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Abstract

It is quite common that search algorithms for those solutions of difference and differential
equations and systems that belong to a fixed class of functions are designed so that nonex-
istence of solutions of the desired type is detected only in the last stages of the algorithm.
However, performing additional tests on the intermediate results makes it possible to stop
the algorithm as soon as these tests imply that no solutions of the desired type exist. This
gives an opportunity to save time and other computing resources. So, it makes sense to equip
algorithms with checkpoints and some tests. We consider these questions in connection with
the search for rational solutions of linear homogeneous difference and differential systems with
polynomial coefficients, and propose a scheme equipped with such checkpoints and tests, and
also report results of experiments with our implementation of the scheme in Maple.

1 Introduction

Algorithms for finding rational solutions of linear differential and difference equations and systems
are one of the basic building blocks of all differential and difference equation solvers in any symbolic
computation system. Therefore it is clear that improving efficiency of such algorithms is of great
importance. Our goal is to show how it is often possible to detect nonexistence of rational solutions
of a linear differential or difference system already in the early stages of the algorithm, thus saving
a significant amount of time and other computing resources. For instance, if the indicial polynomial
(whose roots include valuations for all nonzero rational solutions) has no integer roots, the algorithm
can be terminated immediately, and similarly later on in the computation of the denominator and
numerator degree bounds. Concerning this example, it is important to note that the construction
of the indicial equations can be performed at different moments. It is desirable to rebuild the
algorithm so that the corresponding indicial equations appeared before the laborious steps of the
algorithm. Then the absence of integer roots of the indicial equation eliminates the need to perform
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these laborious steps. Thus, in some cases it makes sense to slightly change the existing algorithm
without affecting its main scheme (e.g., to change the order of some operations that is not of
importance, etc.).

Equipping with checkpoints algorithms for finding rational solutions in the scalar case (i.e., the
case of one equation) was proposed by A.Gheffar in [16, 17]. Later, in [4] some checkpoints and
tests were proposed for linear differential systems. In the present paper, we consider in detail such
questions for linear difference systems.

It will be appropriate to note that the search for solutions of systems has its own specificity in
comparison with the scalar case, and in the case of the systems themselves there is a significant dis-
similarity for the differential and difference cases. For example, this takes place in the construction
of the so-called universal denominator (the definition is given in Sect. 2). The difference case poses
its own problems, and we will discuss them below.

In [16, 17, 4] the possibility of using checkpoints in the parts of algorithms for constructing
the numerators of solutions was not considered. Only an upper bounds for the degrees of these
polynomials was found. It was assumed that the method of undefined coefficients could be applied
further. In our paper, this issue is given some attention.

Our focus in the paper is on linear difference systems. It was said that the differential case
was already considered in [4]; more precisely, only the theoretical aspect was discussed, computer
implementation was not offered. In Sect. 5 a brief information on the differential case is given.
Sect. 6 describes our implementation of the proposed scheme in Maple [21]. The experiments of
comparing two versions of the algorithm with and without checkpoints are discussed. It becomes
apparent that the version with checkpoints detects the absence of rational solutions significantly
faster. In the presence of rational solutions, a slight increase in time is observed. Tests performed at
checkpoints do not take much time. Our experiments show that in the absence of rational solutions,
time savings are about 75%, and the additional time in the presence of solutions does not exceed
20–25%.

Consideration of the algorithm from some special point of view will allow, possibly, to add some
more checkpoints that are not considered in our paper. Similarly, one can ignore some of the points
in our set. General rule: there is no sense of stopping if the natural completion of calculations does
not require large expenditures.

The introduction of checkpoints in the algorithm may not be associated with the search for
rational solutions. One of the general goals of our article is to draw attention to the advisability of
using checkpoints in searching for solutions of any kind.

2 Preliminaries

2.1 Rational and polynomial solutions

Let K be a field of characteristic 0. In the sequel, the standard notations are used: the ring of
polynomials in x over K and the field of rational functions are denoted by K[x] and K(x). The
field of formal Laurent series is denote by K((x)). If R is a ring (in particular, a field), then the
ring of m×m-matrices whose entries are in R is denoted by Matm(R).

