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ABSTRACT

Sufficient conditions are given for validity of the discrete
Newton-Leibniz formula when the indefinite sum is obtained
either by Gosper’s algorithm or by Accurate Summation al-
gorithm. It is shown that sometimes a polynomial can be
factored from the summand in such a way that the safe sum-
mation range is increased.

Categories and Subject Descriptors: G.2.1 [Combina-
torics]: Counting problems; I.1.2 [Algorithms]: Algebraic
algorithms

General Terms: Algorithms

Keywords: symbolic summation, Gosper’s algorithm, Ac-
curate Summation algorithm, Newton-Leibniz formula

1. INTRODUCTION
Let K be a field of characteristic zero. A function t : I 7→

K defined on an interval of integers I ⊆ Z is a

• hypergeometric term if there are nonzero polynomials
a0, a1 ∈ K[n] such that a1(n)t(n + 1) + a0(n)t(n) = 0
for all n ∈ Z such that n, n + 1 ∈ I ;

• P -recursive sequence if there are polynomials a0, a1,
. . . , aρ ∈ K[n] such that a0aρ 6= 0 and aρ(n)t(n+ρ)+
· · · + a1(n)t(n + 1) + a0(n)t(n) = 0 for all n ∈ Z such
that n, n + 1, . . . , n + ρ ∈ I .

Each hypergeometric term is, of course, a P -recursive se-
quence.

If t(n) is a hypergeometric term, one can use the well-
known Gosper’s algorithm [6] to find (if it exists) another
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hypergeometric term u(n) which satisfies the key equation

u(n + 1) − u(n) = t(n) (1)

for all n ∈ I \ S where S is a finite set. Summing this
equation on n from v to w we get the discrete analog of the
Newton-Leibniz formula

w
∑

n=v

t(n) = u(w + 1) − u(v) (2)

provided that [v, w] ∩ Z ⊆ I \ S.
In many existing implementations of Gosper’s algorithm,

however, indiscriminate use of (2) sometimes results in
wrong answers. Here is a case in point.

Example 1. Consider the sequence

t(n) =

(

2n−3
n

)

4n
, (3)

which is defined for all n ∈ Z. This is a hypergeometric
term which satisfies

2(n + 1)(n − 2)t(n + 1) = (2n − 1)(n − 1)t(n) (4)

for all n ∈ Z. Gosper’s algorithm succeeds with input t(n)
and returns

u(n) =
2n(n + 1)

(

2n−3
n

)

(n − 2)4n
.

Summing equation (1) on n from 0 to m the left-hand side
telescopes, and we obtain

m
∑

n=0

t(n) =(?) u(m+1)−u(0) =
(m + 1)(m + 2)

(

2m−1
m+1

)

2(m − 1)4m
.

(5)
But the expression on the right gives the true value of the
sum only at m = 0. At m = 1 it is undefined, while at each
m ≥ 2 its value is 3/8 less than the actual value of the sum.
The problem here is that u(n) is undefined at n = 2, hence
equation (1) does not hold for n ∈ {1, 2}, and summing it
over a range including 1 or 2 may give a wrong answer.

This is not an isolated example: a similar phenomenon
seems to occur with the sum

m
∑

n=0

(

2n−p
n

)

4n

for each positive integer p.



If t is a P -recursive sequence, then one can use Accurate
Summation algorithm from [3], or its generalization in [5], to
solve equation (1) (we discuss this algorithm in Section 5).
Problems similar to those arising in Example 1 are possible
when one uses the resulting Newton-Leibniz formula. Notice
that one can apply Accurate Summation algorithm in the
case ρ = 1 as an alternative to Gosper’s algorithm; then the
incorrect formula (5) will appear again.

This common error is the discrete analogon of a well-
known error in definite integration committed by some of
the early symbolic integrators: when attempting to evalu-

ate I =
∫ b

a
f(x)dx by computing first an antiderivative F (x)

such that F ′(x) = f(x), and then using the Newton-Leibniz
formula I = F (b)−F (a), we may obtain an incorrect answer
unless F (x) is continuous on [a, b]. For example, the actual
value of

∫ 1

−1

x2 + 1

x4 − x2 + 1
dx

is π, but using the antiderivative arctan(x − 1/x) in the
Newton-Leibniz formula gives 0.

The obvious solution is to split the summation interval
into several subintervals that do not contain the exceptional
points from S. In this paper we analyze the exceptional set
S that appears in Gosper’s algorithm when summing hyper-
geometric terms, and more generally, in the Accurate Sum-
mation algorithm [3] when summing P -recursive sequences.

Section 3 provides sufficient conditions for the Newton-
Leibniz formula (2) to hold when the indefinite sum u(n)
is obtained by Gosper’s algorithm, and Section 5 does the
same for Accurate Summation. These conditions provide a
bounding interval for the exceptional set S, and are of two
kinds: a priori, which are weaker but readily available even
before running the algorithms, as they are based on the sin-
gularities of the operator annihilating the summand; and a
posteriori, which are stronger but available only after run-
ning the algorithms, as they are based on their output. On
the other hand, in Section 4 we prove that for proper hy-
pergeometric terms the discrete Newton-Leibniz formula is
valid without restrictions. For general P -recursive sequences
Section 6 shows that sometimes a polynomial can be fac-
tored from the summand in such a way that the size of the
bounding interval in the a priori condition is decreased.

