
Rational Solutions of Linear Difference Equations Revisited

Sergei Abramov ∗) 1, Amel Gheffar ∗∗), Denis Khmelnov ∗) 1

∗) Computing Centre of the Russian Academy of Sciences
Vavilova, 40, Moscow 119991, GSP-1, Russia

sergeyabramov@mail.ru, dennis khmelnov@mail.ru

∗∗) XLIM, Université de Limoges, CNRS
123, Av. A. Thomas, 87060 Limoges cedex

f gheffar@yahoo.fr

Abstract. We discuss algorithms that are currently used for computing ra-
tional solutions of linear difference systems (or of scalar equations) with poly-
nomial coefficients. A complexity analysis and a time comparison of the algo-
rithms implemented in Maple are presented.

1 Introduction

This paper is a summary of authors’ results that have been published in [16, 7, 15, 8].
We revisit a problem of the search for rational solutions of a linear difference equation
with polynomial coefficients. Rational solutions may be a building block for other
types of solutions, and more general, such algorithms may be a part of various
computer algebra algorithms (see [22, 9, 10, 18], etc.). Investigations of new ways
to construct such solutions are quite valuable for computer algebra.

Let k be a field of characteristic 0. We consider systems of the form

Y (x + 1) = A(x)Y (x), (1)

Y (x) = (Y1(x), Y2(x), . . . , Yn(x))T , A(x) = (aij(x)) ∈ Matn(k(x)). It is assumed
that there exists the inverse matrix A−1(x) = (ãij(x)) ∈ Matn(k(x)). If an inho-
mogeneous system Y (x + 1) = A(x)Y (x) + G(x) is given and A(x) is as in (1),
G(x) ∈ k(x)n, then by adding to Y (x) an (n + 1)-st component with value 1, one
can transform the given system into a homogeneous system with an invertible ma-
trix B(x) ∈ Matn+1(k(x)) (see, e.g., [17, Sect. 2.2]). For this reason we restrict our
consideration to (1). At the same time we will consider scalar equations of the form

y(x + n) + an−1(x)y(x + n− 1) + · · ·+ a1(x)y(x + 1) + a0(x)y(x) = ϕ(x), (2)

ϕ(x), a1(x), . . . , an−1(x) ∈ k(x), a0(x) ∈ k(x) \ {0}, and such an equation is inho-
mogeneous if ϕ(x) is a non-zero rational function. By clearing denominators we can
rewrite (2) as

bn(x)y(x + n) + · · ·+ b1(x)y(x + 1) + b0(x)y(x) = ψ(x), (3)

1Supported in part by the Russian Foundation for Basic Research, project no. 10-01-00249.

1



ψ(x), b1(x), . . . , bn−1(x) ∈ k[x], b0(x), bn(x) ∈ k[x] \ {0}. The equations (2), (3) can
be represented in the operator form. For example, (3) can be written as L(y) = ψ(x)
where L = bn(x)φn + · · ·+ b1(x)φ + b0(x), φ(y(x)) = y(x + 1).

Currently, a few algorithms for finding rational (i.e., rational function) solutions
of equations (2), (3) and systems (1) are known. The algorithms from [4, 5, 12, 16, 7]
first construct a universal denominator, i.e., a polynomial U(x) such that in the
scalar case an arbitrary rational solution y(x) of (2) or (3) can be represented as

y(x) =
z(x)

U(x)
, (4)

where z(x) ∈ k[x] (in other words, if (2) has a rational solution f(x)
g(x)

which is in the

lowest terms then g(x)|U(x)). In the case of a system an arbitrary rational solution
of (1) can be represented as

Yi(x) =
Zi(x)

U(x)
, i = 1, 2, . . . , n, (5)

where Z1(x), Z2(x), . . . , Zn(x) ∈ k[x].
The algorithm from [16, Sect. 5] is based on constructing a set of irreducible

polynomials that are candidates for divisors of denominators of rational solutions,
and on finding a bound for the exponent of each of these candidates in a quite
simple way (the algorithm AU). In [7, Sect. 3.4] a version of this algorithm that
finds quickly the set of all such exponents was proposed (the algorithm A′

U).
When a universal denominator is constructed, one can substitute (4), (5) with

undetermined z(x) resp. Zi(x) into the initial equation resp. system to reduce the
problem of searching for rational solutions to the problem of searching for polynomial
solutions. After this, e.g., the algorithms from [1, 6] (the scalar case) and the
corresponding algorithm from [5, 12, 19] (the case of a system) can be used.

The algorithm from [17] is applicable to the system (1) when k = C. It finds
n rational functions R1(x), R2(x), . . . , Rn(x) ∈ C(x) which are called denominator
bounds such that for any rational solution of (1) we have

Yi(x) = Zi(x)Ri(x), i = 1, 2, . . . , n, (6)

where Z1(x), Z2(x), . . . , Zn(x) ∈ C[x] (the numerator of Ri(x) is a factor of the
numerator of the ith entry Yi(x) of any rational solution Y (x)). The substitution
(6) is used instead of (4), (5). In [16, Sect. 4] a version AB of this algorithm
suitable for a field k of characteristic 0 was proposed, and the scalar case (2), (3)
was especially considered as well.

