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Abstract. We consider the following problem: given a linear differen-
tial system with formal Laurent series coefficients, we want to decide
whether the system has non-zero Laurent series solutions, and find all
such solutions if they exist. Let us also assume we need only a given
positive integer number l of initial terms of these series solutions. How
many initial terms of the coefficients of the original system should we
use to construct what we need?

Supposing that the series coefficients of the original systems are rep-
resented algorithmically, we show that these questions are undecidable
in general. However, they are decidable in the scalar case and in the case
when we know in advance that a given system has an invertible leading
matrix. We use our results in order to improve some functionality of the
Maple [17] package ISOLDE [11].

1 Introduction

Linear differential systems with variable (e.g. power series) matrix coefficients
appear in many areas of mathematics. Laurent series solutions of such systems
form a building block for other types of solutions, and more generally, algorithms
for finding Laurent series solutions may be a part of various computer algebra
algorithms (see e.g. [1,6]).

Let a linear differential system with formal Laurent series coefficients be given.
First of all, we want to decide whether or not the given system has non-zero
Laurent series solutions. Suppose that such solutions exist, and we need only
a given positive integer number l of initial terms of each of them. Then the
following question arises: how many initial terms of the coefficients of the original
system should we use to find what we need? Is it possible to compute at least
� Supported by RFBR grant 10-01-00249-a.
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an upper bound for the number of such terms? If we have such bound, then
we can truncate the series involved into the original system before finding the
truncated solutions. Such truncation leads to a system whose matrix coefficients
are polynomials. In many cases it is much easier to work with such kind of
systems than with systems with series matrix coefficients.

Let k be a field of characteristic 0. We denote by k[[x]] the ring of formal
power series with coefficients in k and k((x)) = k[[x]][x−1] its quotient field. If
i ∈ Z, u ∈ k((x)) then the notation [xi]u is used for the coefficient of xi in u. For
a nonzero element u =

∑
uix

i of k((x)) we denote by valx u the x−adic valuation
of u defined by valx u = min {i such that ui �= 0}. By convention valx 0 = ∞. For
M(x) ∈ Matm(k((x))) we define valx M(x) as the minimum of the valuations of
the entries of M(x).

We shall write θ for x d
dx and consider differential systems of the form

Ar(x)θry + Ar−1(x)θr−1y + · · · + A0(x)y = 0 (1)

where y = (y1, y2, . . . , ym)T is a column vector of unknown functions of x. For
the coefficient matrices

A0(x), A1(x), . . . , Ar(x) (2)

we have Ai(x) ∈ Matm(k[[x]]), A0(x), Ar(x) are non-zero and mini{valx (Ai)} =
0.

Let a system S be of the form (1) and define the l-truncation S〈l〉 which is
obtained by omitting all the terms of degree larger than or equal to l in the
coefficients of S.

In this paper, we are concerned with two problems:

Problem 1 (Existence Problem). Given a system S of the form (1), decide whether
or not this system has a solution in k((x))m \ {0}.
Problem 2 (Truncation Problem). Given a system S of the form (1),

1. Decide whether or not there exists a non-negative integer sequence (al)1≤l<∞
such that for any e ∈ Z, l ∈ Z

+ and column vectors ce, ce+1, . . . , ce+l−1 ∈
km, the system S possesses a solution y(x) ∈ k((x))m of the form

y(x) = cex
e + ce+1x

e+1 + . . . + ce+l−1x
e+l−1 + O(xe+l),

iff the system S〈al〉 possesses a solution ỹ(x) ∈ k((x))m such that

ỹ(x) − y(x) = O(xe+l).

2. If such sequences (al) exist, then find at least one of them.

We suppose that the entries of the matrices (2) are represented algorithmically:
for any entry u(x) an algorithm Ξu (a procedure, terminating in finitely many
steps) such that u(x) =

∑∞
i=0 Ξu(i)xi is given. This is factually a model of

computation. Our results can be represented without using this model (skipping
the undecidability questions then), see Remark 1.
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We will show that the existence and truncation problems are algorithmically
undecidable in the general case (Section 3.2). However, both problems can be
solved algorithmically for scalar equations (Section 2), and for first order systems
(Section 3.2.1). The problems are also solvable for systems of the form (1) with
a leading matrix invertible in Matm(k((x))) (Section 3.2). Note that we are
not able to check algorithmically whether or not a given matrix is invertible.
However, if we know in advance that the matrix Ar(x) in a given system of
the form (1) is invertible and the matrix A0(x) is non-zero then our algorithm
completely solves the existence and truncation problems.