A thorough analysis of the relationship between hypergeo-
metric terms as syntactic objects and their analytic meaning
in the context of summation has been provided by M. Schorn
in [8]. The solution proposed there for evaluation of sums
such as the one in Example 1 is by means of suitably chosen
limiting processes.

2. PRELIMINARIES

Definition 1. Following conventional notation, the ris-
ing factorial power (α)n and its reciprocal 1/(β)n are defined
for α, β ∈ K and n ∈ Z by

(α)n =































n−1
∏

k=0

(α + k), n ≥ 0,

|n|
∏

k=1

1

α − k
, n < 0, α 6= 1, 2, . . . , |n|,

undefined , otherwise ;

1

(β)n
=































n−1
∏

k=0

1

β + k
, n ≥ 0, β 6= 0,−1, . . . , 1 − n,

|n|
∏

k=1

(β − k), n < 0,

undefined , otherwise .

Note that if (α)n resp. 1/(β)n is defined for some n ∈ Z,
then (α)n+1 resp. 1/(β)n−1 is defined for that n as well.
More precisely, if α ∈ Z and α ≥ 1 then (α)n is defined on
[−α + 1,∞) ∩ Z, otherwise it is defined on all Z. Similarly,
if β ∈ Z and β ≤ 0 then 1/(β)n is defined on (−∞,−β]∩Z,
otherwise it is defined on all Z. Thus (α)n and 1/(β)n are
hypergeometric terms which satisfy

(α)n+1 = (α + n)(α)n, (β + n)/(β)n+1 = 1/(β)n (6)

whenever (α)n and 1/(β)n+1 are defined.
If I ⊆ Z is an infinite interval of integers we denote

I+ =

{

(−∞, a + 1] ∩ Z, if I = (−∞, a] ∩ Z,
I, otherwise;

I− =

{

(−∞, a − 1] ∩ Z, if I = (−∞, a] ∩ Z,
I, otherwise.

We use E to denote the shift operator w.r.t. n, so that
E t(n) = t(n + 1). Since juxtaposition can mean not only
operator application but also composition of operators, we
use ◦ to denote the latter in case of ambiguity, so that,
e.g., E ◦ t(n) = t(n + 1) ◦ E = t(n + 1)E. Sometimes we
use parentheses to denote operator application, writing, e.g.,
E(1) = E 1 = 1.

Definition 2. For a linear difference operator

L = aρE
ρ + aρ−1E

ρ−1 + · · · + a0 (7)

where ρ ≥ 1, aρ, . . . , a0 ∈ K[n], aρa0 6= 0 and
gcd(a0, . . . , aρ) = 1, we define the sets SLl of leading and
SLt of trailing integer singularities by

SLl = {x ∈ Z; aρ(x − ρ) = 0},

SLt = {x ∈ Z; a0(x) = 0}.

We call

• mLl = min(SLl ∪ {+∞}) the minimal leading singu-
larity of L,

• MLl = max(SLl ∪ {−∞}) the maximal leading singu-
larity of L,

• mLt = min(SLt ∪ {+∞}) the minimal trailing singu-
larity of L,

• MLt = max(SLt ∪ {−∞}) the maximal trailing singu-
larity of L.

Proposition 1. Let L be as in (7) and b ∈ K[n]. If a
rational function y ∈ K(n) satisfies

aρ(n)y(n + ρ) + · · · + a0(n)y(n) = b(n), (8)

then y(n) has no integer poles outside the interval (possibly
empty) [mLl, MLt].

For a proof, see [1].



3. WHEN CAN GOSPER’S ALGORITHM

BE USED TO SUM HYPERGEOMETRIC

TERMS?
We denote Gosper’s algorithm hereafter by GA. Consider

the case when (8) has the form

a1(n)t(n + 1) + a0(n)t(n) = 0 (9)

and set L = a1(n)E + a0(n). Let a hypergeometric term
t(n) satisfy equation (9). Given a0(n), a1(n) as input, GA
tries to construct r ∈ K(n) such that

a0(n)r(n + 1) + a1(n)r(n) = −a1(n) (10)

(this can also be done by the algorithms from [1] or [2]). If
such r(n) exists then u(n) = r(n)t(n) satisfies the key equa-
tion (1), possibly with finitely many exceptions. We now
give two kinds of sufficient conditions for this u(n) to satisfy
equation (1) and for the discrete Newton-Leibniz formula in
the form

w
∑

k=v

t(k) = u(w) − u(v) + t(w) (11)

to be valid:

1. an a posteriori condition, depending on the poles of
r(n) (Proposition 2),

2. an a priori condition, depending only on the integer
singularities of L (Theorem 1).

In both, we make the following assumptions:

• L = a1(n)E + a0(n) is an operator of type (7) with
ρ = 1,

• r ∈ K(n) is a rational function which satisfies (10) as
an equation in K(n),

• v, w are integers such that v ≤ w,

• I1 := [v, w − 1] ∩ Z,

• t(n) is a K-valued sequence which is defined for all
n ∈ [v, w] ∩ Z and satisfies (9) for all n ∈ I1,

• u(n) is a K-valued sequence such that u(n) = r(n)t(n)
whenever both r(n) and t(n) are defined.