It was shown in [7, 8] that the algorithm A′
U has advantages in comparison

with other mentioned algorithms for reducing the problem of searching for rational
solutions to the problem of searching for polynomial solutions.

The paper is organized as follows. Sect. 2 is devoted to a theoretical basis for
algorithms for constructing universal denominators and denominator bounds. Sect.
3 contains descriptions (a short review) of the algorithm from [4, 5, 12, 16, 7, 17].

2



In Sect. 4 we give some analysis of the algorithms from [4, 5, 12, 16, 7] and show
that all of them give the same universal denominator, but the algorithm A′

U has the
lowest complexity.

A combination of one of the algorithms A′
U ,AB with an algorithm (the same in

both cases) for finding all polynomial solutions gives the algorithms 〈A′
U〉, 〈AB〉 for

constructing all rational solutions. In Sect. 5 we show that some natural supposi-
tions on the used algorithm for finding all polynomial solutions allow to show that
the complexity of 〈A′

U〉 is less than the complexity of 〈AB〉
In Sect. 6, we discuss our implementation of the mentioned algorithms and give

a time comparison of these algorithms.
In Sect. 7 some changes of the traditional scheme for finding rational solutions of

scalar homogeneous equations with polynomial coefficients are proposed. In many
cases these changes allow one to predict the absence of rational solutions in an early
stage of the computation.

2 The Dispersion Set

Working with polynomial and rational functions over k we will write f(x)⊥g(x)
for f(x), g(x) ∈ k[x] to indicate that f(x) and g(x) are coprime; if F (x) ∈ k(x),

then den F (x) is the monic polynomial from k[x] such that F (x) = f(x)
den F (x)

for some

f(x) ∈ k[x], f(x)⊥ den F (x). In this case we write num F (x) for f(x). The set of
monic irreducible polynomials of k[x] will be denoted by Irr(k[x]). If p(x) ∈ Irr(k[x]),
f(x) ∈ k[x], then we define the valuation valp(x)f(x) as the maximal m ∈ N such that
pm(x)|f(x) (valp(x)0 = ∞), and valp(x)F (x) = valp(x)(num F (x))− valp(x)(den F (x))
for F (x) ∈ k(x).

Let A(x) be as in (1), then we define

den A(x) = lcmn
i=1 lcmn

j=1 den(aij(x)), den A−1(x) = lcmn
i=1 lcmn

j=1 den(ãij(x)).

If F (x) = (F1(x), F2(x), . . . , Fn(x))T ∈ k(x)n then den F (x) = lcmn
i=1 den Fi(x), and

valp(x)F (x) = minn
i=1 valp(x)Fi(x). A solution F (x) = (F1(x), F2(x), . . . , Fn(x))T ∈

k(x)n of (1) as well as a solution F (x) ∈ k(x) of (2), (3) is a rational solution. If
den F (x) 6= 1 then this solution is non-polynomial, and polynomial otherwise.

If p(x) ∈ Irr(k[x]), f(x) ∈ k[x] \ {0} then we define the finite set

Np(x)(f(x)) = {m ∈ Z : p(x + m)|f(x)}. (7)

If Np(x)(f(x)) = ∅ then we define maxNp(x)(f(x)) = −∞, minNp(x)(f(x)) = +∞.
From now on we use the notation

V (x) = bn(x− n), W (x) = b0(x)

for equation (3), and

V (x) = u1(x− 1), W (x) = u0(x),

where u1(x) = den A(x), u0(x) = den A−1(x), for system (1).

3



For f(x), g(x) ∈ k[x] \ {0} we define their dispersion set:

ds(f(x), g(x)) = {d ∈ N : deg gcd(f(x), g(x + d)) > 0}

and their dispersion:

dis (f(x), g(x)) = max(ds(f(x), g(x)) ∪ {−∞}).

The dispersion is equal to −∞ iff deg gcd(f(x), g(x + d)) = 0 for all d ∈ N, and
belongs to N otherwise. The set ds(f(x), g(x)) can be computed as the set of all
integer non-negative roots of the polynomial Resx(f(x), g(x + d)) ∈ k[d]. However
this set can be obtained faster if one resorts to the approach from [21] based on the
full factorization of f(x) and g(x).

If a non-polynomial rational solution exists then the set ds(V (x),W (x)) is not
empty ([2, 5]).

3 Algorithms for Constructing Universal Denom-

inators and Denominator Bounds

In Sect. 3.1, 3.2, 3.3, 3.4 we review algorithms for constructing universal denom-
inators. In Sect. 3.5, 3.6 we consider an algorithm for constructing denominator
bounds (versions of the algorithm from [17] given in [16]).

