
Regularization of linear recurrence systems

�

S.A. Abramov

y

M. Bronstein

z

D.E. Khmelnov

x

May 28, 2003

Abstract

We consider the problem of transforming a recurrence system

P

d

(n)z

n+d

+ P

d�1

(n)z

n+d�1

+ � � �+ P

0

(n)z

n

= 0

where the P

i

(n) are polynomial m � m-matrices, into forms where the matrix P

d

(n) (resp. P

0

(n)) is

nonsingular. As a basic auxiliary transformation we use a reduction of the system: whenever the leading

(resp. trailing) matrix is singular, then such a reduction ensures that a zero row or column appears

in it. We consider di�erent algorithms based on di�erent types of reduction, and show that our EG

0

reduction [2, 3] is the only two-stage reduction. We also present extensive experimental comparisons

of EG

0

with other known reductions, comparisons that con�rm the practical superiority of EG

0

over

one-step reductions.

�®â æ¨ï

� áá¬ âà¨¢ ¥âáï § ¤ ç ¯à¨¢¥¤¥¨ï à¥ªãàà¥â®© á¨áâ¥¬ë

P

d

(n)z

n+d

+ P

d�1

(n)z

n+d�1

+ � � �+ P

0

(n)z

n

= 0;

£¤¥ ¢á¥ P

i

(n) | ¯®«¨®¬¨ «ìë¥ m�m-¬ âà¨æë, ª ¢¨¤ã, ¢ ª®â®à®¬ ¬ âà¨æ P

d

(n) (á®®â¢¥âáâ¢¥®,

P

0

(n)) ï¢«ï¥âáï ¥¢ëà®¦¤¥®©. � ª ç¥áâ¢¥ ®á®¢®£® ¢á¯®¬®£ â¥«ì®£® ¯à¥®¡à §®¢ ¨ï ¢ëáâã¯ ¥â

à¥¤ãªæ¨ï á¨áâ¥¬ë: ¥á«¨ ¢¥¤ãé ï (á®®â¢¥âáâ¢¥®, âà¥©«¨®£®¢ ï) ¬ âà¨æ ¢ëà®¦¤¥ , â® à¥¤ãª-

æ¨ï ®¡¥á¯¥ç¨¢ ¥â ¯®ï¢«¥¨¥ ¢ ¥© ã«¥¢®© áâà®ª¨ ¨«¨ áâ®«¡æ . �ë à áá¬ âà¨¢ ¥¬ «£®à¨â¬ë,

®á®¢ ë¥ à §«¨çëå ¢¨¤ å à¥¤ãªæ¨¨, ¨ ¯®ª §ë¢ ¥¬, çâ® ¨§ ¨å â®«ìª® ¯à¥¤«®¦¥ ï ¢â®-

à ¬¨ EG

0

à¥¤ãªæ¨ï [2, 3] ï¢«ï¥âáï ¤¢ãåíâ ¯®© à¥¤ãªæ¨¥©. �ë â ª¦¥ ¯à¨¢®¤¨¬ íªá¯¥à¨¬¥â «ì®¥

áà ¢¥¨¥ EG

0

á ¤àã£¨¬¨ ¨§¢¥áâë¬¨ à¥¤ãªæ¨ï¬¨; íâ¨ áà ¢¥¨ï ¯®¤â¢¥à¦¤ îâ ¯à ªâ¨ç¥áª®¥ ¯à¥-

¢®áå®¤áâ¢® EG

0

 ¤ ®¤®íâ ¯ë¬¨ à¥¤ãªæ¨ï¬¨.

R�esum�e

Nous consid�erons le probl�eme de transformer un syst�eme de r�ecurrences lin�eaires

P

d

(n)z

n+d

+ P

d�1

(n)z

n+d�1

+ � � �+ P

0

(n)z

n

= 0

o�u les P

i

(n) sont des matrices m�m de polynômes, vers des formes o�u la matrice P

d

(n) (resp. P

0

(n))

est non singuli�ere. La transformation auxiliaire de base que nous utilisons est la r�eduction du syst�eme :

chaque fois que la matrice de tête (resp. de queue) est singuli�ere, une telle r�eduction garantit qu'une ligne

ou colonne nulle y apparait. Nous consid�erons plusieurs algorithmes bas�es sur des r�eductions di��erentes

et montrons que notre r�eduction EG

0

[2, 3] est la seule r�eduction �a deux stages. Nous pr�esentons aussi

des comparaisons exp�erimentales �etendues entre EG

0

et les autres r�eductions connues, comparaisons qui

con�rment la sup�eriorit�e en pratique de EG

0

sur les r�eductions �a un stage.