Remark 1. Since u(n) = r(n)t(n) it is clear that, in gen-
eral, formula (11) should be used instead of (2), because the
latter formula needs values of the summand lying outside the
summation interval which however may be undefined. A nice
example is provided by the sum

2n
∑

k=0

(−1)k

(

4n

2k

)

/

(

2n

k

)

whose evaluation was posed as Problem 10494 in the Amer.
Math. Monthly in 1996. Here GA succeeds (see [7]), but the
summand is undefined everywhere outside the summation
interval.

Proposition 2. (a posteriori condition for GA) If r(n)
has no integer poles in [v, w], then the key equation (1) holds
for all n ∈ I1, and the discrete Newton-Leibniz formula (11)
is valid.

Proof: By assumption, t(n), t(n + 1), r(n), r(n + 1), u(n),
u(n+1) are defined for all n ∈ I1, and (9), (10) are valid on
I1. Therefore, for all n ∈ I1,

a0(n)u(n + 1) = a0(n)r(n + 1)t(n + 1)

= −a1(n)(1 + r(n))t(n + 1) (by (10))

= a0(n)(1 + r(n))t(n) (by (9))

= a0(n)u(n) + a0(n)t(n),

or equivalently,

a0(n)(u(n + 1) − u(n)) = a0(n)t(n). (12)

Pick an n ∈ I1. If a0(n) 6= 0 then (12) implies (1). If
a0(n) = 0 then, since gcd(a0, a1) = 1, we have a1(n) 6= 0.
Hence (9) implies t(n+1) = 0 and (10) implies r(n)+1 = 0.
Therefore u(n+1) = r(n+1)t(n+1) = 0 and u(n)+ t(n) =
(r(n) + 1)t(n) = 0, so (1) holds for all n ∈ I1. Summing (1)
over I1 yields (11).

Theorem 1. (a priori condition for GA) If [v, w]∩ [mLt +
1, MLl−1] = ∅, then the key equation (1) holds for all n ∈ I1,
and the discrete Newton-Leibniz formula (11) is valid.

Proof: Since r(n) satisfies (10), Proposition 1 implies that
r(n) has no integer poles outside the interval [α, β] where

α = min({x ∈ Z; a0(x − 1) = 0} ∪ {+∞})

= mLt + 1,

β = max({x ∈ Z; a1(x) = 0} ∪ {−∞})

= MLl − 1.

By assumption, the interval [v, w] is disjoint from [α, β].
Hence r(n) has no poles in [v, w], and the assertion follows
from Proposition 2.

In practice, one would run GA and then check if the a
posteriori condition of Proposition 2 is satisfied, i.e., if r(n)
has any integer poles in the summation interval. If yes, this
interval would be split into several subintervals in order to
guarantee correct evaluation. But it may be useful to check
the a priori condition of Theorem 1 first, because this will,
in general, restrict the relevant domain to check for poles of
r(n).

Example 2. For the hypergeometric term t(n) =
(

2n−3
n

)

/4n of Example 1, we have L = 2(n + 1)(n − 2)E −
(2n − 1)(n − 1), r(n) = 2n(n + 1)/(n − 2), and u(n) =
2n(n+1)

(

2n−3
n

)

/((n−2)4n). Thus SLt = {1}, SLl = {0, 3},
mLt = 1, MLl = 3, [mLt + 1, MLl − 1] = {2}, and the only
integer pole of r(n) is n = 2. In this case both the a priori
and the a posteriori conditions give the same point n = 2
to be avoided by the summation interval. As predicted by
either condition, the key equation (1) fails at n = 1 and
n = 2 because u(n) or u(n + 1) are undefined there. One
is tempted to absorb the denominator factor n − 2 into the
binomial coefficient, and replace u(n) by, say, the sequence
ū(n) = n(n + 1)

(

2n−1
n

)

/((2n − 1)4n) which is defined ev-
erywhere, and agrees with u(n) for all n 6= 1, 2. But then
equation

ū(n + 1) − ū(n) = t(n) (13)

fails at n = 0 and n = 1.



Example 3. Let

t(n) =

{

(n − 2)(n − 3)(n − 5)(n − 1)!, n ≥ 2

(n − 2)(n − 3)(n − 5) (−1)n

(−n)!
, n ≤ 1

where we define as usual 1/k! = 0 when k is a negative
integer. This is a hypergeometric term which satisfies

(n − 5)(n − 3) t(n + 1) = (n − 4)(n − 1)n t(n)

for all n ∈ Z. Here we have a0(n) = −(n − 4)(n − 1)n,
a1(n) = (n − 5)(n − 3), r(n) = (n − 6)/((n − 2)(n − 3)),
and u(n) = r(n)t(n). Thus SLt = {0, 1, 4}, SLl = {4, 6},
mLt = 0, MLl = 6, [mLt + 1, MLl − 1] = [1, 5], and the
set of integer poles of r(n) is {2, 3}. The set to be avoided
by the summation interval given by the a priori condition is
{1, 2, 3, 4, 5}, while the analogous set given by the a posteriori
condition is {2, 3}. The key equation (1) fails at n = 1, 2, 3
as predicted by the a posteriori condition, because u(n) or
u(n + 1) are undefined there. One can try cancelling the
factor (n − 2)(n − 3) and replace u(n) by the sequence

ū(n) =

{

(n − 5)(n − 6)(n − 1)!, n ≥ 2

(n − 5)(n − 6) (−1)n

(−n)!
, n ≤ 1

which is defined everywhere, and agrees with u(n) for all
n 6= 2, 3. But equation (13) still fails at n = 1.