3.1 The Algorithm AD from [4, 5]

The algorithm is as follows:

Find D = ds(V (x),W (x)). If D = ∅ then terminate the algorithm with the
result U(x) = 1 (we suppose below that D = {d1, d2, . . . , ds} and d1 > d2 > · · · > ds,
s > 1). Set U(x) = 1 and successively for m = 1, 2, . . . , s execute the following group
of assignments:

P (x) = gcd(V (x),W (x + dm))
V (x) = V (x)/P (x)
W (x) = W (x)/P (x− dm)
U(x) = U(x)

∏dm

i=0 P (x− i).
The final value of U(x) is a universal denominator for equations (2), (3) or, resp.,
system (1).

We will refer to this algorithm as AD. This algorithm is exploited in current
versions of Maple [23]:

LREtools[ratpolysols], LinearFunctionSystems[UniversalDenominator].

3.2 The Algorithm from [12]

In [12] a more general problem than the search for rational solutions of system (1)
was solved. However, the algorithm from [12, Prop. 3] can be used to compute a

4



universal denominator u(x) related to (1). Using our notation (setting in addition
d = dis (V (x),W (x))) this algorithm may be represented as follows.

Consider the sequence of polynomials {(Vj(x),Wj(x), Pj(x))} defined inductively
as:

V0(x) = V (x), W0(x) = W (x), P0(x) = gcd(V (x),W (x + d)),

and for j = 1, 2, . . . , d,
Vj(x) = Vj−1(x)/Pj−1(x),
Wj(x) = Wj−1(x)/Pj−1(x− d + j − 1),
Pj(x) = gcd(Vj(x),Wj(x + d− j)).

Then u(x) =
∏d

j=0

∏d−j
i=0 Pj(x− i).

3.3 The Algorithm AU from [16]

An explicit formula for a lower bound of valp(x)F (x) can be found in [16]: if F (x)
is a rational solution of equation (3) or system (1) then for any p(x) ∈ Irr(k[x]) we
have valp(x)F (x) > −γp(x), where

γp(x) = min





∑

l∈N
valp(x+l)V (x),

∑

l∈N
valp(x−l)W (x)



 . (8)

This formula was used in [16] as a base for the new algorithm AU for computing
a universal denominator. This algorithm can be divided into two steps. In the first
step, AU constructs a finite set M of irreducible polynomials that are candidates
for divisors of denominators of rational solutions. At the second step, for each
p(x) ∈ M this algorithm computes the product

∏
p(x)∈M pγp(x)(x) which gives a

universal denominator related to a given equation or system.
We define

M =
{
p(x) ∈ Irr(k[x]) : minNp(x)(W (x)) 6 0, maxNp(x)(V (x)) > 0

}
.

For constructing this set the full factorization of polynomials V (x),W (x) has to
be found. Then we find the finite set Q ⊂ Irr(k[x]) such that q(x) ∈ Q iff
minNq(x)(W (x)) = 0, and maxNq(x)(V (x)) > 0. Let Q = {q1(x), q2(x), . . . , qs(x)},
s > 1. For each 1 6 i 6 s we consider

Mqi(x) = {qi(x), qi(x + 1), . . . , qi(x + di)}, (9)

where di = maxNqi(x)(V (x)). We have M =
⋃s

i=1 Mqi(x).

3.4 An Improved Version of the Algorithm AU (the Algo-
rithm A′

U from [7])

As it is described above the algorithm AU contains two steps: the construction of
the set M and the computation of γp(x) using (8) for all p(x) ∈ M , which results in
the universal denominator. Formula (8) contains the sums by l ∈ N. In spite of the

5



fact that N is infinite, the sums have only finite number of summands corresponding
to the irreducible factors of V (x) and W (x), which are equal to non-negative and
non-positive shifts of p(x), respectfully (the corresponding valuations are equal to
the exponents of such factors in the factorization of V (x) and W (x)). It is clear
that when we compute (8) for p(x) = qi(x + j) ∈ Mqi(x) (where Mqi(x) is as in (9)),
the corresponding γqi(x+j) might be equal for many successive j. Indeed if we have
computed γqi(x), and after that we compute γqi(x+j) for j from 1 to di, then the value
can be changed only for those j for which there is an irreducible factor of V (x)
or W (x) equal to qi(x + j) (such critical points can be computed in advance while
constructing the set M). The consideration is a basis for the improved version of
the algorithm AU (more details can be found in [7, Sect. 3.4]).

We will refer to this detailed (improved) version of AU as A′
U .

3.5 The Algorithm AB from [17, 16] (the case of a system)

The algorithm from [17] was modified in [16, Sect. 3, 4] in two directions: first,
instead of complex numbers irreducible polynomials from k[x] are considered, and
second, the set of the irreducible polynomials which are used to find lowers bounds
of valuations is constructed in a specific way (the modified version AB uses the same
set M as the algorithms AU , A′

U while the algorithm from [17] uses another set S̄;
even when k = C we have M ⊂ S̄ and M is a proper subset of S̄ in a large number
of cases).