�

Supported in part by a grant from French-Russian Lyapunov institute, Project No 98-03.

y

Dorodnicyn Computer Center of the Russian Academy of Sciences, Moscow 119991, Russia, abramov@ccas.ru

z

INRIA, BP 93, 06902-Sophia Antipolis Cedex, France, Manuel.Bronstein@sophia.inria.fr

x

Dorodnicyn Computer Center of the Russian Academy of Sciences, Moscow 119991, Russia, dennis khmelnov@mail.ru

1

1 Introduction

Linear recurrences (scalar or system) with variable coe�cients appear in many areas of mathematics. Solving

systems lead however to speci�c di�culties which do appear in the scalar case. Consider the scalar equation

P

d

(n)z

n+d

+ P

d�1

(n)z

n+d�1

+ � � �+ P

0

(n)z

n

= 0 (1)

where the coe�cients P

0

(n); : : : ; P

d

(n) are polynomial, and P

0

(n); P

d

(n) are not identically zero. Then

those two polynomials vanish only for a �nite set of values of n. If (1) is obtained, for example, as a relation

satis�ed by the coe�cients of a series that satis�es a given linear di�erential equation then the roots of

P

0

(n) and P

d

(n) give important informations on the solutions of that di�erential equation. If (1) is instead

a system, z

n

is an m-component vector, and P

0

(n); : : : ; P

d

(n) are polynomialm�m-matrices then the role,

which is played by the roots of the leading and trailing polynomials in the scalar case, can now be played

by the roots of the determinants of the matrices P

0

(n) and P

d

(n), provided that those determinants are not

identically zero.

In a similar fashion, linear recurrence systems can appear when handling other types of linear functional

systems, for example, di�erence and q-di�erence systems with polynomial coe�cients. Such functional

systems induce recurrence systems of the form (1) for the coe�cients of their series solutions, and the roots

of the determinants of the matrices P

0

(n) and P

d

(n), (when those matrices are non-singular) are always

important for determining the structure of the solution space.

It may happen however that the matrixP

0

(n) or P

d

(n) is singular. In that case, not only is it impossible to

compute bounds on the orders of the solutions, but it also makes di�cult, from a computational standpoint,

to use the recurrence (1) to compute the sequence of vectors it generates given initial conditions.

A natural solution in that case is to compute an equivalence transformation of the reccurence system,

which transforms it into a form with either the leading or trailing matrix nonsingular. This transformation

may be a \quasi{equivalence", in the sense that the eventual changes in the solution set can be easily taken

into account.

In this paper we consider algorithms using that equivalence approach and compare our algorithmsEG [1,

5] and EG

0

[2, 3] with the algorithm FFreduce [11].

Since our regularizing algorithms are at the core into algorithms for computing the rational solutions

of linear systems of di�erence equations with polynomial coe�cients, we also carry out an experimental

comparison of EG

0

with a solver based on a di�erent approach [6, 7].

It should be mentioned that the algorithms EG, EG

0

and FFreduce are applicable not only to systems

of recurrences, but more generally to rectangular matrices of generalized di�erence operators [9, 13, 14, 15],

so they can also be applied to ordinary di�erential, di�erence and q-di�erence systems. In addition, the

EG

0

algorithm is applicable to operators over noncommutative coe�cient domains [3], so it can be used

for example to compute the rank of matrices over multivariate Weyl algebras. However, we limit ourselves

in this paper to the case of ordinary recurrence systems, �rst because solving arbitrary linear functional

systems with polynomial coe�cients is always reduced to that case, and second, because all the basic ideas

of the algorithms can be seen on that case, the more general ones needing additional machinery.

In the course of project 98{03, work on the EG algorithm and its computer implementation was car-

ried out during 1998{2000, while the development, improvement and implementation of the EG

0

algorithm

(package LinearFunctionalSystems) were carried out during 2001{2003.

2 The general paradigm: alternating \reduction + shift" steps

Let the coe�cients of all the polynomial and rational functions be in a �eld K of characteristic 0. It will be

convenient to consider systems of recurrences in the form

P

l

(n)z

n+l

+ P

l�1

(n)z

n+l�1

+ � � �+ P

t

(n)z

n+t

= 0; (2)

where l � t are arbitrary integers, z = (z

1

; : : : ; z

m

)

T

is a column vector of unknown sequences (such that

z

i

= (z

1

i

; : : : ; z

m

i

)

T

) and P

l

(n); : : : ; P

t

(n) 2 Mat

m

(K[n]) are square m � m matrices with entries in K[n].

The nonzero matrices P

l

(n) and P

t

(n) are called then leading and trailing matrices of the system (2). In

many cases, it is natural to consider the system (2) together with a �nite set of linear constraints, i.e. linear

relations, each of which contains a �nite set of variables z

j

i

. Let S and S

0

be systems of the form (2) and C and

C

0

be �nite sets of linear constraints. We then say that the systems (S;C) and (S

0

; C

0

) are equivalent if the

space of solutions of S that satisfy C is the same than the space of solutions of S

0

that satisfy C

0

. Note that

each system of the form (2) can be considered as an in�nite set of linear constraints induced by the system

2

when substituting integer values of n into its equations. Finitely many linear constraints are easily taken

into account when determining various properties of a system and when computing its solutions. We study

in this paper the problems of regularization of the leading or trailing matrix of the system S, i.e. computing

a system (S

0

; C

0

) equivalent to (S; ;) and such that the leading or trailing matrix of S

0

is nonsingular.

We compare several regularization algorithms that all �t within the \reduction + shift" general scheme,

which we describe in this section. Let E denote the shift operator: Ez

n

= z

n+1

for any sequence z. Then,

the system (2) can be rewritten as

P

l

(n)E

l

z + P

l�1

(n)E

l�1

z + � � �+ P

t

(n)E

t

z = 0

and the matrix

P (n) = (P

l

(n)jP

l�1

(n)j : : : jP

t

(n)) (3)

is called the explicit matrix of the system, with each matrix P

i

(n) called a block of the system.

