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On the Bottom Summation
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Abstract—We consider summation of consecutive values @(v), @(v + 1), ..., @(w) of a meromorphic function
©(z), where v, w € Z. We assume that @(z) satisfies a linear difference equation L(y) = 0 with polynomial coef-
ficients, and that a summing operator for L exists (such an operator can be found—if it exists—by the Accurate
Summation algorithm, or, alternatively, by Gosper’s algorithm when ordL = 1). The notion of bottom summa-
tion which covers the case where @(z) has poles in Z is introduced.
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1. INTRODUCTION

The object of this note is to present the results of [1]
related to the so-called “bottom summation” in a sim-
pler form. The object of our investigation is correctness
of the discrete Newton—Leibniz formula for definite
summation in the case where a summing operator has
been successfully constructed by the Accurate Summa-
tion algorithm [2] or by Gosper’s algorithm [3]. In the
detailed proofs given in [1], many abstract notions were
used. In addition, it was necessary to prove a number of
auxiliary statements. As a result, the paper [1] is quite
difficult to read. However, the main results of [1] are of
some practical interest for computer algebra and their
short presentation without complicated proofs can be
useful.

Below, we present the main results of [1] in a sim-
pler form and give some illustrations. Full proofs can be
found in [1].

2. SUMMING OPERATORS

Let E be the shift operator such that E(f(k)) =f(k+ 1)
for sequences f(k), where k € Z, and E(¢(z)) = ¢(z + 1)
for analytic functions, z € C. Let

L = a k)E'+ ... +a,(k)E + ay(k) € C(k)[E].

We say that an operator R € C(k)[E] is a summing
operator for L if

(E-1)°R=1+MoL (1)

for some M € C(k)[E]. We can assume without loss of
generality that ordR=ordL—1=d - 1:

R=r, (KE" "+.. +r(kE+ryk)e Ck)[E].

! The text was submitted by the authors in English.

3. THE DISCRETE NEWTON-LEIBNIZ
FORMULA

If a summing operator exists, then it can be con-
structed by the Accurate Summation algorithm [4] or,
when d = 1, by Gosper’s algorithm [3]. At first glance,
in those cases where R € C(k)[E] exists, equality (1)
gives us an opportunity to use the discrete Newton—
Leibniz formula (DNLF)

w-—1

D k) = gw)-g(v)

k=v
for all integers v < w and for any sequence f such that
L(f) = 0 taking g = R(f). Indeed, we can apply both
sidesof (E—1)°cR=1+ Mo Lto f. This gives

(E-1)(R(f)) = f+M(L(f)).
Set g = R(f). Taking into account that L(f) = 0, we get
(E_ l)g = f’

or, equivalently,

glk+1)—g(k) = f(k).
As a consequence, the DNLF is applicable:

w-1
Y flk) =

k=v
=gw)-gw-1)+g(w-1)
—gw-=-2)+...+g(v+1)—-g(v)
= g(w)-g(v)
(the telescoping effect).
However, it was shown that, if R has rational-func-

tion coefficients that have poles in Z, then this formula
may give incorrect results (an example will be demon-

w—1

Y (glk+1)-g(k))

k=v
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strated below). This gives rise to defects in many imple-
mentations of summation algorithms.

Example 1. Consider the sequence

2k-3
k
f(k) = —7—,

which satisfies the first-order recurrence relation 2(k +
D)(k-2)f(k+ 1) — (2k— 1)(k - 1)f(k) = 0.

Although Gosper’s algorithm succeeds on this
2k(k+1) .
%3 and f(k) is
defined for all k € Z, the discrete Newton—Leibniz for-
mula

sequence, producing R(k) =

w—1

Y f(k) = R(w)f(w)=R(0)f(0)

k=0

2w(w + 1)( 2w=3 ]

w

(w—-2)4"

is not correct: if we assume that the value of ( 2k -3 ]
k

is 1 when k=0 and —1 when k =1 (as is common prac-
tice in combinatorics), then the expression on the right
gives the true value of the sum only at w = 1.