The output of our algorithm for the scalar case can be represented as an
integer d ≥ −1 such that

– a solution of S in k((x)) \ {0} exists iff d ≥ 0,
– if d ≥ 0 then a solution of the truncation problem for S is represented by

the sequence
al = max{d, l} (l = 1, 2, . . .). (3)

It follows from (3) that if in the scalar case the truncation problem has a solution
then a sequence (al) can be taken such that al = l for all l large enough. In the
case of system the situation can be more complicated. However, when systems
have invertible leading matrices, we can organise our algorithm in such a way
that the output is again an integer d ≥ −1 such that

– a solution of S in k((x))m \ {0} exists iff d ≥ 0,
– if d ≥ 0 then a solution of the truncation problem for S is represented by

the sequence
al = d + l (l = 1, 2, . . .). (4)

A sequence (al) giving a slightly more accurate bound is proposed as well.

At the end of Section 3, we mention another problem that can also be solved
using the results of this paper.

To our knowledge, finding sequences (al) for the types of systems considered
in this paper does not seem to have been done elsewhere in the literature.

2 The Case of Scalar Equations

If m = 1 in the system (1), then this system is a scalar equation. In this particular
case, both the existence and truncation problem have an algorithmic solution.
The crucial point is that for any such equation we can determine algorithmically
the indicial polynomial [12, Ch. IV, § 8] IS(λ) ∈ k[λ] \ {0} such that

(a) if y(x) ∈ k((x))m is a nonzero solution of S then IS(valx y(x)) = 0, and
(b) if e∗ is the maximal integer root of IS(λ) then S has a solution y(x) ∈ k((x))m

of valuation e∗.
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The indicial polynomial can be constructed algorithmically, and computer alge-
bra methods for computing its integer roots exist. Supposing in the scalar case
that mini valx Ai(x) = 0 it is sufficient to know only the coefficients [x0]A0(x),
[x0]A1(x), . . . , [x0]Ar(x) for this construction.

Proposition 1. Let m = 1 in S of the form (1). Let IS(λ) be the indicial
polynomial of the scalar equation S. In this case

(i) If IS(λ) has no integer root, then S has no solution in k((x)) \ {0}.
(ii) Otherwise a solution of the truncation problem is given by the sequence

al = max{e∗ − e∗ + 1, l} (l = 1, 2, . . .), (5)

where e∗, e∗ are the minimal and maximal integer roots of IS(λ), respectively.

Proof. (i) Follows from the property (a) of the indicial equation.
(ii) For an arbitrary solution y(x) ∈ k((x))\{0} we have valx y(x) = e, where e

is an integer root of IS(x). Let a solution have the form cex
e+ce+1x

e+1+. . . Then
for any l > 0 the coefficients ce, ce+1, . . . , ce+l satisfy a relation al,0ce+al,1ce+1+
. . . + al,lce+l = 0 where al,l = IS(e + l) and the constants al,0, al,1, . . . , al,l can
be computed from

[xi]Aj(x) (i = 0, 1, . . . , l, j = 0, 1, . . . , r). (6)

Thus, if l > e∗ − e then ce+l is defined uniquely by ce, ce+1, . . . , ce+l−1, and the
values (6) define all the values [e]y(x), [e+1]y(x), . . . , [e+ l]y(x) for all belonging
to k((x)) solutions of S (the Frobenius method [12, Ch. IV, § 8]). Observe that
the values (6) coincide for S and S〈l〉. The claim follows. ��

The output of the algorithm can be represented in the form of an integer d ≥ −1
as was explained in the end of Section 1: if IS(λ) has no integer root then we set
d = −1; and d = e∗ − e∗ + 1 otherwise.

Note that this algorithm needs only [x0]A0(x), [x0]A1(x), . . . , [x0]Ar(x) for
computing this d.