We consider systems of the form

Ar(x)σry(x) + · · ·+ A1(x)σy(x) + A0(x)y(x) = 0 (1)
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where σy(x) = y(x+1), and Ai(x), i = 0, 1, . . . , r, are matrices belonging to Matm(K[x]); Ar(x) 6= 0
is the leading matrix (we suppose that it is non-zero), and y(x) = (y1(x), . . . , ym(x))T is a column
of unknown functions (T denotes transposition). The number r is called the order of the system,
we denote it by ordL. The system under study is assumed to be of full rank; i.e., the equations of
the system are linearly independent over the ring of operators K(x)[σ].

The system (1) can be written in the form

L(y) = 0 (2)

where
L = Ar(x)σr + · · ·+ A1(x)σ + A0(x).

A solution y(x) = (y1(x), y2(x), . . . , ym(x))T ∈ K(x)m of (1) is called a rational solution. If y(x) ∈
K[x]m, it is called a polynomial solution (a particular case of a rational solution). Below, when we
talk about rational solutions of systems or about systems having rational solutions, we will mean
nonzero rational solutions and, accordingly, systems having nonzero rational solutions.

Algorithms for finding rational solutions of linear difference systems of the form σy = Ay, where
A is a non-singular matrix with rational function entries, were proposed, e.g., in [5, 6, 7, 9, 10, 8,
13, 18]. (Similar questions related to differential systems were considered in [6, 11, 12].) In the
book [19] the basic tools for working with scalar difference equations are described. Note that the
checkpoints and tests of the considered type were not discussed in that literature, and to the best
of authors’ knowledge in other literature as well except mentioned [16, 17, 4].

2.2 Universal denominator

The problem of finding rational solutions of full-rank systems (1) in the case where the matrix Ar(x)
may be singular, was considered in [9]. An appropriate algorithm was suggested. This algorithm is
based on finding a universal denominator of rational solutions to the original system (for brevity,
we call it the universal denominator for the original system), i.e., a polynomial U(x) ∈ K[x] such
that, if the system has a rational solution y(x) ∈ K(x)m, then it can be represented as 1

U(x)
z(x),

where z(x) ∈ K[x]m. If a universal denominator is known, we can make the substitution

y(x) =
1

U(x)
z(x) (3)

where z(x) = (z1, (x) . . . , zm(x))T is a vector of new unknowns, and then apply one of the algorithms
for finding polynomial solutions (see, e.g., [5, 13, 20]).

Other approaches are also possible. For example, the approach presented in [3] is based on
expanding a general solution of the original system (1) into a series whose coefficients linearly
depend on arbitrary constants. After multiplication by a universal denominator U(x) the series
corresponding to rational solutions turn into polynomials.

2.3 Induced operators and systems

The notions of induced operators and induced systems are quite important for finding solutions of
different kinds [2, 7].

We will consider double-sided series by factorial powers of x, i.e., series of the form
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s(x) =
∑
n∈Z

vnx
n, (4)

where

xn =


x(x− 1) . . . (x− n+ 1), if n > 0,
1, if n = 0,

1
(x+1)(x+2)...(x+|n|) , if n < 0.

(5)

In [20], it was shown that the map

x→ n+ σ−1, σ → (n+ 1)σ + 1 (6)

transforms an operator L ∈ Matm(K [x, σ]) into L©i ∈ Matm(K [n, σ, σ−1])

L©i = Bl(n)σl + · · ·+Bt(n)σt, l > · · · > t,

where σ is the shift of n, Bl 6= 0, Bt 6= 0, l and t are the leading and trailing orders of the operator
L©i. The difference l − t is the order of L©i, we denote it by ordL©i .

For any double-sided sequence v = (vn), application L to (4) gives the series, whose double-sided
sequence of coefficients can be obtained by applying L©i to the sequence v. As a consequence, series
(4) satisfies L(y) = 0 if and only if L©i (v) = 0.

