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Abstract. We prove that the question of whether a given linear par-
tial differential or difference equation with polynomial coefficients has
non-zero polynomial solutions is algorithmically undecidable. However,
for equations with constant coefficients this question can be decided very
easily since such an equation has a non-zero polynomial solution iff its
constant term is zero. We give a simple combinatorial proof of the fact
that in this case the equation has polynomial solutions of all degrees.
For linear partial q-difference equations with polynomial coefficients, the
question of decidability of existence of non-zero polynomial solutions re-
mains open. Nevertheless, for such equations with constant coefficients
we show that the space of polynomial solutions can be described algorith-
mically. We present examples which demonstrate that, in contrast with
the differential and difference cases where the dimension of this space is
either infinite or zero, in the q-difference case it can also be finite and
non-zero.

1 Introduction

Polynomial solutions of linear differential and (q-)difference equations often serve
as a building block in algorithms for finding other types of closed-form solutions.
Computer algebra algorithms for finding polynomial (see, for example, [4]) and
rational (see [1,2,7,10,8] etc.) solutions of linear ordinary differential and dif-
ference equations with polynomial coefficients are well known. Note, however,
that relatively few results about rational solutions of partial linear differential
and (q-)difference equations can be found in the literature. Only recently, M.
Kauers and C. Schneider [11,12] have started work on the algorithmic aspects
of finding universal denominators for rational solutions in the difference case.
Once such a denominator is obtained, one needs to find polynomial solutions of
the equation satisfied by the numerators of the rational solutions of the original
equation. This is our motivation for considering polynomial solutions of linear
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partial differential and (q-)difference equations with polynomial coefficients in
the present paper.

LetK be a field of characteristic 0, and let x1, . . . , xm be independent variables
wherem ≥ 2. In Section 2, using an argument similar to the one given in [9, Thm.
4.11], we show that there is no algorithm which, for an arbitrary linear differential
or difference operator L with coefficients fromK[x1, . . . , xm], determines whether
or not there is a non-zero polynomial y ∈ K[x1, . . . , xm] such that L(y) = 0
(Theorem 1). The proof is based on the Davis-Matiyasevich–Putnam–Robinson
theorem (DMPR) which states that the problem of solvability of Diophantine
equations is algorithmically undecidable, i.e., that there is no algorithm which,
for an arbitrary polynomial P (t1, . . . , tm) with integral coefficients, determines
whether or not the equation P (t1, . . . , tm) = 0 has an integral solution [14,17].
In fact, we use the equivalent form which states that existence of non-negative
integral solutions of P (t1, . . . , tm) = 0 is undecidable as well.

Of course, by limiting the class of operators considered, the corresponding prob-
lem may become decidable. For example, it is well known that a partial linear dif-
ferential or difference operator L with coefficients in K (a.k.a. an operator with
constant coefficients) has a non-zero polynomial solution iff L(1) = 0 (see, for
example, [20, Lemma 2.3]). In addition, in Section 3 we show that in this case,
the equation L(y) = 0 has polynomial solutions of degree d for all d ∈ N (The-
orem 2). This is contrasted with the univariate case m = 1, where the degree of
a polynomial solution cannot exceed ordL (but note that, when a univariate L is
considered to be m-variate with m ≥ 2, and L(1) = 0, equation L(y) = 0 does
have solutions of all degrees). In the differential case, when the affine algebraic
variety defined by σ(L) = 0 (where σ : K[∂/∂x1, . . . , ∂/∂xn] → K[x1, . . . , xn] is
the ring homomorphism given by σ|K = idK , σ(∂/∂xj) = xj) is not singular at 0,
and for d large enough, Theorem 2 follows from [20, Prop. 3.3(e)]. Here we present
a short direct proof based on a simple counting argument. For a given d ∈ N, all
solutions of degree d of such an equation can be found, e.g., by the method of un-
determined coefficients. Of course, there exist more efficient ways to do that: in
[19], the application of Janet bases to the computation of (formal) power series
and polynomial solutions is considered; in [19, Ex. 4.6], the command PolySol

for computing polynomial solutions from the Janet Maple package is illustrated.
Computing polynomial solutions using Gröbner bases is described in [21, Sect.
10.3, 10.4] and [19, Sect. 10.8]. Themore general problem of finding polynomial so-
lutions of holonomic systems with polynomial coefficients (if they exist) is treated
in [16,22], and the resulting algorithms are implemented in Macaulay2 [13].