For the sake of simplicity we assume here that all the equations in our system are independent, i.e. no

equation can be represented as a linear combination of the others with coe�cients in K(n)[E]. The regu-

larization algorithms that we consider are in fact able to recognize dependence of the equations (and even

to compute the rank of the system, see [3]) but we skip that aspect in this presentation. Similarly, the

algorithms can also be applied to inhomogeneous systems [2] but for the sake of simplicity we consider only

the homogeneous case here.

The general scheme is then the following: if the leading (resp. trailing) matrix is singular, then we left-

multiply it by another matrix (obtained for example by elimination, but not necessarily so) in order to zero

one of its rows. This stage is called a reduction of the block. Suppose that the i-th row of the block is now

zero. Then, we shift the i-th row of the transformed explicit matrix, which corresponds to left-multiplication

of the i-th equation of the system (2) by E (resp. E

�1

) after the reduction step (so along with shifting the

i-th row, we replace n by n+ 1 (resp. n� 1) in that row).

Note that the reduction step can generate a set of linear constraints because of multiplications of the

transformed rows by polynomials having integer roots.

If we ensure that a series of a series of \reduction + shift" steps terminate (which requires some precau-

tion) then we obtain an equivalent system with a non-singular leading (resp. trailing) matrix. We show now

how to ensure termination, and need for that to de�ne the notions of l-width and t-width of rows. If the i-th

row of the explicit matrix P (n) is zero, then its l-width and t-width are both equal to 0. Otherwise, let in (3)

the i-th rows of all the matrices P

l

(n); P

l�1

(n); : : : ; P

s+1

(n) be zero, while the i-th row of P

s

(n) is nonzero.

Then s�t+1 is the t-width of the i-th row of P (n). Similarly, let the i-th rows of P

t

(n); P

t+1

(n); : : : ; P

s�1

(n)

be zero, while the i-th row of P

s

(n) is nonzero. Then l� s+ 1 is the l-width of the i-th row of P (n). When

we write only width, we mean the l-width if we are making the leading matrix nonsingular, the t-width if we

are making the trailing matrix nonsingular.

To guarantee termination (without in�nite loops) of a series of \reduction + shift" steps, it is su�cient

that each reduction does not increase the width of any row: then the sum of all the widths decreases after

the shift. There are di�erent reduction algorithms that ensure that no width is increased.

One can also consider a reduction that makes a zero column appear in the leading or trailing matrix:

suppose for example that the i-th column of the trailing matrix P

t

(n) is zero. Then we replace it with

the i-th column of P

t+1

(n), which is replaced in turn with the i-th column of P

t+2

(n) and so on, the i-th

column of the leading matrix P

l

(n) being zeroed. This corresponds to making the following substitution in

the i-th component of the unknown vector z

n

: z

i

n

= E

�1

~z

i

n

(when making the leading matrix nonsingular,

the corresponding substitution is of the form z

i

n

= E~z

i

n

). Column{reduction is therefore connected with

substitutions of the unknowns that are then taken into account further in the solving algorithms. As with

row{reduction, speci�c precautions must be taken to ensure termination.

In both ways, reduction is connected to some sort of elimination (since it zeroes a row or column), so it

causes growth in the coe�cients of the matrix. It is this growth of the degrees of polynomial entries that is

the main computational problem induced by multiple \reduction + shift" steps.

Further in this paper, we dwell on three algorithms that �t the above general scheme. Two of them |

EG [1, 5] and FFreduce [11] | use a one-stage reduction, where elimination is performed on the whole explicit

matrix of the system. The third algorithm | EG

0

[2, 3] | uses a two-stage reduction, where elimination

(or an elimination-free alternative) is performed only in the leading or trailing matrix, and appropriate

changes are made in the explicit matrix only in a second stage. Our package LinearFunctionalSystems

includes a procedure for regularizing recurrence systems that is based on the two-stage reduction and shift.

Comparisons of that package with programs implementing the algorithms EG and FFreduce clearly show

the practical superiority of two-stage reduction over one-stage reductions.

3

Note that the algorithms EG and EG

0

use row{reduction, using the above rule on width to ensure

termination, while FFreduce uses column{reduction and its own rules to ensure termination.

3 One-stage reductions

3.1 The EG algorithm

3.1.1 Outline of the algorithm

In order to determine if the leading or trailing matrix is singular, we try to transform it into triangular form

with non-zero main diagonal elements by applying Gaussian elimination to the explicit matrix, whose rows

can be multiplied by polynomials during the elimination process. If that goal is achieved in the process then

the leading or trailing matrix is non-singular. Otherwise, we obtain a zero row in that block, row that yields

a reduction step. After the shift that follows the reduction, we resume our Gaussian elimination, taking into

account that a part of the matrix is already in trapezoidal form, and continue. During Gaussian elimination,

a row having an element to be eliminated must have a width that is greater or equal to the width of the

eliminating row, and we swap rows as needed to enforce that rule. When the elimination of an element of a

row is accompanied by multiplication of that row by a polynomial having integer roots, substituting those

roots for n in the system yields a �nite set of new linear constraints.