Let A(x) be as in (1). We define AN(x) = A(x − 1)A(x − 2) . . . A(x − N) and
A−N = A−1(x)A−1(x+1) . . . A−1(x+N−1) for each positive integer N . Then Y (x) =
AN(x)Y (x − N) for each solution of (1), N = ±1,±2, . . . We define B(p(x), N, i)
as the minimum of the valuations at p(x) of the entries in the i-th row of AN(x).
The algorithm AB for the case of a system (1) is as follows. Computing successively
matrices AN(x) for N = 1, 2, . . . , d + 1 we find for each t such that 1 6 t 6 s and
dt > N − 1 the values B(qt(x + dt − N + 1), N, i), i = 1, 2, . . . , n, which give us
left-hand bounds for valqt(x+dt−N+1)Yi(x), i = 1, 2, . . . , n. Analogously we compute
successively matrices A−N for N = 1, 2, . . . , d + 1 and find for each t such that
1 6 t 6 s and dt > N − 1 the values B(qt(x + N − 1),−N, i), i = 1, 2, . . . , n, which
give us right-hand lower bounds for valqt(x+N−1)Yi(x), i = 1, 2, . . . , n. We have two
lower bounds for each of the valuations valqt(x+j)Yi(x), i = 1, 2, . . . , n, t = 1, 2, . . . , s,
j = 0, 1, . . . , dt, and can take the maximal one, we denote it by αi,j,t. The rational
functions Ri(x) =

∏
16t6s
06j6dt

q
αi,j,t

t (x + j), i = 1, 2, . . . , n, are denominator bounds.

3.6 The Algorithm AB from [17, 16] (the scalar case)

In [17] the algorithm is described only for systems of the form (1). Scalar equations
(2), (3) are assumed ([17, Sect. 3]) to be transformed to the system with the
companion matrix A(x) of the initial scalar equation. But the matrix operations are
quite costly. A scalar version of the algorithm was given in [16]. We describe this
version assuming that the ground field is an arbitrary field k of characteristic 0.

6



In the scalar case for an arbitrary non-zero integer N we can construct equations

y(x) = vN, n−1(x)y(x−N) + · · ·+ vN, 0(x)y(x−N − n + 1) + vN, −1(x), (10)

with rational function coefficients which are satisfied by all rational solutions of (2)
and (3). Let p(x) ∈ Irr(k[x]), N ∈ Z \ {0}. We define B(p(x), N) as the minimum
of the valuations at p(x) of the coefficients vN, −1(x), vN, 0(x), . . . , vN, n−1(x) in (10).

Constructing successively equations (10) for N = 1, 2, . . . , d+1 we find the value
B(qt(x + dt−N + 1), N) for each t such that 1 6 t 6 s and dt > N − 1, which gives
us the left-hand bound for valqt(x+dt−N+1)y(x). Similarly we construct successively
equations (10) for N = −1,−2, . . . ,−d− 1 and find the value B(qt(x−N − 1), N)
for each t such that 1 6 t 6 s and dt > −N − 1, which gives us right-hand lower
bounds for valqt(x−N−1)y(x). We have two lower bounds for each of the valuations
valqt(x+j)y(x), t = 1, 2, . . . , s, j = 0, 1, . . . , dt, and can take the maximal one, we

denote it by βj,t. The rational function R(x) =
∏

16t6s
06j6dt

q
βj,t

t (x+ j) is a denominator

bound.

4 Complexity Comparison of AD and A′
U

Proposition 1. ([13, 7]) The universal denominators computed by the algorithm
from [12] and AD coincide for any given V (x),W (x). Intermediate polynomials
computed by AD are also computed as intermediate polynomials by the algorithm
from [12].

We now give a complexity analysis of AD and A′
U .

Let l = max{deg V (x), deg W (x)}, d = dis (V (x),W (x)), and Tgcd(l) be the
complexity of the gcd computation for two polynomials whose maximal degree is
l. We compare the complexities TAD

(l, d) and TA′
U
(l, d) of AD and A′

U . In this
context, the complexity is the number of the field operations in k in the worst case.

Proposition 2. ([7]) If Tgcd(l)/(l log l) →∞ then the difference TAD
(l, d)−TA′U (l, d)

is positive for almost all l, d ∈ N+ and

TAD
(l, d)− TA′

U
(l, d) =





∑l
i=0 Tgcd(i) + O(l log l), if d > l,

∑l
i=l−d Tgcd(i) + O(l log l), if d < l.

(11)

In the next proposition we use the Ω-notation which is very common in complex-
ity theory ([20]). Unlike O-notation which is used for describing upper asymptotical
bounds, the Ω-notation is used for describing lower asymptotical bounds.

Proposition 3. ([7]) Let Tgcd(l) = Ω(lα), α > 1. Then the difference TAD
(l, d) −

TA′
U
(l, d) is positive for almost all l, d ∈ N+ and is Ω(S(l, d)), where

S(l, d) =





lα+1, if d > l,

dlα, if d < l.

7



To the authors’ knowledge Tgcd(l) = Ω(lα), α > 1, for the algorithms now in use
in actual practice for gcd computations.