Remark 1 There exists the inverse map for (6): n→ x− xσ−1, σ → (x+ 1)−1σ.

Remark 2 On can rewrite the definition (5) of the factorial power using the well known rising and
falling powers xn, xn (see, e.g., [22, Sect. 4.4, 8.3]):

xn =


xn if n > 0,
1, if n = 0,
1

x−n
, if n < 0.

This combination of rising and falling powers in the form of our factorial power allows to give quite
a simple map (6) to transform L into L©i.

2.4 Leading and trailing matrices regularization

The algorithms of EG family ([2]) allow to transform, e.g., L©i to the form, where the leading or the
trailing matrix is non-singular (such transformation is referred to as the regularizaation). This gives,
resp., the operators +L©i and −L©i. In the process of the transformation we can obtain additionally
linear constraints which are equal to zero linear combinations of a finite set of elements of the
sequences satisfying the system. Taking these linear constraints into account excludes appearance
of parasitic solutions to the transformed systems. In the sequel, we suppose −L©i

−L©i = −Bl(n)σl + · · ·+ −Bt(n)σt,

where the trailing matrices −Bt(n) is non-singular.
Note that the regularization of leading and trailing matrices can be applied not only to the

induced system. This procedure can be applied also to the original system. This is used by the
dispersion algorithm [9] for computing a universal denominator (see Sect. 2.2).

4



S.A.Abramov, D.E.Khmelnov, A.A.Ryabenko

2.5 Indicial polynomials and equations

We will call the determinant (a polynomial in n) of the matrix

−Bt(n− t) (7)

as the indicial polynomial for L at infinity and denote this polynomial by IL,∞(n). Correspondingly,
IL,∞(n) = 0 is the indicial equation for L at infinity. If a series s(x) =

∑
n≤k vnx

n represents a
solution to the system L(y) = 0 and vk 6= 0, then k = val∞s(x). This k is the valuation at ∞ of
the series s(x). It is an integer root of the algebraic equation IL,∞(n) = 0.

2.6 Notation

For discussing a possible scheme containing some checkpoints, it will be useful to collect together
some notions and the corresponding notation in advance.

L(y) = 0 is an original system; L©i (v ) = 0 is the induced recurrence system, −L©i (v ) = 0 is
the result of transforming of L©i (v ) = 0 to the form with the non-singular trailing matrix; l
and t are leading and trailing orders of the operator L©i ;

IL,∞(n) = 0 is an indicial equation for the original system, i.e., an algebraic equation d(n−t) =
0, where d(n) is the determinant of the trailing matrix of the system −L©i (v ) = 0;

n∗ is the largest integer root of the indicial equation (if there is no integer root then the
original system has no rational solutions;

U(x) is a universal denominator for the original system.

2.7 Traditional scheme

We discuss now the traditional scheme [9] of searching for rational solutions of a system of linear
difference equations with polynomial coefficients.

1. Computing a universal denominator U(x) (Sect. 2.2):

1a. Regularization the leading and trailing matrices of the system L(y) = 0 (Sect. 2.4),

1b. Computing U(x).

2. Substitution of (3) into the system L(y) = 0; transition to a system LU (z) = 0 with polynomial
coefficients (cleaning denominators).

3. Computing the numerator:

3a. Finding a indicial equation ILU ,∞(n) = 0 (Sect. 2.5). Degrees of polynomial solutions are its
integer roots,

3b. Computing polynomial solutions of the system LU (z) = 0.
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The detection of the absence of rational solutions can occur at one of steps 3a, 3b. Step 3a
stops if the indicial equation ILU ,∞(n) = 0 does not have integer non-negative roots. Otherwise
the largest of such roots is used as an upper bound of the degrees of polynomial solutions in step
3b. Thus, the stop occurs when quite costly steps 1 and 2 have already been completed. We
propose to change the scheme: find out in advance (before steps 1 and 2) possible obstacles to
the existence candidates in the form of non-negative integers for the degree of this numerators of
rational solutions. Actually, we are talking about the early determination of the indicial equation,
which in the traditional scheme is at step 3a.