3.1.2 Growth of the entries of the explicit matrix

Applying the EG algorithm leads to a noticeable growth of the degree and coe�cients of the polynomials

in the explicit matrix. In fact, let d

i

be the maximal degree of the elements in the i-th row and d

j

be the

maximal degree of the elements in the j-th row, and let elimination be performed in the i-th row using the

elements of the j-th row. Then, the degree of the elements in the resulting row may reach d

i

+ d

j

. In order

to perform reduction of the leading or trailing matrix, the number of such elimination steps may reach m�1

where m is the total number rows. Since reduction is conducted by row operations on the whole explicit

matrix, and since the width of the explicit matrix may be much greater than m, EG can lead to a huge

computational work.

3.1.3 Heuristic pivot selection

As mentioned above, the EG algorithm restricts the order of the elimination steps as it takes into account

the width of the rows in the choice of pivot, thereby preventing the use of classical pivot selection heuristics.

Our restriction can still leave choices for the pivot, so we can adapt those heuristics to EG as follows.

At every step of the reduction, we have some subsets of rows and columns of the matrix, to which the

elimination process will be applied. We can choose any column from the subset of columns for elimination,

and the corresponding row from the subset of rows must be chosen while observing the width rule (there can

be more than one suitable row for each column). In such a way we get a set of candidates for the column

in which elimination will take place, and for the eliminating row, i.e. a set of candidates for the current

pivot. For the �nal selection of the pivot we have found that the the following heuristic performs well under

experiments:

1. For the considered i-th column, we select the j-th row if it observes the width rule, and has the least

degree of the i-th element among such rows. In such a way we select the candidate for the pivot for the

i-th column. Such candidates are selected for all columns which have not been yet used for elimination

on the previous steps.

2. From those candidates we select those that require the least number of eliminations (i.e. the number of

zeroes among the elements to be eliminated is maximal). This further restricts the set of candidates.

3. From those candidates we select the pivot to be the one of least degree.

That heuristic helps slowing the growth of elements of the explicit matrix through reducing the number

of elimination steps to be performed in the explicit matrix.

4

3.1.4 Adapting the Bareiss algorithm

One of the standard means of controlling the growth of the entries of a polynomial matrix during Gaussian

elimination is the Bareiss algorithm [8]. That algorithm eliminates common polynomial factors from the

resulting row after cross multiplication and addition of rows. In addition, those common factors do not need

to be computed by gcd's, but are predicted by the algorithm. But that algorithm requires that elimination

at each step be performed in the whole part of the matrix that is not yet in trapezoidal form, including rows

that do not need to be eliminated since they already have zeroes in the appropriate places. In particular,

these rows are multiplied by the current pivot. In the context of the EG algorithm, this means unnecessary

multiplications of the rows of the whole explicit matrix are performed. As the width of the rows of the explicit

matrix may be much larger than its number of rows, this makes using the Bareiss algorithm a disadvantage

for EG. We demonstrate that behavior with a simple example: let the explicit matrix be

2

4

1 1 1 1000 1 1

1 1 1 1000 2 2

1 1 1 0 1 2

3

5

:

Transforming the trailing matrix into triangular form by means of ordinary Gaussian elimination yields the

steps:

2

4

1 1 1 1000 1 1

1000 1000 1000 0 1000 1000

1 1 1 0 1 2

3

5

;

2

4

1 1 1 1000 1 1

1000 1000 1000 0 1000 1000

0 0 0 0 0 1000

3

5

:

While using the Bareiss algorithm for the same purpose yields the steps:

2

4

1 1 1 1000 1 1

1000 1000 1000 0 1000 1000

1000 1000 1000 0 1000 2000

3

5

;

2

4

1 1 1 1000 1 1

1000 1000 1000 0 1000 1000

0 0 0 0 0 1000

3

5

where on the last step we have divided the calculated result 1000000 by 1000 due to the use of the Bareiss

algorithm.

In that example, the results are the same for both types of elimination, but the intermediate steps in

the Bareiss algorithm produce larger entries and superuous operations have been required. An explicit

matrix may contain a big number of blocks besides its leading or trailing matrix, and the losses due to

the intermediate steps and superuous operations can overcome the gains produced by dividing by known

factors.

A modi�cation of the Bareiss algorithm allows us to take into account those \unplanned" zeroes in the

matrix: we eliminate a common factor in the i-th after one of its entries has been eliminated by the k-th row,

only if the last eliminations in both of those rows have been performed by the same (say m-th) row. The

common factor is then the pivot of that m-th row, so we need to keep some additional information about

the previous elimination step in that row along with the rows of the explicit matrix.

Experiments with our implementation of the EG algorithm has shown that the use of the above modi-

�cation gives some gain in comparison with plain EG, but that the use of the ordinary Bareiss algorithm

yields a substantial e�ciency loss.

3.2 The FFreduce algorithm

Although FFreduce [11] has a di�erent theoretical foundation, its execution can nevertheless be described in

terms of alternating reduction and shift steps. Using that paradigm, regularization of the leading (resp. trail-

ing) matrix of a recurrence system with FFreduce can be outlined as follows:

� For each column of the leading (resp. trailing) matrix, repeat:

5

(a) Select a pivot in the current column using some minimization rule, and compute the coe�cients

to be used at step (c).