Example 1. Let k = Q, and S be the scalar equation

(1 − x)θ2y + (−2 + 4x)θy + (−x + 2x2 + 2x3 + 2x4 + . . .) y = 0,

which has solutions f(x) = 1 − x, and g(x) = x2 − x3. The indicial polynomial
is λ2 − 2λ, its roots are 0 and 2, thus d = e∗ − e∗ + 1 = 3, a1 = a2 = a3 = 3.
For finding three terms of each of series solutions we construct S〈3〉

(1 − x)θ2y + (−2 + 4x)θy + (−x + 2x2)y = 0.

The latter equation has two independent solutions:

−1 + x + 0 · x2 − x3 − 1
4
x4 + O(x5), −x2 + x3 + 0 · x4 + O(x5).
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We get three wanted terms of solutions of S:

−1 + x + 0 · x2, −x2 + x3 + 0 · x4.

These polynomials coincide with exact solutions of S. Note that we cannot take
S〈2〉 for computing two first terms of each of solutions of S, since S〈2〉 is

(1 − x)θ2y + (−2 + 4x)θy − xy = 0,

and the space of Laurent solutions of this equation has dimension 1. We get the
solution −x2 +x3 + 1

4x4 +O(x5) which gives us two first terms of g(x), but we do
not obtain the corresponding truncation of f(x). This confirms that the sequence
(3) is a correct solution of the truncation problem, while the sequence al = l,
l = 1, 2, . . ., is not in general.

Concerning finding integer roots of polynomials over k we can remark the fol-
lowing. If k = Q then the algorithm is well known. It is also known that if k0

is a field of characteristic 0 such that an algorithm for finding integer roots of
a polynomials over k0 is given then one can find integer roots of polynomials
over any simple extension (algebraic or transcendental) of k0. This can be used
recursively.

3 The System Case

As we mentioned in Section 1 we will show that the existence and truncation
problems are algorithmically undecidable in the general system case. We will
first introduce some auxiliary facts and notions.

3.1 Undecidability in the General Case

Many algorithmic problems related to systems are undecidable. To prove this
for some of such problems we will use the undecidability of one specific known
problem.

We will call a signal any algorithm Ω computing for each i = 0, 1, . . . a value
Ω(i) belonging to {0, 1} and such that

– Ω(0) = 1,
– if Ω(i) = 0 for some i ≥ 1 then Ω(i + 1) = 0.

A signal Ω is infinite if Ω(i) = 1 for all i ≥ 0 and finite otherwise.
We will use the following fact:

The problem of recognizing whether or not a given signal is finite is undecidable.

This is a consequence of classical Turing’s result on undecidability of the problem
of terminating of an algorithm [16].
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Using this fact we can prove that the problem of recognizing whether or not
a given non-zero square matrix with entries in k((x)) is invertible over the field
k((x)). Indeed, let k = Q, and Ω be an arbitrary signal. The matrix(

1 − x 1
1

∑∞
i=0 Ω(i)xi

)
(7)

is invertible iff the signal Ω is finite.
If Ω is a signal and s(x) = s0 +s1x+s2x

2 + . . . ∈ k[[x]] then we set Ω ∗s(x) =
Ω(0)s0 + Ω(1)s1x + Ω(2)s2x

2 + . . .; given a system S of the form (1), we can
replace any entry s(x) of the matrix coefficients of S by Ω ∗ s(x), the obtained
new system will be denoted Ω ∗ S.

Proposition 2. (i) The algorithmic problem of recognizing whether or not a
given system of the form (1) has a solution in k((x))m \ {0} is undecidable.

(ii) There exist systems of the form (1) for which the truncation problem
has no solution (no sequence (ai) exists); the algorithmic problem of recognizing
whether or not the truncation problem for a given system of the form (1) has a
solution (a sequence (ai)) is undecidable.

Proof. (i) Let S be the system

A(x)xθy + A(x)y = 0 (8)

where A(x) is the matrix (7). Then the system Ω∗S has a solution in k((x))2\{0}
iff the signal Ω is infinite. Indeed, if the matrix (7) is invertible then the system is

equivalent to
(

x 0
0 x

)
θy+

(
1 0
0 1

)
y = 0 which has no non-zero solution in k((x))2.