One way to find the indicial equations for systems is to construct induced recurrence systems
L©i (v ) = 0. In our case, these are series, into which rational solutions of the original system are
expanded. Equality to zero of determinants of the leading and trailing matrices of the system
L©i (v ) = 0 (provided that these determinants are not identically equal to zero) give such kind of
indicial equations. Here it should be noted that the induced systems L©i (v ) = 0 and/or LU

©i (ṽ ) = 0
can be used to construct the polynomial solutions themselves after computing an upper bound for
their degrees (step 3b).

The approach used below is such that the indicial equation IL,∞(n) = 0 is constructed for the
original system L(y) = 0 before computing U(x). In some cases this allows us to conclude that the
continuation of the calculations will not lead to success. The new scheme is represented in detail
in Sec. 3. It is based on some preliminary calculations, not reducible to simple checking in step 3a
of the traditional scheme whether there are non-negative integers among the roots of the indicial
equation.

Step 3b goes into a corresponding place of new scheme in a detailed form, including, in particular,
an additional control point (see Sect. 3).

3 Scheme equipped with checkpoints and tests

The scheme equipped with checkpoints and tests is as follows (the symbol • marks a checkpoint
and a test after which the algorithm can be stopped):

1. Find −L©i and IL,∞(n) • {If IL,∞(n) has no integer root then STOP.} Let n∗ be the largest
integer root of the polynomial IL,∞(n).

2. Find a universal denominator U(x). • {If n∗ + degU(x) < 0, then STOP}.
[Let n∗ < 0. Let some intermediate stage of the computation U(x) process allow to get
quickly a number u such that u ≥ degU(x). • { If n∗ + u < 0 then STOP without finishing

the computation U(x).}]

3. Using −L©i and U(x) compute the polynomial P (x) which is the numerator of the rational
solution P (x)/U(x) of the initial system. Here, finding a solution

R(x) =
∑
n≤n∗

vnx
n (8)

for the operator L is combined with multiplying R(x) by U(x); in fact, the sequence of
coefficients of this product

U(x)R(x) =
∑

n≤degU(x)+n∗

ṽnx
n (9)
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is calculated starting from the upper bound n∗+degU(x) for degree of U(x)R(x) and finished
when it is proved that ṽn = 0 for n < 0. Then

P (x) =
∑

0≤n≤degU(x)+n∗

ṽnx
n.

When calculating the next coefficient vn, constants can appear that look like arbitrary con-
stants and/or some of the constants that we considered as arbitrary constants can get values.
It also takes into account those linear constraints that arise during the regularization of the
trailing matrix of the operator L©i . • {If in computing values of the “arbitrary constants” all

the coefficients ṽn vanish for non-negative n then STOP}.

Let us comment on the checkpoints of the later scheme.
Step 1. Any rational function belonging to K(x) (factually, any formal series in 1

x
, i.e., an

element of K(( 1
x
)) allows a representation in the form of a series in the factorial powers xn: it is

not difficult to show that

1

xk
=
∑
n≤−k

γk,nx
n, γk,n ∈ K, γk,−k 6= 0. (10)

Indeed, 1
xk

is a solution for (x+ 1)ky(x+ 1)−xky(x) = 0. The trailing term of the induced operator
for L = (x+ 1)kσ − xk is (n+ 1)σn−k+1. Since n+ 1− (n− k + 1) = k the claim follows (see (7)).

Formula (10) allows to prove the existence of the desired expansion of an arbitrary rational
function using its Laurent series expansion (see also [15, pp. 15–17], [14, Sect. 1]). It follows also
from (10) that for any F (x), G(x) ∈ K((x)) we have

val∞(F (x)G(x)) = val∞F (x) + val∞G(x). (11)

Step 2. When we multiply the solution by the polynomial U(x) this gives by (11) a polynomial
vector of degree α + degU(x), this number cannot evidently be negative.

