomials is described in . This procedure
does not require a complete factorization of f into irreducible factors.

Example 2 Consider the term T'(n, k) in Example 1. It follows from the
computed additive decomposition of T' that an RNF of Ci(T%) of the form (4)
has v3 = (n? + 5n — 2)(nk + 1) which cannot be written as a product of
integer-linear polynomials. This is an example where the input term 7T is not
a proper term, and Z is not applicable to T either.

Example 3 Counsider the term

1 n nk —2k—n—+2 n
T(n k)= — .
(n, k) nk—l—n—l—l<k—|—1>+n2k—|—2nk2—nk+2k—|—n—1<k>
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An additive decomposition of T'(n, k) has vz = (2k + n — 3) which is integer-
linear. Hence, even though T'(n, k) itself is not proper *, Z is applicable to T.

4 Efficient Algorithms to Compute the Minimal Telescopers

Let T'(n, k) be a term. In this section we assume that Z is proven applicable
to T. For the case where T is also a rational function in n and k& (the class of
rational functions is a proper subset of the class of terms), there exists a direct
algorithm © which constructs the minimal telescoper for T efficiently without
using item-by-item examination. For the case where T is a non-rational term,
there exists an algorithm ® which computes a lower bound g for the order
of the telescopers for T. This helps save the time to compute a telescoper of
order less than pu.

4.1 Rational Function Case: a Direct Algorithm

Let T(n,k) € C(n,k). Consider an additive decomposition of T of the
form (6). First one constructs a special form of representation for Tb as
stated in the following theorem.

Theorem 3 ° Set

-
L=y 0 b Zh > 0,6 € €, ged(ai,b) = 1
o ;Z a;n—+ bk +c )’a’ €& >0’CE(C’gC (a7 ) s

(8)
rij(n) € C(n). Then Ts(n, k) can be represented in the form
MFy + -4+ M,F,, (9)

where each M; € C(n)[E,, Ey, E'k_l], each F; = 1/(ain + bk + ¢;)™* is such
that

a;,b; € Z, b; >0,¢ € C, gcd(ai,bi) =1,m; € N\{O}, (10)
and for all i # j, at least one of the following four relations is not satisfied:
mi:mj,ai:aj,bi:bj,ci—cjEZ\{O}. (11)

T> can be written in the form (8) since Z is assumed to be applicable to T.
Once the representation (9) is constructed, one can compute the minimal tele-
scopers for each member M; F; € C(n, k) directly and efficiently °. The mini-
mal Z-pair for Tz(n, k), and subsequently for T'(n, k), can then be constructed
using Least Common Left Multiple (LCLM) computation. This direct algo-
rithm is in general more efficient than the original Z. See Example 6 for a
result of our experimentation.
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4.2 Hypergeometric Case: a Lower Bound

Let T'(n, k) be a non-rational term. Consider an additive decomposition of T'
of the form (6). Since the minimal telescopers for T' and T, are the same, the
focus can be shifted to computing a lower bound for the order of the telescopers
for the term T5. Let an RNF w.r.t. k& of C;(T3) be of the form (4). For each
irreducible p such that p|wvs, the three properties Pa, Pb, Pc in (5) hold.

Definition 4 ° Let M € Cin, E,] be such that MT, # 0, and there exists an

RNF F’E"j.—‘,/l, V' = :—; of C,(MTz) such that each of the irreducible factors

of vl does not have at least one of the three properties Pa, Pb, Pc. Then M
s a crushing operator for T;. The minimal crushing operator is a crushing
operator of minimal order.

It is simple to show that if L is a telescoper for T5, then L is also a crushing
operator for T5. Hence, the problem of computing a lower bound for the order
of the telescopers for T5 is reduced to the problem of computing a lower bound
for the order of the minimal crushing operator for T5.

Theorem 4 ° Let Cy(T:) have an RNF w.r.t. k F(EV)/V of the form (4),
fi, f2,v1,v2 € Cln, k], and D = dyi(n,k)/d2(n, k) be such that C,(Ts) =
D(E,V)/V. Let there exist a crushing operator for Tz of order p. Then for each
integer-linear factor p of va, deg, p = 1, there exists an integer h such that

EMp|Eyvy - E2vy - EPvy - dy - Epdy -+~ EP71d,. (12)

As a consequence, if pp is the minimal positive value of p such that there exists
an h satisfying (12), then the order of any crushing operator for T is not less
than p = max,|,, pyp.