Our attention was drawn to these problems by M. Kauers. In a letter to the
first author he presented a proof of undecidability of existence of non-zero poly-
nomial solutions of partial differential equations with polynomial coefficients, and
attributed it to mathematical folklore. In our paper, a simple common proof for
the differential and difference cases is proposed. The situation when coefficients
are constant is clarified as well.

In Section 4 we consider the q-difference case, assuming that K = k(q) where
k is a subfield of K and q is transcendental over k (q-calculus, as well as the
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theory and algorithms for q-difference equations, are of interest in combinatorics,
especially in the theory of partitions [5, Sect. 8.4], [6]). The question of decid-
ability of existence of non-zero polynomial solutions of an arbitrary q-difference
equation with polynomial coefficients is still open. As for the equations with
constant coefficients, we formulate and prove a necessary condition for existence
of a non-zero polynomial solution: if L(1) = p(q) ∈ K[q], then p(1) = 0, or, more
succinctly: (L(1))(1) = 0. We also show that the dimension of the space of poly-
nomial solutions of a linear q-difference equation with constant coefficients can
be, in contrast with the differential and difference cases, not only zero or infinite,
but also finite positive. An explicit description of this space can be obtained al-
gorithmically. We consider this as one of the first steps in the program to find
wider classes of closed-form solutions of multivariate q-difference equations.

Terminology and notation. We write x = (x1, . . . , xm) for the variables,
D = (D1, . . . , Dm) for partial derivatives (Di = ∂

∂xi
), and Δ = (Δ1, . . . , Δm)

for partial differences (Δi = Ei − 1 where Eif(x) = f(x1, . . . , xi + 1, . . . , xm)).
Multiindices fromN

m
(where N = {0, 1, 2, . . .}) are denoted by lower-case Greek

letters, so that a partial linear operator of order at most r with polynomial
coefficients is written as

L =
∑

|μ|≤r

aμ(x)D
μ (1)

in the differential case, and

L =
∑

|μ|≤r

aμ(x)Δ
μ (2)

in the difference case, with aμ(x) ∈ K[x1, . . . , xm] in both cases. We denote the
dot product of multiindices μ, α ∈ N

m
by μ · α = μ1α1 + · · ·+ μmαm.

We call y(x) ∈ K[x1, . . . , xm] a solution of L if L(y) = 0.
Let c ∈ K \ {0}. As usual, we define

degxi
(cxn1

1 · · ·xnm
m ) = ni

for i = 1, . . . ,m, and

deg(cxn1
1 · · ·xnm

m ) = n1 + · · ·+ nm.

For p(x) ∈ K[x1, . . . , xm] \ {0} we set degxi
p(x) for i = 1, . . . ,m to be equal to

maxdegxi
t, and deg p(x) to be equal to maxdeg t where the maximum is taken

over all the terms t of the polynomial p(x). We define degxi
0 = deg 0 = −∞ for

i = 1, . . . ,m.
We denote the rising factorial by

an =
n−1∏

i=0

(a+ i).
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2 Equations with Polynomial Coefficients

Theorem 1. There is no algorithm to decide whether an arbitrary linear partial
differential resp. difference operator L with polynomial coefficients in an arbitrary
number m of variables, of the form (1) resp. (2), has a non-zero polynomial
solution.

Proof. Let P (t1, . . . , tm) ∈ Z[t1, . . . , tm] be arbitrary. For i = 1, . . . ,m write
θi = xiDi and σi = xiΔi. Then

θi(x
n1
1 · · ·xnm

m ) = nix
n1
1 · · ·xnm

m (3)

and

σi(x
n1
1 · · ·xnm

m ) = nix
n1
1 · · ·xnm

m , (4)

for i = 1, . . . ,m. Define an operator L of the form (1) resp. (2) by setting L =
P (θ1, . . . , θm) in the differential case, and L = P (σ1, . . . , σm) in the difference
case. Let f(x1, . . . , xm) ∈ K[x1, . . . , xm] be a polynomial over K. From (3) and
(4) it follows that L annihilates f iff it annihilates each term of f separately, so
L has a non-zero polynomial solution iff it has a monomial solution (where in
the difference case we assume that the polynomial f is expanded in terms of the
rising factorial basis). But we have

L(xn1
1 · · ·xnm

m ) = P (n1, . . . , nm)xn1
1 · · ·xnm

m

in the differential case, and

L(xn1
1 · · ·xnm

m ) = P (n1, . . . , nm)xn1
1 · · ·xnm

m

in the difference case. So L has a monomial solution iff there exist n1, . . . , nm ∈ N

such that P (n1, . . . , nm) = 0. Hence an algorithm for deciding existence of non-
zero polynomial solutions of linear partial differential or difference operators with
polynomial coefficients would give rise to an algorithm for deciding existence of
non-negative integral solutions of polynomial equations with integral coefficients,
in contradiction to the DMPR theorem.