(b) Use the selected pivot to eliminate entries in the selected column, dividing by the pivot of the

previous elimination step (i.e. using the ordinary Bareiss algorithm, as described in Section 3.1.4).

(c) Shift the eliminating row in the direction opposite to the direction in the algorithm EG. There

appears then both a zero row (the shifted one) and a zero column (the selected one) in the leading

(resp. trailing) matrix. Substract from the shifted row the linear combination of the other rows

with the coe�cients computed at step (a) and divide out once more by the previous pivot. The

zero column remains, so perform a reduction step with respect to that column.

(d) Perform a vertical shift into the zero column.

� After repeating the above loop for all the columns, stop if the system is in the desired form, repeat the

loop otherwise. It is shown in [11] that this algorithm always terminate.

From the above description, it is clear that FFreduce is based on a one-stage reduction, since all its

eliminating operations are performed in the whole explicit matrix. Therefore, the di�culties mentioned

about EG, di�culties connected with the large number of operations and the growth of the entries of

the explicit matrix under one-stage reduction, are expected to appear in FFreduce as well. The proposed

control over the growth of the entries in FFreduce is a variation of the Bareiss algorithm, but, as shown in

Section 3.1.4, a straightforward use of the Bareiss algorithmwithin one-stage elimination can cause additional

losses of e�ciency. Since in addition, the computation of the linear combination of step (c) leads to additional

costs not present in EG, we can suppose that FFreduce should underperform EG (despite being published

three years after EG). Of course, since the mentioned di�culties only appear when the number of rows is

large enough, this analysis is not valid for systems of very small size. Nevertheless, our experiments (see

Section 6.1) show the practical superiority of EG over FFreduce starting at systems with 5 rows. In any

event, experiments and theoretical analysis indicate that EG and FFreduce are both outperformed by the

two-stage reduction of EG

0

, which we describe next.

4 The EG

0

algorithm

4.1 Description of the two-stage reduction

Within the general framework described above, the essential computational part of the reduction performed

by EG

0

is done only inside the leading or trailing matrix (rather than in the extended matrix). We use

any available method to check whether the rows of the leading or trailing matrix are linearly dependent

over K(n), and if they are, to �nd the coe�cients v

1

(n); : : : ; v

m

(n) 2 K[n] of a dependence. Once such a

dependence is found (the leading or trailing matrix is nonsingular otherwise) we select from the nonzero

coe�cients of the dependence one, say v

i

(n), that corresponds to a row of the maximal width (among the

rows corresponding to nonzero coe�cients). We then replace the i-th row of the whole explicit matrix by

the linear combination of all its rows with the coe�cients v

1

(n); : : : ; v

m

(n) (new linear constraints appear

whenever v

i

(n) has integer roots). As a result, the i-th row of the leading or trailing matrix becomes zero

(i.e. reduction is performed) and no single row has increased its width. We �nally shift the i-th row and

continue this process until the desired matrix is non-singular.

Searching for the linear dependence (v

1

(n); : : : ; v

m

(n)) is equivalent to solving a homogeneous system of

linear algebraic equations with polynomial coe�cients. This problem is e�ciently solved by many di�erent

computer linear algebra algorithms, in particular, with modular algorithms that resist well to intermediate

coe�cient growth of (see for example [12]). If we obtain s linearly independent solutions of the linear

algebraic system, then it is possible to use all of them for reductions, which yields s zero rows in the leading

or trailing matrix. To do that, we �rst represent the s dependences as rows of an s � m matrix V , and

use the �rst row of V to zero the i-th row of the leading or trailing matrix, and perform the shift in the

extended matrix. We then transform V by eliminating the i-th element in its rows 2 through s, using the i-th

element of the �rst row as pivot. After this elimination, each remaining row of V contains the coe�cients of

a linear dependence of the rows 1; : : : ; i� 1; i+1; : : :;m of the leading or trailing matrix, so we can continue

the reduction process with them, until we have performed s \reduction + shift" steps. Note that the order

in which we use the rows V is in fact arbitrary, so di�erent heuristic strategies can be used to choose the

dependence at each step.

Table 1 describes the trailing version of EG

0

in pseudocode, and can be easily adapted to the leading

version.

6

Table 1: Pseudocode for EG

0

ALGORITHM EG' (trailing version)

INPUT: P | explicit m � dm matrix to be transformed

OUTPUT: P' | transformed explicit matrix with nonsingular trailing block, B | set of linear constraints

initialization: Set P

0

:= P ; B := ;

while rank P

0

t

< m do

Set W := I

m

(the identity matrix of order m).

Construct any s �m-matrix V of rank s > 0, such that V P

0

t

= 0.

Set A := f1; : : : ; sg.

while A 6= ; do

� Choose a row of V with index k 2 A and Set A := A n fkg.

� Choose a nonzero entry v

ki

of that row such that the i-th row of P

0

has maximal width (among the

rows of P

0

corresponding to nonzero entries of the k-th row of V).

� Using v

ki

as pivot, eliminate all the elements v

ji

of V , such that j 2 A.

� For each integer n

0

such that v

ki

(n

0

) = 0, add to B the result of replacing n by n

0

in the i-th recurrence

of (2).