But if (7) is not invertible then the system has solutions in k((x))m\{0} since the

system
(

x 0
0 x

)
θy +

(
1 0
0 1

)
y =

(
s1

s2

)
with s1(x), s2(x) ∈ k((x)) has a solution

in k((x))2 \ {0} if at least one of the series s1(x), s2(x) is non-zero.
(ii) It follows from the proof of (i) that no sequence (ai) exists for the system

S of the form (8). However, if Ω is a finite signal then any sequence (al) can be
used for the system Ω∗S because neither Ω∗S nor its truncations have solutions
in k((x)) \ {0}. So for the system Ω ∗ S a sequence (al) exists iff Ω is finite. ��
Remark 1. As it was mentioned in the Introduction, our results can be formu-
lated without a special supposition on the form of series representation. It follows
from the proof of Proposition 2 that for some systems of the form (1) no sequence
(al) exists. In Section 3.2 we will show that if the leading matrix is invertible in
Matm(k((x))), then after a finite number of steps we can recognize whether or
not this system has a solution in k((x))m \ {0}. If the answer is affirmative then
there is a guarantee that a sequence (al) exists and can be presented.

3.2 Some Particular Decidable Cases

We will now show that in some particular cases the existence and truncation
problems are decidable.
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3.2.1 First Order Systems
In this section, we consider first order systems of the form

θy = A(x)y, (9)

where A(x) ∈ Matm(k((x))). We will show that the existence and truncations
problems are decidable for systems of this form. Our approach is based on the
concept of simple systems [3] (which is related to the notion of super-irreducible
forms of linear differential systems [13]).

A system θy = A(x)y can always be rewritten as a system of the form

D(x)θy = N(x)y (10)

where D(x), N(x) ∈ Matm(k[[x]]) with min{valx D(x), valx N(x)} = 0.
For this take N(x) = D(x)A(x) and D(x) = diag(xα1 , xα2 , . . . , xαm) where

αi = max{0,−valx Ai.(x)}, here Ai.(x) denotes the ith row of the matrix A(x).

Now consider a general system S of the form (10) with coefficients D(x) =∑∞
i=0 Dix

i, N(x) =
∑∞

0 Nix
i. With S we associate the following polynomial in

λ

IS(λ) = det(D0λ − N0). (11)

If this polynomial IS(λ) is non-zero then we shall say that the system S is
simple and refer to the polynomial IS(λ) as the indicial polynomial of S as in [7,
Definition 2.1]. By extension, a system of the form (9) will be called simple if
the corresponding system (10) is simple.

The following result shows that for simple systems, the existence and trunca-
tion problems can be solved very similarly as in the scalar case.

Proposition 3. Given a simple system of the form (10) with indicial polynomial
IS(λ) given by (11), we have

(i) If IS(λ) has no integer root, then S has no solution in k((x)) \ {0}.
(ii) Otherwise a solution of the truncation problem is given by the sequence

al = max{e∗ − e∗ + 1, l} (l = 1, 2, . . .), (12)

where e∗ and e∗ are the minimal and maximal integer roots of IS(λ), respectively.

Proof. (i) The statements of this proposition follow from the results in [7]. The
algorithm presented therein computes regular formal solutions (i.e. in particular,
Laurent series solutions) by finding successive terms. The equation that deter-
mines a coefficient of the monomial xj (j ≥ 0), part of a solution y = xe

∑
yjx

j

(y0 �= 0), is
((e + j)D0 − N0) yj = −bj (13)

where b0 = 0 and

bj = ((e + j − 1)D1 − N1) yj−1 + · · · + (eDj − Nj)y0. (j ≥ 1)



Higher-Order Linear Differential Systems with Truncated Coefficients 17

Putting j = 0, we see why the nonzero polynomial IS(λ) = det(λD0 −N0) plays
a similar role as the indicial polynomial in the scalar case (see Section 2): We
have IS(valxy) = 0 so the existence of integer roots of IS is a necessary condition
for the existence of solutions in k((x))m \ {0}.

(ii) Let xe
∑

yjx
j be a solution of D〈al〉(x)θy = N 〈al〉(x) where al = max{e∗−

e∗+1, l}. This means that equations (13) are satisfied for j = 0, 1, . . . , l. In order
to extend this to a solution of the untruncated system, we need to compute the
coefficient yj for j > l, we note that the matrix (e+ j)D0−N0 is invertible since
e + j > e + l ≥ e∗. This means that we can determine yj uniquely. ��
Example 2. Let k = Q and S be the first-order system

θy =
(

0 x3

0 −3

)
y

which has as a basis of solutions

y1(x) =
(

1
0

)
y2(x) =

(
ln (x)
x−3

)
.