Remark 1. In [9, Thm. 4.11], it is shown that there is no algorithm for de-
ciding existence of formal power series solutions of an inhomogeneous partial
differential equations with polynomial coefficients and right-hand side equal to 1
(see also Problem 13 in [15, p. 62] and Problem 3 in [18, p. 27]). Even though
the same polynomial P in θi is used in the proof of Theorem 1 as in the proof of
[9, Thm. 4.11], it is not at all clear whether the former follows from the latter.

Remark 2. Since the DMPR theorem holds for any fixed number m ≥ 9 of
variables as well (cf. [17]), the same is true of Theorem 1.
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3 Equations with Constant Coefficients

In this section we assume that L is an operator of the form (1), (2) with coeffi-
cients aμ ∈ K.

For i = 1, . . . ,m, let

δi =

{
Di, in the differential case,
Δi, in the difference case.

Lemma 1. Let L ∈ K[δ1, . . . , δm] and let the equation

L(y) = 0 (5)

have a polynomial solution of degree k ≥ 0. Then this equation has a polynomial
solution of degree j for j = 0, 1, . . . , k.

Proof. By induction on j from k down to 0.

j = k: This holds by assumption.

0 ≤ j ≤ k−1: By inductive hypothesis, equation (5) has a polynomial solution
y(x) = p(x1, . . . , xm) of degree j + 1. Let t = cxn1

1 · · ·xnm
m be a term of the

polynomial p such that deg t = j + 1, and let i ∈ {1, . . . ,m} be such that
degxi

t > 0. Then δi(p) has the desired properties. Indeed, deg δi(p) = deg p−1 =
j and, since operators with constant coefficients commute, L(δi(p)) = δi(L(p)) =
δi(0) = 0.

Theorem 2. Let m ≥ 2, and let L ∈ K[δ1, . . . , δm] be a linear partial differential
or difference operator with constant coefficients. The following assertions are
equivalent:

(a) For each k ∈ N, L has a polynomial solution of degree k.
(b) L has a non-zero polynomial solution.
(c) L(1) = 0.

Proof. (a) ⇒ (b): Obvious.
(b) ⇒ (c): Assume that L has a non-zero polynomial solution p(x). Then

deg p ≥ 0, and by Lemma 1, L has a solution of degree 0. Hence L(1) = 0 as
well.

(c) ⇒ (a): It is well known that, in m variables, the number of monomials of
degree d is

(
d+m−1
m−1

)
, and the number of monomials of degree at most d is

(
d+m
m

)
.

Set

d =

(
k + 1

2

)

and denote by M the set of all monomials in the variables x1, . . ., xm of degrees
k, k + 1, . . ., d. Then

|M| =

(
d+m

m

)
−
(
k − 1 +m

m

)
.
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Let P = L(M). From (c) it follows that the free term c0 of L is equal to 0, hence
degL(t) < deg t for any t ∈ M, and so the degrees of polynomials in P do not
exceed d− 1.

If M contains two distinct monomials m1 and m2 such that L(m1) = L(m2)
then p = m1 −m2 is a non-zero polynomial solution of L of degree at least k.

Otherwise, L is injective on M, and so |P| = |M|. From d+ 1 > k(k + 1)/2,
d ≥ k and m ≥ 2 it follows that

(d+ 1)m − dm = m(d+ 1)m−1

= m(d+ 1) (d+ 2)m−2

> m
k(k + 1)

2
(k + 2)m−2

≥ km,

hence (d+ 1)m − km > dm. Dividing this by m! we see that

|P| = |M| =
(
d+m

m

)
−
(
k − 1 +m

m

)

>

(
d− 1 +m

m

)
.

Since the dimension of the space of polynomials of degrees at most d − 1 is(
d−1+m

m

)
, it follows that the set P is linearly dependent. Hence there is a non-

trivial linear combination p of the monomials in M such that L(p) = 0. Clearly,
p is a non-zero polynomial solution of L of degree at least k.

In either case (if L is injective on M or not) we have obtained a non-zero
polynomial solution of L of degree at least k. By Lemma 1 it follows that L has
a non-zero polynomial solution of degree k.