� Replace the i-th row of W by the k-th row of V .

end while

Set P

0

:= WP

0

.

for each k such that the k-th row of P

0

t

is zero do

Shift the k-th row of P

0

to the right and replace n by n� 1 in it

end for

end while

return P

0

; B;

We now illustrate the EG

0

algorithm on an example. Let the explicit matrix P be

2

4

0 0 n� 2 0 n� 1 n� 1 n n n

0 0 0 0 0 0 n n n

0 0 0 0 n� 2 n� 2 n n n

3

5

whose trailing matrix P

t

is

2

4

n n n

n n n

n n n

3

5

:

Since the rank of P

t

is 1, let W be the identity matrix of order 3, and V be any matrix such that V P

t

= 0,

for example

V =

�

1 0 �1

1 �1 0

�

:

Choosing the �rst row of V , we must select the element v

1;1

= 1 since the �rst row of P has a larger width

than its third row. Eliminating the �rst column of V using v

1;1

yields

V =

�

1 0 �1

0 �1 1

�

:

Since the equation v

1;1

(n) = 0 has no roots, no new linear constraint appears at this step of the reduction.

Using then the second row of V , we must select the element v

2;3

= 1 since the third row of P has a larger

width than its second row. Again, no new linear constraint appears, and W is now

W =

2

4

1 0 �1

0 1 0

0 �1 1

3

5

:

7

Multiplying P by W yields

2

4

0 0 n� 2 0 1 1 0 0 0

0 0 0 0 0 0 n n n

0 0 0 0 n� 2 n� 2 0 0 0

3

5

;

and shifting its �rst and third rows to the right �nally yields

P

0

=

2

4

0 0 0 0 0 n� 3 0 1 1

0 0 0 0 0 0 n n n

0 0 0 0 0 0 0 n� 3 n� 3

3

5

; (4)

completing the �rst \reduction + shift" step. Our new trailing matrix is

P

0

t

=

2

4

0 1 1

n n n

0 n� 3 n� 3

3

5

whose rank is 2. Choose anew a matrix V such that V P

0

t

= 0, for example

V =

�

n� 3 0 �1

�

:

We must select the element v

1;1

= n� 3 since the �rst row of P

0

has a larger width than its third row. Since

the equation v

1;1

(n) = 0 has the root n

0

= 3, a new linear constraint appears by replacing n by 3 into the

�rst row of the current explicit matrix P

0

(4):

�

0 0 0 0 0 0 0 1 1

�

: (5)

That constraint translates into the condition z

2

t

+ z

1

t

= 0. Our matrix W is now

2

4

n� 3 0 �1

0 1 0

0 0 1

3

5

and multiplying P

0

by W yields

2

4

0 0 0 0 0 (n� 3)

2

0 0 0

0 0 0 0 0 0 n n n

0 0 0 0 0 0 0 n� 3 n� 3

3

5

:

Finally, shifting its �rst row to the right yields

2

4

0 0 0 0 0 0 0 0 (n� 4)

2

0 0 0 0 0 0 n n n

0 0 0 0 0 0 0 n� 3 n� 3

3

5

completing the second \reduction + shift" step. Our new trailing matrix is

2

4

0 0 (n � 4)

2

n n n

0 n � 3 n� 3

3

5

(6)

whose rank is 3, so we are done. Note that determinant of the �nal trailing matrix is n(n�3)(n�4)

2

, whose

roots are 0; 3 and 4. But if we take into account the linear constraint (5) for n = 3 and add the row

�

0 1 1

�

to the trailing matrix (6) evaluated at n = 3, we get the matrix

2

6

6

4

0 0 1

3 3 3

0 0 0

0 1 1

3

7

7

5

whose rank of 3 is maximal, so n = 3 can be excluded from the set of roots, for example if the initial

recurrence system is being used to bound the degree of the polynomial solutions of another linear functional

system.

8

4.2 Cost of the reduction steps

The �rst stage (computation of the linear dependencies of the rows of the leading or trailing matrix) consists

in solving a system of linear algebraic equations of size equal to the number of rows of the recurrence system,

and then in converting the matrix containing the dependences into trapezoidal form. There are e�cient

polynomial-time algorithms for those problems.

Computation in the whole explicit matrix during the second step is minimized since using each linear

dependence leads to changing only one row of the whole explicit matrix, while the other rows are kept in

their original form.

5 The superirreducibility approach to solving linear systems

As mentioned earlier, the problem of regularizing a linear recurrence system can appear in the course of

solving systems of linear di�erential, di�erence or q-di�erence equations with polynomial coe�cients. If the

original system induces the system of the linear recurrences (2) and detP

t

(n) is not indentically zero, then

the maximal integer root of the equation

detP

t

(n� t) = 0

is an upper bound of the degree of the polynomial solutions of the original system. Similarly, the determinant

of the leading matrix gives information about the order of the rational solutions at x = 0.

There is an alternative approach for looking for polynomial, rational and series solutions of such systems,

that does not require the construction of an associated system of linear recurrences. Instead, a gauge

transformation of the original system into a so-called simple form is computed. Once the system is in a

simple form (in that special sense) then a bound of the degree of the polynomial solutions, and then the

solutions themselves can be computed directly. That method is applicable only to �rst-order systems.