The fast Euclidean algorithm [14, Ch. 11] has complexity O(l log2 l log log l)
if Fast Fourier Transform is used to multiply polynomials. But this version of the
fast Euclidean algorithm is not practical due to a big constant hidden in O. Nev-
ertheless, if we suppose that the fast Euclidean algorithm is used and the estimate
Ω(l log2 l log log l) (or, even Ω(l log2 l)) is valid for the complexity of this algo-
rithm then by Proposition 2 the difference TAD

(l, d) − TA′
U
(l, d) is positive (i.e.,

TA′
U
(l, d) < TAD

(l, d)) for almost all l, d ∈ N+.
The reason of the appearance of the factor log l in formulas of Proposition 2 is

the complexity O(l log l) of critical points sorting (see Sect. 3.4). We consider a
comparison of two integer numbers as an operation in k (integer numbers are in
k due to its zero characteristic). However if we take into account only arithmetic
operations in k then the factor log l can be omitted. In this case we can take α > 1
in the hypothesis of Proposition 3, and do not consider separately the fast Euclidean
algorithm.

Thus the algorithm from [12] and the algorithms AD,A′
U produces the same

universal denominators, therewith A′
U has the lowest complexity among them.

5 Complexity Comparison of 〈AB〉 and 〈A′
U〉

The complexity of AB is greater than the complexity of AU ([16, Th. 2(i)]) and
therefore it is greater than the the complexity of A′

U . However the algorithm AB

gives quite exact lower bounds. A combination of one of the algorithms A′
U ,AB with

an algorithm (the same in both cases) for finding all polynomial solutions gives the
algorithms 〈A′

U〉, 〈AB〉 for constructing all rational solutions. We compare below
the complexities of 〈A′

U〉 and 〈AB〉 ([8]).
Consider the scalar case. Some natural suppositions about the used algorithm

for finding all polynomial solutions allow to show that the complexity of 〈A′
U〉 is

less than the complexity of 〈AB〉 (as in Sect. 4 the complexity is the number of the
field operations in k in the worst case). For this investigation we need the notion of
the height of an equation.

It is known that for any equation L(y) = ψ(x) of the form (3) one can construct
its indicial equation I(λ) = 0 at ∞ (which is an algebraic equation) and an integer
number ω (which we call the increment of the equation) such that the degree of any
polynomial solution of L(y) = ψ(x) does not exceed the height of L(y) = ψ(x):

h = max{deg ψ − ω, λ̃}, (12)

where
λ̃ = max({λ ∈ N : I(λ) = 0} ∪ {−∞}). (13)

Recall that to get I(λ) and ω one can rewrite (3) using the operator ∆ = φ − 1
instead of the shift operator φ: L = cn(x)∆n + · · ·+ c1(x)∆ + c0(x). Then

ω = max
06j6n

(deg cj − j), I(λ) =
∑

06j6n
deg aj−j=ω

lc(cj)λ(λ− 1) . . . (λ− j + 1).

8



We suppose that the polynomial solutions algorithm which is used by 〈A′
U〉 and

〈AB〉 computes first the height (12) and then computes polynomial solutions using
the height as an upper bound for their degrees.

For an equation L(y) = ψ(x) be of the form (3) we set
l = max{deg b0(x), deg b1(x), . . . , deg bn(x)},
d = dis (bn(x− n), b0(x)),
n = ord L,
h = the height of the equation.
The quadruple (l, d, n, h) is the combined size (or just the size for short) of the

equation L(y) = ψ(x). We consider the complexities T〈A′
U〉(l, d, n, h), T〈AB〉(l, d, n, h)

of the algorithms 〈A′
U〉 and 〈AB〉.

Using the algorithm A′
U (resp., AB) on the first step and clearing denominators

after the corresponding substitution one gets an equation with polynomial coeffi-
cients and a polynomial right-hand side. This equation will be called the U -image
(resp. B-image) of the original equation. On the final step the algorithms 〈A′

U〉,
〈AB〉 find all polynomial solutions of the U - (resp. B-) image of the original equa-
tion.

The following lemma is a consequence of Remark 1 from [15]:

Lemma 1. Let F (x) ∈ k(x) \ {0}. Let K(z) = χ(x) be the equation that we
get clearing denominators after the substitution y(x) = z(x)F (x) into the original
equation L(y) = ψ(x). Let I(λ) = 0 and I ′(λ) = 0 be the indicial equations for
L(y) = ψ(x) and, resp. for K(z) = χ(x). Then I ′(λ) = I(λ + deg num F (x) −
deg den F (x)).

Let the size of the original equation be (l, d, n, h). Denote by (lU , dU , nU , hU) the
size of the U -image (of course, nU = n). In addition denote by rU the degree of the
right-hand side of the U -image.