4. SUMMATION OF PROPER HYPERGE­

OMETRIC TERMS
It is clear that the a priori condition given in Theorem 1

is, in general, too cautious: e.g., if the summand is a poly-
nomial sequence then the integer singularities of the corre-
sponding recurrence present no obstacles to validity of the
discrete Newton-Leibniz formula (11). The following ex-
ample shows that even the a posteriori condition given in
Proposition 2 can sometimes be too pessimistic.

Example 4. Let t(n) = (2 − n)(−1/2)n/(4n!). This hy-
pergeometric term is defined for all n ∈ Z (note that t(n) = 0
for n < 0) and satisfies Lt(n) = 0 for all n ∈ Z where L
is the same operator as in Example 2. Thus both Theorem
1 and Proposition 2 require the point n = 2 to be excluded
from the summation interval. Equation (1) indeed fails at
n = 1 and n = 2 because u(n) = r(n)t(n) is undefined at
n = 2. But if we cancel the factor n − 2 in the product
r(n)t(n), where r(n) = 2n(n + 1)/(n − 2), and replace u(n)
by the resulting sequence

ū(n) = −n(n + 1)
(−1/2)n

2n!
,

then equation (13) holds for all n ∈ Z, and the discrete
Newton-Leibniz formula

w
∑

n=v

t(n) = ū(w + 1) − ū(v) (14)

is valid for all v ≤ w.
This example also shows that, thanks to possible singular-

ities, a hypergeometric term (or a P -recursive sequence) is,
in general, not uniquely defined by its annihilating operator
and an appropriate number of initial values. In fact, it is
shown in [4] that every positive integer is the dimension of
the kernel of some operator of type (7) with ρ = 1 in the
space of sequences t : Z → K.

The hypergeometric term t(n) from Example 4 is an in-
stance of a proper term which we are going to define now.
Then we show in Theorem 2 that there are no restrictions
on the validity of the discrete Newton-Leibniz formula for
proper terms.

Definition 3. A hypergeometric term t(n) defined on an
interval I of integers is proper if there are

• a polynomial p ∈ K[n],

• a constant z ∈ K,

• nonnegative integers q, r,

• constants α1, . . . , αq, β1, . . . , βr ∈ K

such that

t(n) = p(n)zn

∏q
i=1(αi)n

∏r
j=1(βj)n

(15)

for all n ∈ I.

Theorem 2. Let t(n) be a proper hypergeometric term
defined on an interval I of integers and given by (15). De-
note a(n) = z

∏q
i=1(n + αi) and b(n) =

∏r
j=1(n + βj). If a

polynomial y ∈ K[n] satisfies

a(n)y(n + 1) − b(n − 1)y(n) = p(n) (16)

and if

ū(n) = y(n)zn

∏q
i=1(αi)n

∏r
j=1(βj)n−1

for all n ∈ I+ (see Section 2 for notation), then equation
(13) holds for all n ∈ I, and the discrete Newton-Leibniz
formula (14) is valid whenever [v, w] ∩ Z ⊆ I.

Proof: By assumption, (16) holds for all n ∈ I . Multiplying
it by zn

∏q
i=1(αi)n/

∏r
j=1(βj)n yields

zn

∏q
i=1(αi)n

∏r
j=1(βj)n

a(n)y(n + 1)

− zn

∏q
i=1(αi)n

∏r
j=1(βj)n

b(n − 1)y(n)

= t(n). (17)

Since (αi)n and 1/(βj)n are defined for all n ∈ I ,
(αi)n+1 and 1/(βj)n−1 are defined there too. By (6),
a(n)

∏q
i=1(αi)n = z

∏q
i=1(αi)n+1 and b(n−1)/

∏r
j=1(βj)n =

1/
∏r

j=1(βj)n−1. Hence (17) is the same as (13), and (14)

follows by summing it over [v, w] ∩ Z.

Example 5. Even though the hypergeometric term (3)
from Example 1 defined on I = Z can be written in terms of
rising factorials as

t(n) =
(n − 2)n

4n(1)n
,

one can show that it is not a proper term on Z. However,
it can also be written as

t(n) =

{

2 t∗(n), n < 2,
t∗(n), n ≥ 2,



where

t∗(n) = (2 − n)
(−1/2)n

4(1)n

is a proper term (namely the one discussed in Example 4).
So to evaluate

∑w
n=v t(n) one can first split the summation

range at n = 2, then use Theorem 2 on both subranges.

5. WHEN CAN ACCURATE SUMMATION

BE USED TO SUM P­RECURSIVE

SEQUENCES?
By Accurate Summation algorithm (hereafter denoted by

AS) we mean a specific version of the general Accurate Inte-
gration algorithm given in [3] for integration/summation of
solutions of Ore equations. This version, which is adapted
for sequences that satisfy equations of the form (8) with
b(n) = 0, solves the following problem: Let a minimal anni-
hilator L of the form (7) be known for a K-valued sequence
t(n). Determine if there exists a sequence u(n) which satis-

fies (1), and has a minimal annihilator L̃ of order ρ.
It is shown in [3] that if such a u exists then it can be

expressed as R t where R is an operator of order ρ − 1 with
rational-function coefficients. AS constructs R if it exists.
(GA solves this problem when ρ = 1.) In order to analyze
the validity of the discrete Newton-Leibniz formula (11) in
this case, we need to express explicitly the quotient and the
remainder of a linear difference operator when divided by
the first-order operator E − 1 from the left. The notion of
the adjoint difference operator is useful here.