We outline that method here only in the case of polynomial solutions of di�erence systems of the form

�y(x) �M (x)y(x) = f(x) ; (7)

where �y(x) = x(y(x + 1) � y(x)), M (x) 2 Mat

m

(K(x)) and f(x) 2 K(x)

m

(any linear di�erence system

can be easily transformed into that form). Let m

i

be equal to the minimum of the di�erences between the

degree of the numerator and denominator of every nonzero element of the i-th row of the matrix M (x),

�

i

= �minfm

i

; 0g, and

D(x) = diag(x

�

1

; : : : ; x

�

n

) :

Multiplying (7) by D(x) on the left yields

L

(y) = D(x)�y(x) �A(x)y(x) = b(x) ; (8)

where A = DM and b = Df . Due to our choice of �

1

; : : : ; �

n

, the elements of the matrices D and A are

polynomial in 1=x, so let

D

0

= D(1) and A

0

= A(1) :

One can show that for any integer n and c 2 K

L

(cx

n

) = �x

n

((�n D

0

+ A

0

)c +O(x

�1

)) : (9)

De�ne the system (7) to be simple if det(A

0

� nD

0

) is not identically zero. If the system (7) is simple, then

the integer roots of that determinant and the maximal degree of the polynomials in f(x) yield an upper

bound for the degree of its polynomial solutions.

The super-irreducible form, introduced in the di�erential case by A. Hilali and A. Wazner in [10] was

generalized by M. Barkatou to di�erence systems [6, 7]. That form provides a nonsingular matrix T (x) 2

Mat

m

(K[x]) such that the substitution y(x) = T (x)~y(x) transforms the system (7) into a simple form.

Although Barkatou has shown that super-irreducibility of a system implies simplicity, the opposite does not

always hold. An algorithm based on super-irreducibility for computing the polynomial and rational solutions

of linear di�erence systems was presented in [4].

9

6 Experimental comparisons

6.1 \reduction + shift" algorithms

We present in this section the results of comparing comparing programs implementing the algorithms EG,

Smart EG, EG

0

and FFreduce. Smart EG is the version of the EG improved by the heuristic of Section 3.1.3

and our adaptation of the Bareiss algorithm (see the end of Section 3.1.4).

We applied them all to the same collection of 100 matrices, which are the explicit matrices of recurrence

systems induced by randomly generated systems of linear di�erence equations, of random sizes ranging from

5 to 15. The entire collection of matrices (as well as for the other comparisons reported here) is available at

the URL http://www.ccas.ru/~zavar/abrsa/eg prime/comparisons.html.

The results are presented in Table 2, whose rows correspond to the algorithms. The total time (in CPU

seconds) for the regularization of all the 100 matrices by the corresponding algorithm is in the column \Total

Time", while the following cells indicate the number of examples on which the algorithm corresponding to

the row was faster than the algorithm corresponding to the column (as in a tournament table). For example,

Smart EG was faster than EG on 89 examples out of 100.

Table 2: Comparison of various reduction algorithms

Total Time EG

0

Smart EG EG FFreduce

EG

0

5.011 - 97 99 100

Smart EG 16.538 3 - 89 100

EG 93.725 1 11 - 100

FFreduce 3019.251 0 0 0 -

Overall, EG

0

had the best performance and FFreduce the worst. While the above rankings can change

on very small systems that require a very small amount of work, we found that for larger systems, algorithms

from the top part of the table can outperform the ones from the bottom part by several orders of magnitude.

6.2 Linear di�erence system solvers

As mentioned earlier, one of the applications of the regularization algorithms is computing the polynomial and

rational solutions of systems of linear functional equations, in particular, di�erence equations. We therefore

present in this section the results of comparing our solver in the package LinearFunctionalSystems, based

on EG

0

, to the solver in the SIF program, based on transforming the system into super-reducible form.

We �rst compared those two programs on several systems taken from di�erent sources, in particular,

arising from the problem of factoring di�erence operators. We have made those systems available on the

internet at the URL mentioned in the previous section. The results are presented in Table 3, where the same

letters in the \System" column denote the same matrices or vectors. The \Order" columns gives the number

of unknowns, the column \Type" indicates whether we looked for polynomial (P) or rational (R) solutions,

and the remaining columns indicate CPU times in seconds for each program and their ratio.

We then compared the same two programs on randomly generated systems: for each n 2 f3; 5; 7; 10g, a set

of 20 random n�n matrices was generated. For each of those matrices, 3 random n-vectors were generated,

whose entries had degrees bounded by 10; 30 and 50 respectively. Then, for each matrix-vector pair of

the same size, an inhomogeneous di�erence system was constructed having the given vector for polynomial

solutions. Here again, we have made those systems available on the internet at the URL mentioned in the

previous section.

The results are presented in Table 4, where the rows represent the degree bound on the solution, and the

columns represent the size of the system. Each cell of the table corresponds one series of 20 systems and

contains 2 fractions: the �rst is the number of systems solved faster by SIF over the number of systems

solved faster by EG

0

, and the second is the total CPU time (in seconds) taken by SIF for the 20 systems

over the CPU time taken by EG

0

.