Hence the space of solution of S in k((x))2 has dimension 1. This system is

simple: it is already in the form (10) with D(x) = I2 and N(x) =
(

0 x3

0 −3

)
. Its

indicial polynomial is

IS(λ) =
∣∣∣∣ λ 0

0 λ + 3

∣∣∣∣ = λ(λ + 3).

The roots of IS(λ) are −3 and 0, thus d = e∗ − e∗ + 1 = 4, a1 = a2 = a3 = 4.
For l = 1, 2, 3 the l-truncation of S is

θy =
(

0 0
0 −3

)
y.

The latter system has two independent solutions in k((x))2:

ỹ1(x) =
(

1
0

)
ỹ2(x) =

(
0

x−3

)
.

This confirms that the sequence (12) is a correct solution of the truncation prob-
lem, while the sequence al = l, l = 1, 2, . . ., is not in general.

Remark 2. The results in Proposition 3 are valid for more general class of
systems, namely simple systems of higher order [4], [5]. Recall that a system S
of the form (1) is simple if the matrix polynomial defined by

LS(λ) = Ar(0)λr + Ar−1(0)λr−1 + · · · + A0(0),

is regular, i.e., det(LS(λ)) �≡ 0. For a simple system S we define its indicial
polynomial as IS(λ) = det(LS(λ)).
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Having clarified the situation if a system is simple, we now solve Problem 1 and
Problem 2 for the case of a general first order system of the form (9). Define the
span of an invertible matrix T (x) ∈ Matm(k((x))) by

σ(T (x)) = −valx T (x) − valx T−1(x).

We need the following well-known technical lemma, which has been stated in
[14], see also its use in [15].

Lemma 1. ([14]) Let A(x), T (x) ∈ Matm(k((x))) with T (x) invertible and let
Ã(x) = T−1(x)(A(x)T (x) − θ(T (x))). Then the coefficient Ãj depends only on
the Ai with i ≤ j + σ(T (x)).

Proposition 4. Consider a system θy = A(x)y of the form (9), and let q =
max{0,−valx A(x)}.

(i) There exists an algorithm, using only the first mq terms of the entries of
xqA(x), that computes an invertible matrix T (x) ∈ Matm(k[x]) with detT (x) =
cxν for some nonzero constant c ∈ k and some nonnegative integer ν, with span
σ(T (x)) ≤ (m − 1) q such that the substitution y = T (x)z yields a system

θz = B(x)z, (14)

which is simple. Let Ĩ(λ) denote the indicial polynomial of the corresponding
simple system.

(ii) If Ĩ(λ) has no integer root then (9) has no solution in k((x))m \ {0}.
(iii) Otherwise a solution of the truncation problem (for the input system (9)),

is given by the sequence

al = mq + max{e∗ − e∗ + 1, l + (m − 1)q}, (l = 1, 2, . . .) (15)

where e∗, e∗ are the minimal and maximal integer roots of Ĩ(λ), respectively.

Proof. (i) The algorithm from [13] computes the so-called super-irreducible form
of a given system (9). It was shown in [3] that if a system has the super-irreducible
form then it can be written as a simple system. The algorithm from [13] needs
at the most (m− 1)q reduction steps (see, for example, the proof of Proposition
2.2 in [10]). At each step, a transformation matrix with span 1 is computed.
Overall, this shows the estimate on the span of T (x).

(ii) Compute an invertible matrix T (x) ∈ Matm(k[x]) such that the matrix

B(x) = T−1(x)A(x)T (x) − T−1(x)θT (x)

defines the system (14). Write (14) as a simple system D(x)θz = N(x)z, and let
Ĩ(λ) = det(N0 − λD0) be its indicial polynomial. If Ĩ(λ) does not have integer
roots, the simple system does not have any solutions in k((x))m \{0}. Hence the
original system (9) cannot have solutions of this form either.