Lemma 2. ([8]) Let the size of an equation L(y) = ψ(x) be (l, d, n, h). Then
(i) the set M of this equation contains no more than l(d+1) elements (irreducible

polynomials) and

lU 6 l(n− 1), hU 6 hl + (d + 1), rU 6 h + l(d + n);

(ii) the height of the equation

f(x + n + d)y(x + n) + (x + 1)ly(x + n− 1) + . . . (14)

· · ·+ (x + 1)ly(x + 1) + f(x)y(x) = (x + 1)h+l,

where

f(x) =
l∏

t=1

(
x +

1

t + 1

)
,

is equal to h (thus the size of this equation is (l, d, n, h)), and the set M has l(d+1)
elements, the algorithm A′

U gives for this equation the universal denominator of
degree l(d + 1), and

hU = h + l(d + 1), lU = l(n− 1) + h, rU = h + l(d + n)

9



(by (i) these values are the maximal possible for the equations of size (l, d, n, h)).

(Lemma 1 plays a significant role in the proof of (i).)
Note that if we remove the component h from the combined size then the com-

plexity of each of 〈AB〉, 〈A′
U〉 will be equal to ∞. When the combined size as

the quadruple (l, d, n, h) is fixed, the cost of the rational solutions computation is
bounded.

Denote by Sl,d,n,h the set of all equations of size (l, d, n, h) and by Ul,d,n,h the sub-
set of Sl,d,n,h which consists of the equations such that the cost of finding (or absence
recognizing) polynomial solutions of the U -image of each of them is maximal among
all equations from Sl,d,n,h. The set Ul,d,n,h may contain more than one equation.

Proposition 4. ([8]) Let the algorithm which is used for finding polynomial solu-
tions be such that equation (14) for any l, d, n, h is in U l,d,n,h. Then T〈AB〉(l, d, n, h) >
T〈A′

U〉(l, d, n, h), and T〈AB〉(l, d, n, h)− T〈A′U〉(l, d, n, h) = Ω(dln).

Our assumption that (14) belongs to U l,d,n,h is quite reasonable. We do not
specify the used algorithm for finding polynomial solutions but suppose that the
algorithm uses the height of the equation as a bound for degrees of solutions. By
Lemma 2 the height of the U -image of (14) is maximal and the U -image itself is
maximally cumbersome among the U -images of equations from S l,d,n,h.

In the case of a system the algorithm 〈AB〉 needs to construct matrices AN ,
which is even more costly than constructing equations (10).

6 Implementation and Experiments

The implementation of AD is available in Maple as an internal procedure of LREtools
package. We implemented A′

U to perform comparison experiments. Note that A′
U

is based on the full factorization of the given polynomials V (x) and W (x). Our
implementation uses the result of the factorization not only to construct the set M
of irreducible polynomials, but also computes (8) using it. It is not the case for
the implementation of AD in Maple. It uses the procedure LREtools[dispersion] to
compute the dispersion of polynomials which implements the algorithm [21], i.e.,
uses the full factorization. But the next steps of AD are implemented as presented
in Sect. 3.1 not exploiting the result of the factorization of the previous step.

We also performed comparison experiments for 〈A′
U〉 and 〈AB〉. 〈A′

U〉 is imple-
mented combining our implementation of A′

U and Maple’s LREtools[polysols] (the
scalar case) and LinearFunctionalSystems[PolynomialSolution] (the case of a sys-
tem) for finding all polynomial solutions. We have also implemented AB (both for
scalar and system cases); 〈AB〉 is implemented combining this implementation of AB

and Maple’s LREtools[polysols] (the scalar case) and LinearFunctionalSystems[Poly-
nomialSolution] (the case of system) for finding all polynomial solutions.

10



6.1 Comparison of A′
U and AD

We performed several experiments to compare A′
U and AD. The result of one of the

experiment is presented below.
The both algorithms were applied to the input set:

V (x) = W (x) =
l∏

i=1

(x + m + i + 1/i)(x−m− i + 1/i)

for m = 20, 100, 500, 2500, l = 1, 15, 30, 45, 60. The corresponding found universal
denominators are:

∏l
i=1

∏m+i
j=−m−i(x− j +1/i). Results for the input set, in seconds:

m=20 m=100 m=500 m=2500
A′

U AD A′
U AD A′

U AD A′
U AD

l=1 0.016 0.015 0.000 0.000 0.000 0.016 0.031 0.031
l=15 0.078 0.375 0.109 0.422 0.172 0.531 0.578 1.032
l=30 0.359 2.890 0.407 3.063 0.531 3.484 1.266 5.344
l=45 0.860 10.641 0.796 11.547 1.516 13.234 3.078 17.656
l=60 2.406 31.187 2.719 33.484 2.657 37.125 4.766 44.797

The input set corresponds near to the worst case for both algorithms A′
U and

AD, and an advantage of A′
U is evident.

The results of other experiments to compare A′
U and AD are available in [7]. All

the experiments confirmed the practical benefit of A′
U .