4 q-Difference Equations with Constant Coefficients

The question of decidability of the existence of non-zero polynomial solutions
of an arbitrary q-difference equation with polynomial coefficients is still open.
In this section we consider equations with coefficients from K, assuming that
K = k(q) where k is a subfield of K and q is transcendental over k.

We write Q = (Q1, . . . , Qm) for partial q-shift operators where

Qif(x) = f(x1, . . . , qxi, . . . , xm),

so that a partial linear q-difference operator with constant coefficients of order
at most r is written as

L =
∑

|μ|≤r

aμQ
μ (6)

with aμ ∈ K. Clearly, for multiindices μ and α,
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Qμxα = Qμ1

1 · · ·Qμm
m xα1

1 · · ·xαm
m

= Qμ1

1 xα1
1 · · ·Qμm

m xαm
m

= (qμ1x1)
α1 · · · (qμmxm)αm

= qμ1α1+···+μmαmxα1

1 · · ·xαm
m

= qμ·αxα. (7)

Lemma 2. An operator L of the form (6) has a nonzero polynomial solution iff
it has a monomial solution.

Proof. If L has a monomial solution xα, then xα is also a non-zero polynomial
solution of L.

Conversely, assume that p(x) ∈ K[x] is a non-zero polynomial solution of L.
Write

p(x) =
∑

α

cαx
α

where only finitely many cα are non-zero, and define its support by

supp p = {α ∈ N
m
; cα �= 0}.

Then

L(p) =
∑

μ

aμ
∑

α

cαQ
μxα

=
∑

μ

aμ
∑

α

cαq
μ·αxα (by (7))

=
∑

α

cα

(
∑

μ

aμq
μ·α

)
xα,

hence from L(p) = 0 it follows that

∑

μ

aμq
μ·α = 0

whenever cα �= 0. Therefore, by (7),

L(xα) =
∑

μ

aμQ
μxα =

∑

μ

aμq
μ·αxα = 0

for all such α, so xα is a monomial solution of L for each α ∈ supp p.

By clearing denominators in the equation L(y) = 0, we can assume that the
coefficients of L are in k[q], hence we can rewrite

L =
∑

μ

∑

i

aμ,iq
iQμ (8)
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where only finitely many aμ,i ∈ k are non-zero. Define

suppL = {(μ, i) ∈ N
m+1

; aμ,i �= 0}.
Let P be a partition of suppL. We call such a partition balanced if

∑

(μ,i)∈B

aμ,i = 0

for every block B ∈ P . To any α ∈ N
m

we assign the partition PL,α of suppL
induced by the equivalence relation

(μ, i) ∼ (ν, j) iff μ · α+ i = ν · α+ j.

Lemma 3. L(xα) = 0 iff PL,α is balanced.

Proof.

L(xα) =
∑

(μ,i)∈suppL

aμ,iq
iQμxα

=
∑

(μ,i)∈suppL

aμ,iq
μ·α+ixα,

hence L(xα) = 0 iff
∑

(μ,i)∈suppL aμ,iq
μ·α+i = 0. Since q is transcendental over

k, the latter equality holds iff
∑

(μ,i)∈B aμ,i = 0 for every block B ∈ PL,α, i.e.,
iff PL,α is balanced.

Corollary 1. L in (8) has a non-zero polynomial solution iff there is an α ∈ N
m

such that PL,α is balanced.

Proof. This follows from Lemmas 2 and 3.

Corollary 2. If L in (8) has a non-zero polynomial solution then
∑

μ aμ = 0.

Proof. This follows from Corollary 1 since if PL,α is balanced then
∑

μ aμ = 0.

¿From Corollary 1 we obtain the following algorithm for deciding existence of
non-zero polynomial solutions of L in (8):

for each balanced partition P of suppL do
let S be the system of |suppL| linear equations

μ · α+ i = vB, (μ, i) ∈ B ∈ P

for the unknown vectors α and v = (vB)B∈P

if S has a solution (α, v) with α ∈ N
m

then
return “yes” and stop

return “no”.
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Corollary 3. The problem of existence of non-zero polynomial solutions of par-
tial linear q-difference operators with constant coefficients is decidable.

Note that one can convert the above decision algorithm into a procedure for
providing a finite description of a (possibly infinite) basis for the space of all
polynomial solutions of equation L(y) = 0.