(iii) In order to solve the truncation problem for the input system, note that
due to the relationship y = T (x)z between solutions y of the input system and
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z of the simple system, we have to compute at the most l + σ(T (x)) terms of
z, if we need l terms of y. Using Proposition 3 to first solve the truncation
problem for the simple system D(x)θz = N(x)z, we obtain ãl = max{e∗ −
e∗ + 1, l + σ(T (x))}. It then remains to show how many terms of the input
system are required in order to ensure that we have ãl terms of the simple
system. This can be seen as follows: for any j ≥ 0, the coefficients Dj and Nj

of the simple system depend on the coefficients B0, . . . , Bq(B)−1+j of the matrix
B(x), due to the construction of D(x). Here, q(B) = max (0,−valx (B(x)). Using
Lemma 1, the coefficient Bq(B)−1+j depends only on the coefficients Ai with
i ≤ j + q(B) − 1 + σ(T (x)) of A(x). The proof is completed by the fact that
σ(T (x)) ≤ (m− 1)q for the transformation matrix T (x) computed by the super-
reduction algorithm as shown in (i), and that q(B) ≤ q. ��
Example 3. Let k = Q, q be a positive integer and S be the first-order system

θy = A(x)y where A(x) =
(

x4 x3−q

−xq+5 − 4xq+1 −x4 + (q − 3)

)
,

which has as a basis of solutions

y1(x) =
(

1
−xq+1

)
y2(x) =

(
ln (x)

−xq+1 ln (x) − xq−3

)
.

Hence the space of solution of S in k((x))2 has dimension 1. This system S is

not simple. Let T (x) =
(

1 0
0 xq

)
of span q. Then the substitution y = T (x)z

yields the equivalent system

θz = B(x)z where B(x) =
(

x4 x3

−x5 − 4x −x4 − 3

)
.

The latter system is simple, and its indicial polynomial is

Ĩ(λ) =
∣∣∣∣λ 0
0 λ + 3

∣∣∣∣ = λ(λ + 3).

The roots of Ĩ(λ) are −3 and 0, thus e∗ − e∗ + 1 = 4, a1 = a2 = a3 = 2q + 4
and al = 2q + l for l ≥ 4. Take, for example, q = 3. Then for l = 4, 5, 6, 7 the
l-truncation of S is

θy =
(

0 1
0 0

)
y.

The latter system has one independent solution in k((x))2, namely
(

1
0

)
.

3.2.2 Extension to Higher Order Systems
The results from the previous section can be easily extended to a system of the
form

θry = −Ur−1(x)θr−1y − · · · − U0(x)y (16)
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where U0(x), . . . , Ur−1(x) ∈ Matm(k((x))). The idea is that there exists a linear
first order system θY (x) = U(x)Y (x) with companion block matrix U(x) that
corresponds to (16). This matrix belongs to Matn(k((x))), n = rm:

U(x) =

⎛
⎜⎜⎝

0 Im . . . 0
. . . . . . . . . . . .
0 0 . . . Im

−U0(x) −U1(x) . . . −Ur−1(x)

⎞
⎟⎟⎠ . (17)

Applying Proposition 4 to system θY (x) = U(x)Y (x) we obtain the following
proposition:

Proposition 5. Let q = max {0,−valx Ur−1(x), . . . ,−valx U0(x)}. There exists
an algorithm, that uses only the first rmq terms (i.e., terms of degree less than
rmq) of the matrices xqU0(x), . . . , xqUr−1(x), and computes a nonzero polyno-
mial Ĩ(λ) such that:

– if Ĩ(λ) has no integer root then (16) has no solution in k((x))m \ {0},
– otherwise a solution of the truncation problem is given by the sequence

al = rmq + max{e∗ − e∗ + 1, l + (rm − 1)q} (l = 1, 2, . . .) , (18)

where e∗, e∗ are the minimal and maximal integer roots of Ĩ(λ), respectively.

3.2.3 Systems with Invertible Leading Matrices
Let the leading matrix of a system S of the form (1) be invertible. In this case
S can be rewritten as the system S̄ of the form

θry = −A−1
r (x)Ar−1(x)θr−1y − · · · − A−1

r (x)A0(x)y. (19)

Let
γ = min

i
valx

(
A−1

r (x)Ai(x)
)
, (20)

and q = max{−γ, 0}. The question to be answered is: given a non-negative
integer v, how many first terms of the entries of S do we need to compute v first
terms of

xqA−1
r (x)Ar−1(x), xqA−1

r (x)Ar−2(x), . . . , xqA−1
r (x)A0(x)? (21)

Before answering this question we formulate a few facts related to the operations
which we use to transform S to S̄. As before, we suppose that all power series
are represented algorithmically.