6.2 Comparison of 〈A′
U〉 and 〈AB〉 (the scalar case)

We performed several comparison experiments to compare 〈A′
U〉 and 〈AB〉. The

result of one of the experiment is presented below.
〈A′

U〉 and 〈AB〉 were applied to 27 equations (14) from Lemma 2: h = 6 for
all of them, n = 3, 6, 9, l = 2, 4, 6, d = 5, 10, 15. The resulting T〈AB〉(l, d, n, h) −
T〈A′

U〉(l, d, n, h), in seconds:

n l d=5 d=10 d=15
3 2 0.546 - 0.141 = 0.405 1.438 - 0.125 = 1.313 2.796 - 0.203 = 2.593
3 4 1.359 - 0.235 = 1.124 4.188 - 0.375 = 3.813 9.594 - 0.812 = 8.782
3 6 2.703 - 0.375 = 2.328 10.172 - 0.969 = 9.203 24.937 - 1.734 = 23.203
6 2 0.813 - 0.234 = 0.579 2.015 - 0.328 = 1.687 4.625 - 0.453 = 4.172
6 4 2.313 - 0.672 = 1.641 7.515 - 1.063 = 6.452 17.235 - 2.140 = 15.095
6 6 5.094 - 1.547 = 3.547 18.484 - 3.156 = 15.328 45.656 - 6.094 = 39.562
9 2 1.047 - 0.563 = 0.484 3.062 - 0.671 = 2.391 6.610 - 1.063 = 5.547
9 4 3.687 - 1.328 = 2.359 11.063 - 2.516 = 8.547 25.484 - 4.265 = 21.219
9 6 8.281 - 3.172 = 5.109 28.453 - 6.875 = 21.578 69.672 - 13.328 = 56.344

The results correspond to Proposition 4, and moreover the difference T〈AB〉(l, d, n, h)−
T〈A′

U〉(l, d, n, h) grows even faster than d for the fixed n, l.

11



Note that h is not in the table: h = 6 for all equations. Additional experiments
with h = 2, 4 show that the results are almost independent from h – the growth of
h in 3 times from 2 to 6 causes the change of T〈AB〉(l, d, n, h) − T〈A′

U〉(l, d, n, h) in

less than 3% for fixed l, d, n).
The results of other experiments to compare 〈A′

U〉 and 〈AB〉 are available in [8].
All the experiments’ results corresponded to the proposition 4.

6.3 Comparison of 〈A′
U〉 and 〈AB〉 (the case of a system)

In the experiment 〈A′
U〉 and 〈AB〉 were applied to 3 input sets. Each set contained

20 equations of order n = 2, 3, 4 correspondingly. Each system had fundamental
system of solutions consisting of randomly generated rational functions. Note that
such inputs were more convenient for 〈AB〉, since AB constructed exact bounds
(without possibility to reduce) for such inputs in accordance with [17, Theorem 1].

Results for the experiment:

n deg U(x) deg den Ri(x) Time Time
A′

U AB 〈A′
U〉 〈AB〉

2 7-39 2-8 7.216 22.922
3 18-49 3-21 38.859 169.906
4 36-74 5-28 176.829 836.172

Each row in the table corresponds to the input set with the parameter n. The
other columns present ranges of degrees of denominators found by A′

U and AB for
the systems in the corresponding set, as well as the total time for finding rational
solutions for all systems in the set taken by 〈A′

U〉 and 〈AB〉.
The time of 〈AB〉 was greater than the time of 〈A′

U〉 for all the input sets in
spite of the exact bounds found by AB (note that A′

U found less exact bound as it
is seen from the ranges of degrees of denominators in the table).

7 Scalar Homogeneous Equations Having no Ra-

tional Solutions

Many equations (even a “majority” of them) have no (non-zero) rational solutions.
However if one uses algorithms like 〈A′

U〉 or 〈AB〉 then the absence of such solutions
will be recognized only in the last step of computation when U -, resp. B-image of
the original equation is constructed. In [15] some changes in the scheme of these
algorithms for the case of scalar homogeneous equation L(y) = 0 with L = bn(x)φn+
· · · + b1(x)φ + b0(x), ψ(x), b1(x), . . . , bn−1(x) ∈ k[x], b0(x), bn(x) ∈ k[x] \ {0}, were
discussed. In any case these changes do not increase the computation cost, but
allow one quite often to predict the absence of rational solutions in an early stage
of computation and to stop the work. The changes are based on Lemma 1.

Proposition 5. ([15]) Let d = dis (bn(x − n), b0(x)) > 0, and let λ̃ be as in (13).
In this case,

12



(i) if the inequality

λ̃ + (d + 1) min{deg b0(x), deg bn(x)} > 0 (15)

is not valid then L(y) = 0 has no rational solutions,
(ii) if F (x) is an arbitrary denominator bound computed for L(y) = 0 and

K(z) = 0 is the equation that we get clearing denominators after the substitu-
tion y(x) = z(x)F (x) into the original equation L(y) = 0 (e.g., F (x) = 1

U(x)
or

F (x) = R(x) where U(x), R(x) are the result of applying A′
U , resp. AB to L(y) = 0)

then λ̃−deg num F (x)+deg den F (x) is an upper bound for degrees of all polynomial
solutions of K(z) = 0.