Since Z is assumed to be applicable to the input T'(n, k), it follows from Theo-
rem 2 that the polynomial vs € K|[n, k] factors into integer-linear polynomials.
By #, the polynomial ds € K[n, k] in Theorem 4 also factors into integer-linear
polynomials. An algorithm, called LowerBound, which realizes Theorem 4 is
described in °. Once each of the two polynomials vs, ds is written as a prod-
uct of integer-linear polynomials (this does require a complete factorization of
monic univariate polynomials into irreducible factors, see ?), the algorithm is
reduced to solving bivariate linear diophantine equations, a very inexpensive
operation.

Example 4 Counsider the term

(n+k+2)! B (n+k+1)! N (n+k)!
(n2+k+2)(k+3)! (n2+k+1)2+k)!  (n+Tk—2)k"
The computed lower bound for T' as the result of applying LowerBound to
T(n, k) is 7 which is also equal to the order of the minimal telescoper for T'.

T(n, k) =
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Implementation

We have implemented the algorithms described in Sections 2, 3, 4 in the
computer algebra system Maple 7. They are grouped together into a module
named Telescopers.

> eval(Telescopers);
module()
export AdditiveDecomposition, IsZApplicable, ZpairDirect,

LowerBound, Zeilberger, MinimalZpair;

option package;
description “Algorithms to compute the minimal telescopers for

hypergeometric terms”;

end module

5.1 Functionalities

The exported local variables indicate the functions that are accessible to users.
Due to space limitations, we only briefly describe the functions in the module.
See Section 6 for information on how to obtain the specifications for these
functions.

o AdditiveDecomposition(T, k) computes an additive decomposition of the

term T'(k). The output is a list of two elements [Ty, T3] representing the
two terms 71, T in the decomposition (6);

IsZApplicable(T, n, k) returns true if Z is applicable to the term T'(n, k),
false otherwise;

ZpairDirect (T, n, k, E,) computes the minimal Z-pair for the rational
function T'(n, k). The output is a list of two elements [L, G] representing
the minimal Z-pair (L, G) for T, or an error message if it is proven that
Z is not applicable to T

LowerBound(T, n, k) returns p € N which is the computed lower bound
for the order of the telescopers for the term T'(n, k), or an error message
if it is proven that Z is not applicable to T

Zeilberger (T, n, k, E,) returns a list of two elements [L, G| representing
the minimal Z-pair (L, G) for the input term T'(n, k). Note that an upper
bound p for the order of the telescopers for T'(n, k) needs to be specified
in advance (the default value is 6). The function returns an error message
if no telescoper of order less than or equal to p exists.
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The main function of the module is MinimalZpair. It has the calling se-
quence “MinimalZpair(T, n, k, E,)” where T is a term in n and k, and E,
denotes the shift operator which acts on n. This function combines the func-
tionalities of all functions in the above list. For an input term T'(n, k), the
execution steps can be described as follows.

1. determine the applicability of Z to T}

2. if it 1s proven in step 1 that a Z-pair for T does not exist, return the
conclusive error message “There does not exist a Z-pair for T”; Otherwise,

a. if T is a rational function in n and k, apply the direct algorithm to
compute the minimal Z-pair;

b. T is a non-rational term. First compute a lower bound p for the
order of the telescopers for T. Then compute the minimal Z-pair
using Z with p as the starting value for the guessed orders.

For case 2b, since the term T3 in the additive decomposition (6) is “simpler”
than T in some sense, we first apply Z to T3 to obtain the minimal Z-pair
(L, G) for Ts. It is easy to show that (L, LTy + G) is the minimal Z-pair for
the input term 7' (Example 7).

Example 5 Counsider the term

1 2n
T k) = T <2k>

Apply MinimalZpair and Zeilberger to T'(n, k), and record the time required ©.

MinimalZpair first checks for the applicability of Z to T (step 1). It
recognizes that Z is not applicable to T' and returns the conclusive answer
“Error, (in MinimalZpair) There does not exist a Zpair for T” in 0.56 sec-
onds. Zeilberger, on the other hand, does not know if a Z-pair (L, G) for T
exists. It tries to compute one and returns the inconclusive answer “Error,
(in Zeilberger) No telescoper of order 6 was found” in 30.55 seconds. Since
there does not exist a Z-pair for T, the higher the value of the upper bound
for the order of L is set, the more time and memory are wasted.