(A) Let it be known in advance that amongst the given series

s1(x), s2(x), . . . , sp(x) ∈ k[[x]], p ≥ 1,

there is at least one non-zero. Then we can compute

ν = min
i

valx si(x).

To do this we consider the series s1(x), s2(x), . . . , sp(x) “in parallel”: we generate
algorithmically the sequence
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[x0]s1(x), . . . , [x0]sp(x), [x1]s1(x), . . . , [x1]sp(x), . . .

until we find i such that [xi]sj(x) �= 0 for some 1 ≤ j ≤ p. Then ν = i.
(B) Let it be known in advance that among given matrices

M1(x), M2(x), . . . , Mp(x) ∈ Mat(k[[x]]), p ≥ 1,

there is at least one non-zero. Then we can compute mini valx Mi(x). To do this
we consider the entries of all the matrices “in parallel” (as in (A)).

(C) Let it be known in advance that a matrix M(x) ∈ Mat(k[[x]]) is invertible.
We can compute valx detM(x), using valx detM(x) + 1 initial entries of the
matrix M . We can also compute valx M−1(x) which is equal to the difference
of the minimum of the valuation of all co-factors of M(x) and valx detM(x).
This difference is non-positive, thus, we use valx det M(x) + 1 initial terms of
the entries of the matrix M(x).

Every time when below in (A′), (B′), (C′) and in Proposition 6 we tell about
the first w terms (where w is a positive integer) of entries of some matrices
belonging to k[[x]], we have in mind the terms of degree less than w.

We get from (A), (B), (C) the following.

(A′) We use valx detAr(x) + 1 first terms of the entries of the matrix Ar(x)
to compute valx det Ar(x) and valx A−1

r (x).
(B′) We use no more than valx detAr(x) + γ + 1 first terms of the entries of

the matrices A0(x), A1(x), . . . , Ar(x) to compute γ (see (20)).
(C′) We use no more than valx det Ar(x) + γ + v first terms of the entries of

the matrices A0(x), A1(x), . . . , Ar(x) to compute the first v terms of (21).

This and Proposition 5 imply the following statement related to systems of
the form (1) with invertible Ar(x).

Proposition 6. Let γ be as in (20) and q = max{−γ, 0}. There exists an algo-
rithm, that uses only the first

rmq + γ + valx detAr(x) + 1

terms of the entries of the matrices A0(x), A1(x), . . . , Ar(x), and computes a
nonzero polynomial Ĩ(λ) such that:

– if Ĩ(λ) has no integer root then (1) has no solution in k((x))m \ {0},
– otherwise a solution of the truncation problem is given by the sequence

al = rmq+γ+valx detAr(x)+max{e∗−e∗+1, l+(rm−1)q} (l = 1, 2, . . .),
(22)

where e∗, e∗ are the minimal and maximal integer roots of Ĩ(λ), respectively.

Finally we can formulate a consequence of the latter proposition:

Proposition 7. For a given system S of the form (1) with invertible Ar(x) we
can compute algorithmically an integer d ≥ −1 such that
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– a solution of S in k((x))m \ {0} exists iff d ≥ 0,
– if d ≥ 0 then a solution of the truncation problem for S is represented by the

sequence al = d + l, l = 1, 2, . . .

Proof. Indeed, we set d = −1 if the polynomial Ĩ(λ) has no integer root and
d = 2rmq − q + γ + valx detAr(x) + e∗ − e∗ + 1 otherwise, where q, γ, ĨS(λ),
e∗, e∗ are as in Proposition 6. ��
The following example shows that unlike the scalar case in the case of system
we cannot in general take a sequence (al) such that al = l at least for all l large
enough.