Definition 4. Let

L =

ρ
∑

k=0

bk(n)Ek

be an operator in K(n)[E]. Its adjoint L∗ ∈ K(n)[E−1] is
defined as

L∗ =

ρ
∑

k=0

E−k ◦ bk(n) =

ρ
∑

k=0

bk(n − k)E−k.

It is straightforward to verify that (L1 ◦ L2)
∗ = L∗

2 ◦ L∗
1.

Lemma 1. Let P =
∑ρ

k=0 bk(n)Ek, R =
∑ρ−1

k=0 ck(n)Ek

be operators from K(n)[E], and p ∈ K(n) a rational function

such that P = (E−1)◦R+p. Then ck(n) =
∑ρ−k

j=1 bk+j(n−j)

and p = P ∗(1).

Proof: Let

Q =

ρ−1
∑

k=0

ρ−k
∑

j=1

bk+j(n − j)Ek

and q = P ∗(1). Then

(E − 1) ◦ Q + q

=

ρ−1
∑

k=0

ρ−k
∑

j=1

bk+j(n − j + 1)Ek+1 − Q + P ∗(1)

=

ρ
∑

k=1

ρ−k+1
∑

j=1

bk+j−1(n − j + 1)Ek

−

ρ−1
∑

k=0

ρ−k+1
∑

j=2

bk+j−1(n − j + 1)Ek +

ρ
∑

j=0

bj(n − j)

=

ρ
∑

k=0

ρ−k+1
∑

j=1

bk+j−1(n − j + 1)Ek

−

ρ−1
∑

k=0

ρ−k+1
∑

j=2

bk+j−1(n − j + 1)Ek

= bρ(n)Eρ +

ρ−1
∑

k=0

bk(n)Ek = P.

As the quotient and remainder in operator division are
unique, it follows that R = Q and p = q.

Note that just to find the remainder p = P ∗(1), it suffices
to take adjoints on both sides of equation P = (E−1)◦R+p
which results in P ∗ = R∗ ◦(E−1)∗ +p = R∗ ◦(E−1−1)+p,
and apply this to 1.

Remark 2. Let r ∈ K(n) be a rational function, and L
a difference operator as in (7). By Lemma 1, the remainder
of 1 − rL when divided by E − 1 from the left is equal to

(1 − rL)∗(1) = (1 − L∗ ◦ r)(1) = 1 − (L∗ ◦ r)(1) = 1 − L∗r.

Hence an operator R such that 1 − rL = (E − 1) ◦ R exists
if and only if L∗r = 1. This observation forms the basis of
Accurate Summation.

Algorithm AS

Input: L =
∑ρ

k=0 ak(n)Ek ∈ K[n, E].
Output: r ∈ K(n) and R ∈ K(n)[E]

such that 1 − rL = (E − 1) ◦ R, if they exist.

if there exists r ∈ K(n) such that L∗r = 1 then

for k := 0, 1, . . . , ρ − 1 do

ck(n) := −
∑ρ−k

j=1 r(n − j)ak+j(n − j);

R :=
∑ρ−1

k=0 ck(n)Ek;
return (r(n), R)

else

such r(n) and R do not exist.

We can find a rational-function solution r(n) of L∗r = 1
using, e.g., the algorithm from [1] or the algorithm from [2].

A generalization of [3] was given in [5]; however, the ap-
proach taken in [3] has the advantage of simplicity, as it only
uses the adjoint operator and algorithms for finding rational
solutions. This simplifies the investigation of solutions that
are obtained by AS, and enables us to formulate a priori
conditions for AS, similar to Theorem 1 (see Theorems 3
and 5 below).



Assume that AS succeeds with L, returning r and R. It
is shown in [3] that

• if L is a minimal annihilator for t, then a minimal
annihilator for u = R t is L̃ = 1 − R ◦ (E − 1) (note

that L̃ has the same order ρ as L);

• the sequence u(n) = R t(n) satisfies (1), possibly with
finitely many exceptions, for any sequence t such that
Lt = 0 (not only for those t’s whose minimal annihila-
tor is L).

We now give two sufficient conditions for this u(n) to sat-
isfy equation (1) and for the discrete Newton-Leibniz for-
mula (11) to be valid:

1. an a posteriori condition, depending on the poles of
r(n) and of the coefficients of R (Proposition 3),

2. an a priori condition, depending only on the integer
singularities of L (Theorem 3).

In either case, we make the following assumptions:

• L ∈ K[n, E] is an operator of type (7),

• r ∈ K(n) is a rational function which satisfies L∗r = 1
as an equation in K(n),

• R ∈ K(n)[E] is an operator of order ρ − 1 which sat-
isfies 1 − rL = (E − 1) ◦ R in K(n)[E],

• v, w are integers such that v ≤ w − ρ,

• Iρ := [v, w − ρ] ∩ Z,

• t(n) is a K-valued sequence which is defined for all
n ∈ [v, w] ∩ Z and satisfies L t(n) = 0 for all n ∈ Iρ,

• u(n) is a K-valued sequence such that u(n) = R t(n)
whenever R t(n) is defined.