4. THE BOTTOM SUMMATION

Suppose that L acts on analytic functions:
L=a,2)E +...+a,(z)E+ay(z) e C)E]. (2)

We consider the summing operator (if it exists) in the
form

R=r, (E""+...+r@E+r(z) e C)IE].

Let ¢(z) be a meromorphic solution of L(y) = 0.

It turns out that, if ¢(z) has no pole in Z, then neither
does R(0)(z), and we can use the DNLF to sum values
¢(k) for k=v; v+ 1, ..., w. So, such undesirable phe-
nomena as demonstrated in Example 1 cannot occur if
the elements of the sequence under summation are the
values @(k), k € Z, of an analytic function @(z), which
satisfies (in the complex plane C) the same difference
equation with polynomial coefficients as does the orig-
inal sequence (at integer points).

This follows from a stronger statement. The fact is
that, even if @(z) has some poles in Z, the summation
task can nevertheless be performed correctly.
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For any k € Z, the function @(z) can be represented
by Laurent’s series

k i+ 1
P(2) = ¢ p (2= H (=R +

with pye Z and ¢, , #0.If L(g) = 0, then there exists
the minimal element p in the set of all p;, k € Z. This p
we call the depth of ¢(z) and denote it by depth ().

We associate with @(z) the sequence f(k) such that
flk) = ¢, o if p, = p, and f(k) = O otherwise. This f(k)
we call the bottom of @(z) and denote it as bott(p).

We illustrate these notions by the following simple
example.

It is well known that I'(z) has finite values when z =
1, 2, ... and has simple poles when z =0, -1, -2, ....

We have
depth(T") = -1
and
0, if k>0

(_1)k+1
(—k—1)V

bott(T) (k) = o

If we consider I'(z) only in the half-plane Rez > 0, then
its depth is O and the bottom is the sequence
fk)y =(k=-1!, k=12,...

Proposition 1. Let L(¢) = 0. Then, L(bott(¢)) = 0.

Proposition 2. Let L(Q) =0, and let R be a summing
operator for L. Then, depth(¢) = depth(R(@)).

Theorem 1 (on the bottom summation). Let L(¢(z)) =
0, and let R be a summing operator for L. Denote y(z) =
R(¢(2)). Then the bottom summation formula

w—1
) bott(9) (k) = bott(y)(w) —bott(y)(v)
k=v

is valid for any v < w. In particular, if ¢ has no pole in
Z (i.e., depth(@) 2 0), then the function \Y(z) has no pole
in Z, and the discrete Newton—Leibniz formula

w—1

D otk = y(w) - y(v)

k=v
is valid for any v < w.
Example 1 (continued). Assume that the value of

[ 2k-3 ] is defined as

k
. I'2z-2
lim (2z-2) ; 3)
=kl (z+ 1)I(z-2)
this is a natural extension of the formula
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ON THE BOTTOM SUMMATION

2k-3 | _ (2k=3)!
k k!'(k—3)!
forallke Z.
Set
0(z) = ~(2z_2) 2
I'z+ DHI'(z-2)4
and

_ 2z(z+1)
V() = = —500).

The limit in (3) exists for all k € Z, and depth(¢) =
Now, the DNLF gives the correct result
Z I'(2k-2)
k
ol k+1)I'(k-2)4
_ 2ww+ DHIC'2w -2)
(w=2)[(w+ H(w-2)4"
forw=1,2,....