If the dispersion algorithm is used for computing U(x) (for systems of difference equations
it is described in [9], where the main idea of [1] for scalar case is generalized), then the univer-
sal denominator U(x) is computed as a product of some polynomial factors. Two polynomials
V (x),W (x) ∈ K[x] are preliminary computed. And then only V (x) and W (x) are used for U(x)
computing. First, an integer h called the dispersion should be found. It is seen from the algorithm
description that degU(x) does not exceed the number u that is the product of h and the smallest
of degrees of V and W . The computed u is an upper bound for degU(x).

Step 3. On this step, the approach [20] for finding polynomial solutions is used.

4 Search for the numerators

We consider in details Step 3 performing, i.e., the constructing polynomial numerators of rational
solutions. Remark that it was supposed in [16, 17, 4] that if an upper bound for degrees of such
numerators is computed, one can use the undefined coefficient method to find such numerators.
Here another method is proposed that does not use the substitution (3). Correspondingly, no need
also to apply algorithms for regularizing the trailing matrix of the induced system LU

©i.
Following Proposition we use to determine a number of coefficients ṽn of the series (9) which is

sufficient on Step 3.
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Proposition 1 A rational column vector p(x)
q(x)

, p(x) ∈ K[x]m, q(x) ∈ K[x], is a solution of L if and

only if L has such a solution R(x) =
∑

n≤n∗ vnx
n, that, first, the “Laurent polynomial”

S(x) = q(x)
∑

−(ordL©i+(ordL+1) deg q(x) )≤n≤n∗

vnx
n

has zero coefficients at xn, n = −1,−2, . . . , −(ordL©i + ordL deg q(x)), and, second, discarding in
S(x) all the terms containing xn, n < 0, gives p(x).

Proof: If p(x)
q(x)

is a solution of the operator L, then the series R(x) can be taken as the expansion
of our rational solution using the factorial powers of x. Then the first and the second conditions of
the statement under proof are carried out.

Let the series R(x) exist. The coefficient sequence v = (vn) of R(x) is a solution of the recurrence
operator L©i. The multiplication of entries of R(x) by the polynomial q(x) gives the series

q(x)R(x) =
∑

n≤deg q(x)+n∗

vnx
n

which is a solution of the operator Lq and the coefficient sequence ṽ = (ṽn) of which is a solution
of the recurrence operator Lq

©i.
The substitution y(x) = 1

q(x)
z(x) into a system of the form (1) gives the system

1

q(x+ r)
Ar(x)z(x+ r) + · · ·+ 1

q(x+ 1)
A1(x)z(x+ 1) +

1

q(x)
A0(x)z(x) = 0.

After cleaning denominators, we get the system Lq(z) = 0. The degrees of polynomial coefficients
of Lq exceed the corresponding degrees of L by no more than r deg q(x). This and the formula
x→ n+ σ−1 of transformation (6), imply

ordLq
©i ≤ ordL©i + r deg q(x). (12)

As above, ordL©i = l− t. The coefficients ṽn of the series q(x)R(x) for n = −1,−2, . . . ,−(l− t+
r deg q(x)) coincide with the coefficients of the Laurent polynomial S(x) and are uniquely defined
by vn having such indexes n, for which

−(l − t+ (r + 1) deg q(x) ) ≤ n ≤ n∗

holds.
The equalities ṽn = 0 for n = −1,−2, . . . ,−ordLq

©i guarantee that the coefficient sequence{
ṽn, if n ≥ 0,
0, if n < 0

(13)

is a solution of Lq
©i. From (12) it implies that the equalities ṽn = 0 for n = −1,−2, . . . ,−(l − t +

r deg q(x)) guarantee that (13) is a solution of Lq
©i. The sequence (13) is a coefficients sequence of

the polynomial p(x) that it implies Lq(p(x)) = 0 and it implies L
(
p(x)
q(x)

)
= 0. 2

8



S.A.Abramov, D.E.Khmelnov, A.A.Ryabenko

Coefficients of Laurent polynomial (8) are computed using −L©i ∈ Matm(K[σ, σ−1, n]) with the
method from [20], that is from the highest degree of its terms (i.e. n∗) to −((r+1) degU(x)+ l−t).
Let v = (vn) be a sequence that is a solution of the recurrent operator −L©i and that satisfies the
condition ∀n>n∗ vn = 0.