Example 6 (rational function case) This example is a comparison between
the original Zeilberger’s algorithm and the direct algorithm (case 2a of
MinimalZpair). The test samples are the same as those used in Example 5

in °. Three set of tests each of which consists of 20 rational functions in n

?All the reported timings were obtained on a 400Mhz SUN SPARC SOLARIS with 1Gb
RAM.
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and k were randomly generated. Each rational function where the numera-
tor and the denominator are in expanded forms is of the form (9). We ran
MinimalZpair (M), Zeilberger (Z) on these tests, and collected resource re-
quirements. We also enforced a limit of 2,000 seconds on each input rational
function in the tests. Note that we only recorded the time and space require-
ments for the tests that ran under this time limit.

Table 1 shows the time and space requirements to run the three sets of
tests S1, 85 and Ss.

Table 1. Time and space requirements for M and Z (Example 6).

Completed | Timing (seconds) | Memory (kilobytes)
M Z M Z M Z

S1 | 20 15 | 12.15 3127.84 54,159 8,095,930
Sy | 20 18 | 12.43  2635.94 54,653 7,873,146
Sz | 20 0 | 959.07 - 3,864,026 -

Example 7 (hypergeometric case) For b € N\ {0}, j € {1,3}, let
1 . 1
(nk—1)(n—bk—2)i2n+k+3)!" > (n—bk—2)2n+k+3)!

Consider the term T(n, k) = (Ex — 1) Ti(n, k) + Tz(n, k). This example is
a comparison between the original Zeilberger’s algorithm and case 2b of
MinimalZpair. The computed lower bound for the order of the telescopers
is b, while the order of the minimal telescoper is b + 1. Let = € N be the
starting value for the guessed order of the telescopers. Recall that the func-
tion Zeilberger applies Z to the input term 7" with p = 0, while MinimalZpair
applies Z to the term T3 in the decomposition (6) with ¢ = b. Table 2 shows
the time and space requirements. As one can easily notice, as b and/or j
increase, the relative performance of Zeilberger (compared to MinimalZpair)
quickly worsens.

T =

5.2 A Comparison

There exist different Maple implementations of Z such as Zeil in the EKHAD
package 11, sumrecursion in the sumtools package &, SummandToRec in the
HYPERG package 7. A Mathematica implementation (the function Zb) is
described in 1°. Due to the lack of a criterion for the applicability of Z at the
time these programs were implemented, the item-by-item examination strat-
egy is employed (these programs are in principal equivalent to the program
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Table 2. Time and space requirements for M and Z (Example 7).

Timing (seconds) | Memory (kilobytes)

jlb| M Z M Z
1| 6.49 5.35 | 27,838 24,702
2| 8.34 34.64 | 33,066 142,889
113 |11.13 124.53 | 44,233 535,736
4 | 14.46 570.02 | 56,410 1,882,730
5| 25.79 2999.22 | 97,506 6,536,309
1| 14.64 16.40 | 62,566 73,830
2| 17.24 228.59 | 68,304 770,529
3131|2015 1286.51 | 78,701 3,074,051
4 | 24.08 8771.08 | 91,844 10,766,646
51| 38.60 77663.68 | 139,823 33,423,168

Zeilberger in our package). This strategy leads to the two deficiencies which
are discussed in Section 1, and which are illustrated by the examples in this
paper.

For the case where the input is a rational function, a program such as
Zb “accepts an input if the irreducible factors of the denominator are integer-
linear” 1°. This is equivalent to the condition that the input be a proper
term. By Theorem 2, such a program prevents the computation of a Z-pair
when such a pair exists. Note that we also implemented in the program
MinimalZpair a direct and efficient algorithm to compute the minimal Z-
pairs.

For the case where the input T'(n, k) is a non-rational term, all the afore-
mentioned programs apply Z directly to T. On the other hand, MinimalZpair
first computes a lower bound y for the order of the telescopers (a fairly low-
cost operation), and then applies Z to the term 75 in the additive decomposi-
tion (6) using p as the starting value for the guessed orders of the telescopers
(note that the existence of a Z-pair is guaranteed). The minimal Z-pair for
T can then be easily obtained. Experimentation shows that this proposed
approach helps expedite the construction of the minimal Z-pairs.

6 Availability

Information on the availability of the library archive, functional specifications,
test samples used in this paper can be found at the URL

wwWw.scg.math.uwaterloo.ca/“hqle/code/Telescopers/Telescopers.html
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