Proposition 3. (a posteriori condition for AS) If r(n)
has no poles in Iρ and the coefficients of R have no integer
poles in [v, w−ρ+1], then equation (1) holds for all n ∈ Iρ,
and the discrete Newton-Leibniz formula

w
∑

k=v

t(k) = u(w − ρ + 1) − u(v) +

ρ
∑

k=1

t(w − ρ + k) (18)

is valid.

Proof: By assumptions on t and R, u(n) and u(n + 1) are
defined for all n ∈ Iρ. As r(n) has no poles in Iρ,

u(n + 1) − u(n) = (E ◦ R) t(n) − R t(n)

= ((E − 1) ◦ R) t(n) = (1 − rL) t(n)

= t(n) − r(n) L t(n) = t(n)

for every n ∈ Iρ. Thus (1) holds for all n ∈ Iρ, and summing
it over Iρ yields (18).

Lemma 2. Let α, β ∈ Z∪ {−∞,∞}. If r(n) has no inte-
ger poles in [α, β] then the coefficients of R have

(i) no integer poles in [α + ρ, β + 1], and also

(ii) no integer poles in [α, β − ρ + 1].

Proof: Write R =
∑ρ−1

k=0 ck(n)Ek. By Lemma 1,

ck(n) = −

ρ−k
∑

j=1

r(n − j)ak+j(n − j)

for 0 ≤ k ≤ ρ − 1.

(i) By assumption, r(n − j) has no integer poles in
[α + j, β + j], hence ck(n) has no integer poles
in

⋂

1≤j≤ρ−k[α + j, β + j] = [max1≤j≤ρ−k(α +

j), min1≤j≤ρ−k(β+j)] = [α+ρ−k,β+1], and the coef-
ficients of R have no integer poles in

⋂

0≤k≤ρ−1[α+ρ−

k, β+1] = [max0≤k≤ρ−1(α+ρ−k), β+1] = [α+ρ, β+1].

(ii) To prove the second assertion, we need to express the
coefficients ck(n) in a different way. Since 1 − rL =
(E − 1) ◦ R, it follows from Remark 2 that L∗r =
∑ρ

j=0 r(n − j)aj(n − j) = 1. Shifting this k times we

find that
∑ρ

j=0 r(n+k−j)aj(n+k−j) =
∑ρ−k

j=−k r(n−

j)ak+j(n − j) = 1. Therefore

ck(n) = −

ρ−k
∑

j=1

r(n − j)ak+j(n − j)

+

ρ−k
∑

j=−k

r(n − j)ak+j(n − j) − 1

=
k
∑

j=0

r(n + j)ak−j(n + j) − 1

for 0 ≤ k ≤ ρ − 1. By assumption, r(n + j) has no
integer poles in [α − j, β − j], hence ck(n) has no in-
teger poles in

⋂

0≤j≤k[α − j, β − j] = [max0≤j≤k(α −

j), min0≤j≤k(β − j)] = [α, β − k], and the coefficients
of R have no integer poles in

⋂

0≤k≤ρ−1[α, β − k] =

[α, min0≤k≤ρ−1(β − k)] = [α, β − ρ + 1].

Theorem 3. (a priori condition for AS) If [v, w − ρ] ∩
[mLt, MLl − ρ] = ∅, then equation (1) holds for all n ∈ Iρ,
and the discrete Newton-Leibniz formula (18) is valid.

Proof: Rewrite L∗r = 1 in the equivalent form L′r = 1
where L′ = Eρ ◦ L∗ =

∑ρ
k=0 aρ−k(n + k)Ek ∈ K[n, E]. By

Lemma 1, r(n) has no integer poles outside [mL′l, ML′t].
But SL′l = SLt and SL′t = SLl − ρ, therefore mL′l = mLt

and ML′t = MLl−ρ, hence r(n) has no integer poles outside
[mLt, MLl − ρ].

If mLt ≤ MLl − ρ, then both intervals [v, w − ρ] and
[mLt, MLl − ρ] are nonempty, hence either w − ρ < mLt

or MLl − ρ < v. In the former case, r(n) has no integer
poles in (−∞, w − ρ], so by Lemma 2(i), the coefficients of
R have no integer poles in (−∞, w−ρ+1]. In the latter case,
r(n) has no integer poles in [v,∞), so by Lemma 2(ii), the
coefficients of R have no integer poles in [v,∞). In either
case, the result follows from Proposition 3.

If mLt > MLl−ρ then r(n) has no integer poles at all. By
Lemma 2, the coefficients of R also have no integer poles,
and the result again follows from Proposition 3.

A similar remark to the one stated immediately after the
proof of Theorem 1 about the use of the a priori and a
posteriori conditions in practice applies here as well.