Starting from j = n∗, in the case when the trailing matrix −L©i is nonsingular for n = j − t, one
obtains the values of the elements of the vector vj using −L©i and vj+l−t, . . . , vj+1.

If the trailing matrix −L©i is singular for n = j − t then one obtains the values of some of the
arbitrary constants which have been earlier introduced. It is done using the system of linear algebraic

equations −L©i(v)
∣∣∣
n=j−t

= 0 and allows refining the earlier computed coefficients vn∗ , . . . , vj+1 and

ṽn∗+degU(x), . . . , ṽj+degU(x)+1. New arbitrary constants are to be introduced by that as a part of the
vector vj.

Let the values of the elements of the vector vj be obtained that is the coefficient of the term

containing xj in the vector R(x). The coefficient ṽj+degU(x) in the vector (9) is then computed using
the induced operator U©i ∈ Matm(K[n, σ−1]), whose order is degU(x), and vj+degU(x), . . . , vj+1, vj.

The value ṽj+degU(x) is a linear combination of arbitrary constants. The coefficients of the terms
of negative degree in U(x)R(x) have to be zero. When j + degU(x) < 0 the system of the linear
algebraic equations ṽj+degU(x) = 0 is solved for the earlier introduced arbitrary constants. Using
the system the values of some of the arbitrary constants may be calculated, and thus the values of
earlier computed coefficients vn∗ , . . . , vj and ṽn∗+degU(x), . . . , ṽ0 may be refined. If ṽn = 0 after that
for n = 0, 1, . . . , n∗ + degU(x), i.e. P (x) = 0, then the computation is stopped: there is no need to
compute vn and ṽn+degU(x) for n = −((r + 1) degU(x) + l − t), . . . , j − 1.

In order to get −L©i the algorithm EG (see Sect. 2.4) is applied to L©i. The finite set of the
linear constraints for the values of the elements of the vectors vn∗ , vn∗−1, . . . , v−((r+1) degU(x)+l−t) may
appear as well. If the computation of ṽ is completed and ṽ 6= 0 then it is needed to take into account
the linear constraints, i.e., to solve the corresponding system of the linear algebraic equations with
respect to arbitrary constants.

5 The differential case

In this section we consider systems of the form

Ar(x)Dry(x) + · · ·+ A1(x)Dy(x) + A0(x)y(x) = 0 (14)

where D = d
dx

, and as before Ai(x), i = 0, 1, . . . , r, are m ×m-matrices with entries belonging to
K[x]. The system (14) can be written in the form (2), with

L = Ar(x)Dr + · · ·+ A1(x)D + A0(x). (15)

In the sequel, it will be useful to consider formal Laurent series, i.e., for example, elements of the
field K((x)) (or the field K̄((x)), where K̄ is the algebraic closure of K). Recall that the valuation
val y(x) of y(x) ∈ K((x)) is the minimal integer n such that the coefficient of xn in y(x) is non-zero.
If y(x) is the zero series then we set val y(x) = +∞. For α ∈ K̄, we can also consider the field
K((x−α)) of formal Laurent series in x−α and, correspondingly, val x−αt(x) for t(x) ∈ K((x−α)).

We consider also the formal series in terms of decreasing negative powers (this can also be
viewed as expansion at ∞); the field of such series is denoted by K((x−1)). Each series of this
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kind contains only a finite number of powers of x with nonnegative exponents and, possibly, an
infinite number of powers with negative ones. The greatest exponent of x with a nonzero coefficient
occurring in a series y(x) is the valuation val∞y(x). If y(x) ∈ K((x−1)) is the zero series, then we
set val∞ y(x) = −∞.