Some simple examples. For L = 2(x + 2)φ + (2x + 3) the indicial equation is
2λ + 1 = 0. There are no integer roots. Thus L(y) = 0 has no rational solutions.
For L = (x+1)(x2 +1)φ−x(x2−4x+1) the indicial equation is λ+5 = 0. We have
λ̃ = −5, d = 0. Inequality (15) is not valid. Thus L(y) = 0 has no rational solutions.
For L = (x + 2)φ − x we have λ + 2 = 0, λ̃ = −2, d = 1. Inequality (15) is valid.
If the algorithm A′

U is used, then we get R(x) = 1
x(x+1)

. We have −2 − 0 + 2 = 0.

Thus by Proposition 5(ii) 0 is an upper bound for degrees of polynomial solutions
of the U -image, which is (x + 1)y(x + 1)− xy(x) = 0. Constants and only them are
polynomial solutions.

Acknowledgments

The authors are grateful to M. Barkatou, M. van Hoeij, M. Kauers, M. Petkovšek
and E. Zima for interesting discussions.

References

[1] Abramov S. Problems of computer algebra involved in the search for polynomial
solutions of linear differential and difference equations. Moscow Univ. Comput. Math.
Cybernet. 3 (1989) 63–68; transl. from Vestn. MGU. Ser. 15. Vychisl. mat. i kibernet.
3 (1989) 53–60

[2] Abramov S. Rational solutions of linear difference and differential equations with
polynomial coefficients. USSR Comput. Math. Phys. 29 (1989) 7–12; transl. from Zh.
vychisl. mat. mat. fyz. 29 (1989) 1611–1620

[3] Abramov S. Rational solutions of linear difference and q-difference equations with
polynomial coefficients. In: ISSAC’98 Proceedings, ACM Press (1995) 303–308

[4] Abramov S. Rational solutions of linear difference and q-difference equations with
polynomial coefficients. Programming and Comput. Software 21 (1995) 273–278;
transl. from Programmirovanie 6 (1995) 3–11

[5] Abramov S., Barkatou M. Rational solutions of first order linear difference systems.
In: ISSAC’98 Proceedings, ACM Press (1998) 124–131

13



[6] Abramov S., Bronstein M., Petkovšek M. On polynomial solutions of linear operator
equations. In: ISSAC’95 Proceedings, ACM Press (1995) 290–295

[7] Abramov S., Gheffar A., Khmelnov D. Factorization of polynomials and gcd compu-
tations for finding universal denominators. CASC’2010 Proceedings (2010) 4–18

[8] Abramov S., Gheffar A., Khmelnov D. Rational solutions of linear difference equa-
tions: universal denominators and denominator bounds. Programming and Computer
Software 2 2011 (accepted)

[9] Abramov S., van Hoeij M. A method for the integration of solutions of Ore equations.
In: ISSAC’97 Proceedings, ACM Press (1997) 172–175

[10] Abramov S., van Hoeij M. Integration of solutions of linear functional equations.
Integral Transforms and Special Functions 8 (1999) 3–12

[11] Barkatou M. Rational solutions of systems of linear difference equations. J. Symbolic
Computation 28 (1999) 547–567

[12] Barkatou M. Rational solutions of matrix difference equations: problem of equivalence
and factorization. In: ISSAC’99 Proceedings, ACM Press (1999) 277–282

[13] Chen W. Y. C., Paule P., Saad H. L. Converging to Gosper’s algorithm. Adv. in
Appl. Maths. 41(3) (2008) 351–364

[14] von zur Gathen J., Gerhard J. Modern Computer Algebra (Second Edition). Cam-
brige University Press (2003)

[15] Gheffar A. Linear differential, difference and q-difference homogeneous equations hav-
ing no rational solutions. ACM Commun. Comput. Algebra (accepted)

[16] Gheffar, A., Abramov, S. Valuations of rational solutions of linear difference equations
at irreducible polynomials. Adv. in Appl. Maths. (accepted)

[17] van Hoeij M. Rational solutions of linear difference equations. In: ISSAC’98 Proceed-
ings, ACM Press (1998) 120–123

[18] van Hoeij M., Levy G. Liouvillian solutions of irreducible second order linear differ-
ence equations. In: ISSAC’2010 Proceedings, ACM Press (2010) 297–301.

[19] Khmelnov D.E. Search for polynomial solutions of linear functional systems by means
of induced recurrences. Programming and Comput. Software 30 (2004) 61–67; transl.
from Programmirovanie 2 (2004) 8–16

[20] Knuth D.E. Big omicron and big omega and big theta. ACM SIGACT News 8(2)
(1976) 18–23

[21] Man Y.K., Wright F.J. Fast polynomial dispersion computation and its application
to indefinite summation. In: ISSAC’94 Proceedings, ACM Press (1994) 175–180

[22] Petkovšek M. Hypergeometric solutions of linear recurrences with polynomial coeffi-
cients. J. Symbolic Computation 14 (1992) 243–264

[23] Maple online help: http://www.maplesoft.com/support/help/

14