The following simple examples demonstrate that, in contrast with the differ-
ential and difference cases, there are partial linear q-difference equations with
constant coefficients such that the dimension of their space of polynomial solu-
tions is: a) infinite, b) finite positive, c) zero.

Example 1. Let L1 = Q2
1Q2 + qQ1Q

2
2 − 2q2Q3

2. Then

L1(x
α1
1 xα2

2 ) = (q2α1+α2 + qα1+2α2+1 − 2q3α2+2)xα1
1 xα2

2

and suppL1 = {(2, 1, 0), (1, 2, 1), (0, 3, 2)}. The only balanced partition of this set
is the single-block partition P = {suppL1}, and we obtain the system of linear
equations

2α1 + α2 = α1 + 2α2 + 1 = 3α2 + 2

for α1 and α2. This system has infinitely many non-negative integer solutions of
the form α1 = t+ 1, α2 = t where t ∈ N. Therefore, every non-zero linear com-
bination of monomials of the form xt+1

1 xt
2 where t ∈ N, is a non-zero polynomial

solution of the operator L1.

Example 2. Let L2 = Q4
1Q2 +Q2

1Q
3
2 − 2q2Q3

1. Then

L2(x
α1
1 xα2

2 ) = (q4α1+α2 + q2α1+3α2 − 2q3α1+2)xα1
1 xα2

2

and suppL2 = {(4, 1, 0), (2, 3, 0), (3, 0, 2)}. Again the only balanced partition of
this set is the single-block partition, and we obtain the system of linear equations

4α1 + α2 = 2α1 + 3α2 = 3α1 + 2

for α1 and α2. The only solution of this system is α1 = α2 = 1, so the operator
L2 has a 1-dimensional space of polynomial solutions spanned by x1x2.

Example 3. Let L3 = Q2
1Q2 +Q1Q

2
2 − 2qQ3

2. Then

L3(x
α1
1 xα2

2 ) = (q2α1+α2 + qα1+2α2 − 2q3α2+1)xα1
1 xα2

2

and suppL3 = {(2, 1, 0), (1, 2, 0), (0, 3, 1)}. Once again the only balanced parti-
tion of this set is the single-block partition, and we obtain the system of linear
equations

2α1 + α2 = α1 + 2α2 = 3α2 + 1

for α1 and α2. Since this system has no solution, the operator L3 has no non-zero
polynomial solution.



10 S.A. Abramov and M. Petkovšek

5 Conclusion

In this paper, we have investigated the computational problem of existence of
non-zero polynomial solutions of linear partial differential and difference equa-
tions with polynomial coefficients. We have shown that the problem is algo-
rithmically undecidable. This means that there is no hope of having a general
algorithm for deciding existence of such solutions in a computer algebra system
now or ever in the future.

However, we have shown that the existence problem is decidable in the case of
partial linear differential or difference equations with constant coefficients: such
an equation L(y) = 0 has non-zero polynomial solutions iff L(1) = 0. Moreover,
when the latter condition is satisfied, this equation has polynomial solutions
of any desired degree. A number of methods exist to search for such solutions
efficiently (see, e.g., [19,21]).

For partial equations with constant coefficients in the q-difference case which is
of interest in combinatorics, we have formulated and proved a necessary condition
for existence of non-zero polynomial solutions: (L(1))(1) = 0 (note that L(1) is a
polynomial in q). We have also shown that when the latter condition is satisfied,
the dimension of the space of polynomial solutions in some particular cases can
be finite and even zero (then no non-zero polynomial solutions exist). An explicit
description of this space can be obtained algorithmically, and the corresponding
algorithm is straightforward to implement in any computer algebra system.

The following interesting problems remain open:

1. (Un)decidability of existence of non-zero polynomial solutions of a given
linear partial differential or difference equation with polynomial coefficients when
the number of variables m is between 2 and 8.

2. (Un)decidability of existence of non-zero polynomial solutions of a given
linear partial q-difference equation with polynomial coefficients (both the general
problem when the number m of variables is arbitrary, and the problems related
to particular numbers of variables).

Problem 1 seems to be very hard since the problem of solvability of Diophantine
equations in m variables with m between 2 and 8 is still open (cf. [17]). Con-
cerning Problem 2, note that in the ordinary case (m = 1), certain existence
problems in the q-difference case are decidable although the analogous problems
in the differential and difference cases are not (see, e.g., [3]). An example of
an open problem which might be easier than Problems 1 or 2 is the existence
problem of non-zero polynomial solutions for q-differential equations.

We will continue to pursue this line of inquiry.
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