For a vector f(x) = (f1(x), . . . , fm(x))T ∈ K((x))m we set val f(x) = minmi=1 val fi(x) (similarly
for val x−αf(x)). For g(x) = (g1(x), . . . , gm(x))T ∈ K((x−1))m we set val∞ g(x) = maxmi=1 val∞ gi(x).

It is easy to see that val∞p(x) = deg p(x) for a polynomial p(x) and v(f(x)
g(x)

) = v(f(x)) − v(g(x))

for f(x), g(x) ∈ K[x], v ∈ {val , val x−α, val∞}. It is also significant that the valuation of any type
under consideration of a product is the sum of the valuations of the factors.

A rational solution of a system of the form (14) can be represented by formal Laurent series
both at an arbitrary finite point α and at ∞.

It is well known (see, e.g., [10, Sect. 7.2]) that it is possible to construct for (14) a finite set of
irreducible polynomials over K

p1(x), . . . , pk(x) (16)

such that if for some α ∈ K there exists a solution F ∈ K((x− α))m such that val x−αF < 0 then
pi(α) = 0 for some 1 ≤ i ≤ k, and for each pi(x) a polynomial IL,pi(n) ∈ K[n] can be constructed
such that for a solution F ∈ K((x − α))m, pi(α) = 0, one has IL,pi(val x−αF ) = 0 [10]. It is also
possible to construct such a polynomial IL,∞(n) ∈ K[n] that if a system L(y) = 0 has a solution
y ∈ K((x−1)) then IL,∞(val∞y(x)) = 0. In particular, the degree of a polynomial solution is a root
of IL,∞(n). The polynomials IL,∞(n), IL,p1(n), . . . , IL,pk(n) are the indicial polynomials connected
with L.

Remark 3 In the context of this paper, by the indicial polynomial for a given operator L we
mean a certain polynomial, a root of which may give useful information on solutions of the initial
differential system. Absence of roots of a certain type also gives information on solutions of the
original differential system. Similarly to the difference case (Sect. 2.3, 2.4, 2.5), for constructing the
needed polynomials we can use induced recurrence system and bring its leading or trailing matrix
to non-singular form.

Proposition 2 [4, Sect. 1.3] Let L, p1(x), . . . , pk(x) be as in (15), (16). Let

IL,∞(n), IL,p1(n), . . . , IL,pk(n)

be the corresponding indicial polynomials. In this case
(i) if IL,∞(n) has no integer root then the system L(y) = 0 has no rational solution;
(ii) if at least one of the polynomials IL,p1(n), . . . , IL,pk(n) has no integer root then L(y) = 0 has

no rational solution;
(iii) if b1, . . . , bk ∈ Z are lower bounds for integer roots of polynomials IL,p1(n), . . . , IL,pk(n) (e.g.,

b1, . . . , bk can be equal to the minimal integer roots of those polynomials), N is an upper bound for
integer roots of the polynomial IL,∞(n) (e.g., N can be equal to the maximal integer root of that

polynomial), and N −
∑k

i=1 bi deg pi < 0, then L(y) = 0 has no rational solution;

(iv) if N −
∑k

i=1 bi deg pi ≥ 0 (see (iii)) and the system L(y) = 0 has a rational solution then

that solution is of the form pb11 (x) . . . pbkk (x)f(x), where f(x) = (f1(x), . . . , fm(x))T ∈ K[x]m with

deg fj(x) ≤ N −
∑k

i=1 bi deg pi, j = 1, . . . ,m.

This proposition is used as the basis for reconfiguring the scheme given in Sect. 3 to the differ-
ential case.
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6 Implementation, experiments