Example 6. Let L = (n−3)(n−2)(n+1)E2−(n−3)(n2−
2n−1)E−(n−2)2. Define t(n) by the initial values t(2) = a,
t(3) = 0, t(4) = b, t(5) = c where a, b, c are arbitrary fixed
complex numbers, and by the recurrence L t(n) = 0 when
n ≤ 1 or n ≥ 6. Then it can be checked that L t(n) = 0 for
all n ∈ Z. Algorithm AS succeeds with input L and returns
r(n) = −1/((n−2)(n−3)), R = nE+1/(n−3). In this case
SLt = {2}, mLt = 2, SLl = {1, 4, 5}, MLl − ρ = 5 − 2 = 3.
So both the a posteriori and the a priori conditions reduce
to 3 /∈ [v, w − 1]. This is the best possible, as the sequence
u(n) = R t(n) is undefined at n = 3, and equation (1) does
not hold for n = 2, 3. It can be verified that except in the
special case b+4c = 0, there is no way to define u(3) so that
(1) would hold for all n ∈ Z.

Remark 3. When ρ = 1 and v ≤ w − 1, Theorem 3
implies Theorem 1 in the following way. If r(n) satisfies
(10) then it is easy to verify that r̄(n) := −r(n + 1)/a1(n)
satisfies L∗r̄ = 1, and 1−r̄ L = (E−1)◦R where R = r(n) is
an operator of order 0. Thus u(n) = r(n)t(n) of Theorem 1
agrees with u(n) = R t(n) of Theorem 3. By the assumption
of Theorem 1, [v, w] ∩ [mLt + 1, MLl − 1] = ∅.

If mLt + 1 ≤ MLl − 1 then either w ≤ mLt or MLl −
1 ≤ v − 1, hence [v, w − 1] ∩ [mLt, MLl − 1] = ∅, and the
conclusion follows by Theorem 3. If mLt + 1 > MLl − 1
then mLt ≥ MLl − 1. Again we distinguish two cases: If
mLt > MLl − 1, the conclusion follows by Theorem 3. If
mLt = MLl − 1, then a0(n) and a1(n) have a common zero
since a0(mLt) = a1(MLl − 1) = 0. But this contradicts the
assumption of relative primality of the coefficients of L.

Note that when ρ ≥ 2, polynomials a0(n) and aρ(n) need
not be relatively prime.

6. EXPLOITING POLYNOMIAL FACTORS
In this section we show how polynomial factors of hy-

pergeometric terms (even non-proper ones, such as the one
in Example 3) and of P -recursive sequences can be used
to strengthen the statements of Theorems 1 and 3 (i.e., to
weaken the a priori conditions for validity of the discrete
Newton-Leibniz formula).

Theorem 4. Assume that

• L = a1(n)E + a0(n) and L̄ = ā1(n)E + ā0(n) are
operators of type (7) with ρ = 1,

• t(n), t̄(n) are K-valued sequences with infinitely many
nonzero values, defined on an infinite interval of inte-
gers I and satisfying L t(n) = L̄ t̄(n) = 0 on I− (see
Section 2 for notation),

• p ∈ K[n] is a polynomial such that t(n) = p(n)t̄(n) for
all n ∈ I,

• r ∈ K(n) is a rational function which satisfies (10) as
an equation in K(n),

• r̄ = p r ∈ K(n),

• ū(n) is a K-sequence such that ū(n) = r̄(n)t̄(n) when-
ever both r̄(n) and t̄(n) are defined,

• v, w are integers such that v ≤ w and [v, w] ∩ Z ⊆ I.

If I ∩ [mL̄t +1, ML̄l − 1] = ∅ then equation (13) holds for all
n ∈ I−, and the discrete Newton-Leibniz formula

w
∑

k=v

t(k) = ū(w) − ū(v) + t(w) (19)

is valid.

Proof: By assumption, we have for all n ∈ I−,

ā1(n)t̄(n + 1) + ā0(n)t̄(n) = 0, (20)

a1(n)p(n + 1)t̄(n + 1) + a0(n)p(n)t̄(n) = 0. (21)

Multiplying (20) by a1(n)p(n + 1), (21) by ā1(n)
and subtracting, we find ā0(n)t̄(n)a1(n)p(n + 1) =
a0(n)p(n)t̄(n)ā1(n). Since t̄(n) has infinitely many nonzero
values on I−, this implies that

a0(n)p(n)ā1(n) = ā0(n)a1(n)p(n + 1) (22)

holds infinitely often, hence also as an equation in K[n].
Multiplying (10) by ā1(n)p(n), (22) by r(n+1), subtracting,
and cancelling a1(n) in K(n), we obtain

ā0(n)r̄(n + 1) + ā1(n)r̄(n) = −ā1(n)p(n) (23)

as an equation in K(n). It follows from Proposition 1 that
r̄ ∈ K(n) has no integer poles outside the interval [mL̄t +
1, ML̄l−1]. Therefore r̄(n) and ū(n) are defined on I , r̄(n+1)
and ū(n + 1) are defined on I−, and (23) is valid for all
n ∈ I−.

Pick an n ∈ I−. Multiplying (20) by r̄(n + 1), (23) by
t̄(n) and subtracting, we obtain

ā1(n)r̄(n + 1)t̄(n + 1) − ā1(n)r̄(n)t̄(n) = ā1(n)p(n)t̄(n).

If ā1(n) 6= 0 this reduces to (13). If ā1(n) = 0 then, by
assumption, ā0(n) 6= 0, so (20) implies t̄(n) = t(n) = ū(n) =
0 and (23) implies r̄(n+1) = ū(n+1) = 0, hence (13) holds
in this case as well. So (13) holds for all n ∈ I−, and the
second assertion follows by summing (13) on n from v to
w − 1.