Example 4. Consider the system xθy = A(x)y where

A(x) =
(

0 1
x2u(x) 0

)
,

u(x) = x + x2 + x3 + . . ., y =
(

y1

y2

)
. It is easy to show that y1 satisfies the

equation
θ2y1 + θy1 − u(x)y1 = 0. (23)

For the latter equation the sequence bl = l, l = 1, 2, . . ., is a solution of the
truncation problem. For any other solution (b′l) of this problem we will have
b′l ≥ bl, l = 1, 2, . . .. Note that l-truncation of the original system xθy = A(x)y
induces (l− 2)-truncation of (23). However, the sequence cl = l− 2, l = 1, 2, . . .,
is not a solution of the truncation problem for (23). Thus, a sequence (al) which
is a solution of the truncated problem for the original system must be such that
al ≥ l +2, l = 1, 2, . . . If we replace in the original system x2 by x2q with integer
q > 1, then we will obtain al ≥ l + 2q, l = 1, 2, . . .

Our results can be also used for solving the following problem. Suppose that
for a system S of the form (1) only a finite number of terms of the entries of
A0(x), A1(x), . . . , Ar(x) is known. So we know not the system S itself but the
system S〈v〉 for some non-negative integer v. Suppose that we also know that
Ar(x) is invertible and that S has solutions in k((x))m \{0}. How many terms of
these solutions can be determined from the given “approximate” system S〈v〉?
Some non-trivial lower bound can be obtained from Propositions 1, 5, and 6.

4 Implementation

We have used the results obtained in this paper to improve some functionality
contained in the Maple package ISOLDE [11]. The RegularSolutions function
computes formal regular solutions of first order linear functional systems such as
systems of linear differential, difference, and q-difference equations. In particular,
it can be used for computing truncated Laurent series solutions of first order
linear differential systems.
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The old implementation used the sequence al = l and did hence not always
compute the accurate space of truncated Laurent series solutions, as the following
example shows:

> A := linalg[matrix](2,2,[1,x^1,x^2*sin(x),3/x]);

A :=

[
1 x

x2 sin (x) 3 x−1

]

> L := LocalLinearDifferentialSystem(A,x,0);

L := L1

> RegularSolutions(L,x,2);

[[[ C 1 + x C 1, 0], {}]]
Here, for l = 2, the function returns only one truncated Laurent series. We have
added the new option ‘allSolutions’ which ensures that a complete basis of the
regular solutions space is computed, by taking into account formula (15). The
sequence is then a1 = a2 = 3 and al = l for l ≥ 3, since the indicial polynomial
of the system has roots 0 and 3. The output is then
> RegularSolutions(L,x,2,‘allSolutions’);

[[[ C 1 + x C 1, x
3 C 2], {}]]

This new feature will be available in the upcoming new release of ISOLDE.

5 Conclusion

In this paper, we have investigated the existence and truncation problem for
higher-order linear differential systems. We have shown that they are undecid-
able in the general case but they can be solved in the case of the system’s leading
matrix being invertible. In the decidable cases, this means that we can reduce
the problem of finding Laurent series solutions of systems with power series coef-
ficients to that of finding the same type of solutions for systems with polynomial
coefficients. A number of methods exist to do this task efficiently (e.g., [1,6]).

The mathematical techniques we employ in this paper use the algebra of
polynomials and matrices, and we give explicit formulae for finding al for a
given l. An implementation of our results can be done easily in any computer
algebra system, as demonstrated in the previous section for the Maple package
ISOLDE, and this equally applies to the implementations of the algorithms from
[1,6]. We hope that this paper hence also makes a practical contribution to the
scientific computing community, wishing to use computer algebra for handling
systems of linear differential equations.

From our work, new questions arise. For example, can we solve the existence
and truncation problem when we know in advance that the equations of a given
system are independent over k((x))[θ] while the leading matrix is not invert-
ible? Can our results be extended to more general classes of equations, such as
difference and q-difference systems? We will continue to investigate this line of
enquiry.
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15. Pflügel, E.: Effective formal reduction of linear differential systems. Applicable
Algebra in Engineering, Communication and Computation 10, 153–187 (2000)

16. Turing, A.: On computable numbers, with an application to the Entscheidungs-
problem. Proceedings of the London Mathematical Society, Series 2 42, 230–265
(1936)

17. Maple online help: http://www.maplesoft.com/support/help/

http://isolde.sourceforge.net
http://www.maplesoft.com/support/help/

	Higher-Order Linear Differential Systems with Truncated Coefficients
	Introduction
	The Case of Scalar Equations
	The System Case
	Undecidability in the General Case
	Some Particular Decidable Cases

	Implementation
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