The algorithm presented in the paper was implemented in Maple 2019 ([21]) as a modification
of the procedure RationalSolution ([9, Sct.4]). The first argument of the procedure is a full
rank difference or differential system. The system is specified as a linear equation with matrix
coefficients. Elements of a matrix coefficient are rational functions of one variable (for example, x)
over the rational number field. For example, the system L(y) = 0

x2+ 102x+ 101 x3+ 104x2+ 305x+ 202

x2 − x− 2 x3 + x2 − 4x− 4

 y(x+ 2)+

+

 −x
2 − 99x+ 202 −x+ 2

x− 2
x− 2

x+ 101

 y(x+ 1) +


−x− 101 −x+ 101

x+ 100

−x − x

x+ 100

 y(x) = 0

is represented by means of standard objects Matrix of the Maple system

> eq1 := Matrix([[x^2+102x+101, x^3+104x^2+305x+202],

[x^2-x-2, x^3+x^2-4x-4]]).y(x+2) +

Matrix([[-x^2-99x+202, -x+2],

[x-2, (x-2)/(x+101)]]).y(x+1) +

Matrix([[-x-101, -(x+101)/(x+100)],

[-x, -x/(x+100)]]).y(x) = 0:

The second argument of the procedure is a name of a vector of unknowns (for example, y(x)).
The third argument is optional. It is ’earlyterminate’ = true or ’earlyterminate’ = false.
The default is ’earlyterminate’ = true. For ’earlyterminate’ = true, the presented algo-
rithm with checkpoints is used. For ’earlyterminate’ = false, the algorithm from [9] is used.

If there is no rational solution, RationalSolution returns the empty list, i.e. [ ]:

> st := time():

> RationalSolution(eq1, y(x));

> time() - st;

[ ]

0.047

Here, 0.047 is the time taken to evaluate the result1. For this system, the indicial polynomial
is IL,∞(n) = −1, there is no root. The algorithm with checkpoints stops at the first step. For
this system, the time of evaluation with the argument ’earlyterminate’ = false is 3.097 sec.
The algorithm from [9] finds a universal denominator U(x) (here, degU(x) = 205), makes the

1In seconds, CPU time. Computations were carried out in Maple 2019, Ubuntu 8.04.4 LTS, AMD Athlon(tm) 64
Processor 3700+, 3GB RAM
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substitution (3) in the given system, finds the indicial polynomial for the new system LU(z) = 0,
and stops because ILU ,∞(n) has no root. For this sample, most of the time (3.023 sec) is spent
building the indicial polynomial for LU(z) = 0 .

The next differential system has no rational solution too:

> eq2 := Matrix([[2, 0], [0, x^2+x]]) . diff(y(x), x$2) +

Matrix([[1, 1], [x, x^2+5x+2]]) . diff(y(x), x) +

Matrix([[-1, 1], [x+1, 2x+4]]) . y(x) = 0:

> RationalSolution(eq2, y(x));

[ ]

The indicial polynomial for this system is n + 3 and has the integer root n∗ = −3, then the
algorithm with checkpoints finds a universal denominator U(x) = x(x + 1) and after that stops
because n∗ + degU(x) < 0.

If there are rational solutions, the procedure RationalSolution builds a basis of their linear
space, returns a list of basis elements. For example:

> eq3 := Matrix([[0, 0], [x^3 + 5x^2 + 9x + 5, x^3 + 5x^2 + 9x + 5]]).y(x+2) +

Matrix([[2x^2 - 2, 2(x^2 - 1)/(x + 101)],

[x^3 - x^2 - x + 1, (x^3 - x^2 - x + 1)/(x + 101)]]).y(x+1) +

Matrix([[-2x^2 + 2x, -2x(x - 1)/(x + 100)],

[-2x^3 + x^2 - 2x - 1,

-(x^4 + 102x^3 + 99x^2 + 102x + 100)/(x + 100)]]).y(x):

> RationalSolution(eq3, y(x));

− 1

(x2 + 1)(x+ 99)

x+ 100

(x2 + 1)(x+ 99)

,

−x

3 + 100x2 − 59600x+ 100

x(x2 + 1)(x+ 99))

(x3 − 59501x2 − 5960099x+ 100

x(x2 + 1)(x+ 99)




Our experiments show that in the absence of rational solutions, time savings are about 75%,
and the additional time in the presence of solutions does not exceed 20-25%.

The implementation and a session of Maple with examples of using the procedure RationalSolution
are available at the address http://www.ccas.ru/ca/lfs.
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