Example 7. Let t(n) be the hypergeometric term from
Example 3 which satisfies L t(n) = 0 for all n ∈ Z where
L = (n − 5)(n − 3) E − (n − 4)(n − 1)n. Define p(n) =
(n − 5)(n − 3)(n − 2) and

t̄(n) =

{

(n − 1)!, n ≥ 2,
(−1)n

(−n)!
, n ≤ 1.

Then L̄ t̄(n) = 0 for all n 6= 1 where L̄ = E − n. So, in
the notation of Theorem 4, the maximal possible interval I
is either (−∞, 1] ∩ Z or [2,∞) ∩ Z. As L̄ has no leading
singularities, ML̄l = −∞ and [mL̄t + 1, ML̄l − 1] = ∅. With
r(n) = (n − 6)/((n − 2)(n − 3)), r̄(n) = (n − 5)(n − 6)
and ū(n) = r̄(n)t̄(n), all the assumptions of Theorem 4 are
satisfied, and it follows that formula (19) is valid provided
that w ≤ 1 or v ≥ 2.

Now we consider the general case with ρ ≥ 1.

Proposition 4. Let (r(n), R) be the result of applying
AS to an operator L ∈ K[n, E] of type (7), and let r = s/q
where s, q ∈ K[n]. Then there exist p ∈ K[n] and L̄ ∈
K[n, E] such that

L ◦ p = qL̄, (24)

(E − 1) ◦ R ◦ p = p − s L̄, and R ◦ p ∈ K[n, E].



Proof: Let d ∈ K[n] be a polynomial and B ∈ K[n, E] an
operator such that

Eρ ◦ L∗ ◦
1

q
=

1

d
B.

Then

1

q
L ◦ E−ρ = B∗ ◦

1

d
.

Therefore L◦E−ρ ◦d = qB∗. Multiplying this by Eρ on the
right gives L ◦E−ρ ◦d ◦Eρ = L ◦d(n− ρ) = qB∗ ◦Eρ. Take
p(n) = d(n−ρ) and L̄ = B∗ ◦Eρ. Then (24) is satisfied and
p−s L̄ = p−rqL̄ = p−rL◦p = (1−rL)◦p = (E−1)◦R◦p.
Hence the operator R ◦ p is the left quotient of p − s L̄ by
E − 1 and, consequently, has polynomial coefficients.

Theorem 5. Let

• L, L̄, R, r, p, q be such as in Proposition 4,

• v, w ∈ Z be such that v ≤ w − ρ,

• Iρ = [v, w − ρ] ∩ Z,

• t̄(n) be a K-valued sequence defined for all n ∈ [v, w]∩
Z such that L̄t̄(n) = 0 for all n ∈ Iρ.

Then the K-valued sequence t(n) = p(n)t̄(n) satisfies
Lt(n) = 0 for all n ∈ Iρ, and the discrete Newton-Leibniz
formula (18) can be applied to t(n) with u(n) = (R ◦ p)t̄(n).

Proof: By (24),

Lt(n) = (L ◦ p)t̄(n) = qL̄t̄(n) = 0

for all n ∈ Iρ. Also, u(n) = (R ◦ p)t̄(n) and u(n + 1) =
(E ◦ R ◦ p)t̄(n) are defined for all n ∈ Iρ. Therefore, by
Proposition 4,

u(n + 1) − u(n) = ((E − 1) ◦ R ◦ p)t̄(n) = (p − sL̄)t̄(n)

= p(n)t̄(n) − s(n)L̄t̄(n) = t(n)

for all n ∈ Iρ, and (18) follows by summing this over Iρ.

Example 8. Consider again the operator

L = 2(n + 1)(n − 2)E − (2n − 1)(n − 1)

from Example 2. Here mLt = 1 and MLl = 3, so, following
Theorem 3, we can apply formula (18) if [v, w−1]∩[1, 2] = ∅.
Using the algorithm from [1] or the algorithm from [2] we
compute the solution r(n) = −(n + 2)/((n − 1)(n − 2)) of
L∗r = 1, and set q(n) = (n − 1)(n − 2). Then

E ◦ L∗ ◦
1

q(n)
=

1

n − 1
(−(2n + 1)E + 2(n + 1)),

therefore we have

d(n) = n − 1,

B = −(2n + 1)E + 2(n + 1),

L̄ = B∗ ◦ E = 2(n + 1)E − (2n − 1), (25)

p(n) = n − 2,

R = 2n(n + 1)/(n − 2),

u(n) = 2n(n + 1)t̄(n).

Let t̄(n) be a sequence defined for all n ∈ [v, w] ∩ Z and
satisfying L̄t̄(n) = 0 for all n ∈ [v, w−1]∩Z where L̄ is given

in (25). Then by Theorem 5, the sequence t(n) = (n−2)t̄(n)
satisfies Lt(n) = 0 for all n ∈ [v, w−1]∩Z, and the formula

w−1
∑

n=v

t(n) = 2w(w + 1)t̄(w) − 2v(v + 1)t̄(v) (26)

is valid whenever v ≤ w−1. The general solution of L̄y = 0

is t̄(n) = c (−1/2)n

(1)n

where c is an arbitrary constant. Thus,

by taking c = −1/4, we see that (26) can be used to sum

the term t(n) = (n − 2)t̄(n) = (2 − n) (−1/2)n

4(1)n

considered in

Example 4.
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