Unlike in the case of regularizing algorithms, the tables for the linear di�erence system solvers are not as

conclusive. Indeed, since the programs use di�erent approaches, their weak and strong features are displayed

on di�erent systems. Furthermore, the di�erence could happen after the degree bounding phase when the

coe�cients of the solutions are actually computed. In any case, those two programs appear to perform

generally within the same order of magnitude. Unlike in the case of EG

0

and FFreduce, there is no clear

dependence of the ratio on the size of the systems (for each size we have examples where SIF performs better

10

Table 3: Comparison of linear di�erence system solvers

System Order Type SIF EG

0

SIF/EG

0

Ey=Ay 4 P 0,359 0,265 1,354716981

Ey=Ay 4 R 0,797 0,406 1,963054187

Ey=Ay+b 4 P 0,281 0,203 1,384236453

Ey=Ay+b 4 R 0,843 0,953 0,884575026

Ey=My 4 P 0,672 0,673 0,998514116

Ey=My 4 R 0,687 0,657 1,045662100

Ey=(M-1)y 4 R 0,312 0,266 1,172932331

Ey=By 4 P 0,422 0,344 1,226744186

Ey=By 4 R 0,687 0,609 1,128078818

Ey=Ny 9 P 0,906 0,407 2,226044226

Ey=Ny 9 R 0,828 0,406 2,039408867

Ey=Cy 9 P 1,625 1,39 1,169064748

Ey=Cy 9 R 1,874 2,563 0,731174405

Ey=Dy 16 P 3,672 1,797 2,043405676

Ey=Dy 16 R 6,609 2,75 2,403272727

Table 4: Comparison of linear di�erence system solvers for random systems

3 5 7 10

10 0/20 0/20 0/20 0/20

8.078/3.687 27.639/6.373 90.283/13.294 1074.716/38.266

30 13/7 7/13 7/13 1/19

8.267/11.736 34.030/29.627 104.487/68.298 1587.253/172.221

50 16/4 17/3 16/4 9/11

9.799/76.312 32.189/164.454 145.370/311.345 3434.138/1090.361

than EG

0

and vice-versa), so it seems like a di�cult task to implement a poly-algorithm that would detect

automatically the most e�cient method to use for a particular input.

We conclude with a �nal remark: while EG

0

-program has signi�cantly improved its e�ciency after the

recent update of some modules, the SIF -program has not been updated for quite a long time, so we do

not exclude the possibility that further improvements in SIF could lead to some changes in the last tables.

They nevertheless reect accurately the current status of those programs.

Acknowledgments

We are grateful to M. Barkatou and G. Labahn for kindly providing us with the implementations of SIF

and FFreduce that we used in our experiments.

References

[1] S.A.Abramov: EG-eliminations. Journal of Di�erence equations and applications, 1999, Vol. 5, 393{433.

[2] S.A.Abramov, M.Bronstein: On solutions of linear functional systems, In Proc. of ISSAC'2001. ACM

press, 2001, 1{6.

[3] S.A.Abramov, M.Bronstein: Linear algebra for skew-polynomial matrices, Rapport de Recherche INRIA

RR-4420, March 2002, http://www.inria.fr/RRRT/RR-4420.html.

[4] S.A.Abramov, M.Barkatou: Rational solutions of �rst order linear di�erence systems, In Proc. of IS-

SAC'1998. ACM press, 2001, 124{131.

[5] S.A.Abramov, P.E.Glotov, D.E.Khmelnov: A scheme of eliminations in linear recurrence systems and

its applications, In Proc. of French-Russian Lyapunov Institute.

11

[6] Barkatou M.A. (1989): Contribution �a l'�etude des �equations di��erentielles et aux di��erences dans le

champ complexe, th�ese soutenue le 6 juin 1989 �a l'institut national polytechnique de Grenoble (France).

[7] Barkatou M.A. (1999): On rational solutions of systems of linear di�erential equations, Journal of

Symbolic Computation, 28, 547{567.

[8] Bareisss E.H. (1968): Sylvestr's identity and multistep integer-preserving Gaussian elimination, Math.

Comp., 22, 565{578.

[9] M. Bronstein, M. Petkov�sek. An introduction to pseudo{linear algebra, Theoretical Computer Sci-

ence 157 (1996) 3{33.

[10] Hilali A. , Wazner A. (1987): Formes super-irr�eductibles des syst�emes di��erentiels lin�eaires. Num.

Math.50, 429-449.

[11] B.Beckermann, H.Cheng, G.Labahn: Fraction-free row reduction of matrices of squew polynomials, In

Proc. of ISSAC'2002. ACM press, 2002, 8{15.

[12] T.Mulders, A.Storjohann: Rational solutions of singular linear systems. In Proc. of ISSAC'2000. ACM

press, 2000, 242{249.

[13] O. Ore. Theory of non-commutative polynomials. Annals of Mathematics 34 (1933) 480{508.

[14] O. Ore. Formale Theorie der linearen Di�erentialgleichungen (Erster Teil). J. f�ur die reine und ange-

wandte Mathematik 167 (1932) 221{234.

[15] O. Ore. Formale Theorie der linearen Di�erentialgleichungen (Zweiter Teil). J. f�ur die reine und

angewandte Mathematik 1 (1932), 233{252.

12