Earlier, we assumed that the value of [ 2k =3 } is
k

1 when k=0 and —1 when k =1 (as is common in com-

binatorics). However,

. T(2z-2) |
| =21
TG+ DI(z-2) 2

and

o Tr@ez-2 1,
e hre—y - 2~ b

This example demonstrates a conflict between the com-

binatorial and analytic definitions of the symbol [ p ) .
q

Example 2. The function @(z) = zI'(z + 1) satisfies
the equation L(y) = 0, where L = zE — (z + 1)*. We have

R= % , ordR = 0, and W(2) = R(@)(2) = [z + 1). Evi-

dently, ¢(z) has finite values when z =0, 1, ... and has
simple poles when z = -1, -2, .... We have depth(¢) =
depth(y) = -1 and
(_1 )k + lk .
—— if
bott(¢)(k) = 4 (—k-D1° & K<V
0, if k20,
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(_1)k+1
(—k-1)!
0, if k=0.

bott(w)(k) = if k<0

The bottom summation gives us

D% _ (D" GOM
2( k=11~ (mw-1)! (—=v-1)!

for any v < w <0, or, equivalently,

Z

forany 1 < v<w.

If we consider @(z) in the half-plane Rez = 0, then
depth(@) = depth(y) = 0, and we have

w-—1
zkr(k+ 1) =Tw+1)-T(v+1)

k=v

( 1)w+1 ( l)v+1
w—2) (v=2)!

~D'c
(k—l)' -

for any 0 < v < w or, equivalently,

w—1
Zk-k! = wl—vl.
k=v

The equation L(y) = 0 with L of the form (2) always
has a non-zero solution, which is meromorphic in C.
This is a consequence of the following result of M. Bar-
katou and J.-P. Ramis:

Theorem 2 ([5]). Let L be of the form (2), where
ay(z) is a non-zero polynomial. Let ¢ € R be such that
the real part of each of the roots of ay(z) is not larger
than c. Then, the equation L(y) = 0 has a solution which
is holomorphic (i.e., analytic and having no singular-
ity) in the half-plane Rez > c.

5. ADDITIONAL EXAMPLES

Example 3. The rational function ¢(z) =

z(z+1)

satisfies the equation L(y) = 0, where L = (z + 2)E — z.

We have R =—z—1 and y(z) = R(Q)(z) = —1 . Itis easy
Z

to see that depth(¢) = depth(y) = -1 and
1, if k=0
bott(@)(k) = 1-1, if k= -1
0, otherwise,
bott(w) (k) -1, if k=0
Ie) =
v 0, otherwise.
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A simple direct check shows that, for any v < w,
w-—1
Z bott(@)(k) = bott(y)(w) — bott(y)(v).
k=v

If we consider @(z) only in the half-plane Rez > 0,
then depth(¢) = depth(y) = 0, and we have

forany 1 < v<w.
Example 4. For the second-order operator

L= (z-3)z-2)(+DE
~(z-3)(2" -2z~ DE-(z-2)",
there exists the first-order summing operator
1
R =zE+ —.
¢ +z—3

It follows from Theorem 2 that the equation L(y) = 0
has solutions holomorphic in the half-plane Rez > 2.
Denote by ¢(z) an arbitrary solution of this kind. By our
theorem, the DNLF must be correct for 3 < v < w in
spite of the fact that one of the coefficients of R has a
pole at z = 3.

We can find the values of @(z) and of y(z) = R(¢)(2)
when z = 3. An algorithm from [2] yields

0(2) = (40(5)-20(4))(z-3) + O((z-3)),
7z —3,

which gives @(3) = 0, y(3) = ¢(4) + 4¢(5). This value
of y(3) can be used in the DNLF when 3 = v < w.

w—1

S o) = wotw+ 1)+ 20 _40(5) - g(4).
k=3
CONCLUSIONS

Indiscriminate application of the discrete Newton—
Leibniz formula to the output of Gosper’s algorithm or
of the Accurate Summation algorithm in order to com-
pute a definite sum can lead to incorrect results. This
can be observed in many implementations of these
algorithms in computer algebra systems.
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In this paper it is shown, in particular, that such
undesirable phenomena cannot occur if the elements of
the sequence under summation are the values @(k), k € Z,
of an analytic function ¢(z), which satisfies (in the com-
plex plane C) the same difference equation with poly-
nomial coefficients as does the original sequence (at
integer points).

A practical consequence of this is as follows.
If these conditions are satisfied, then a computer-alge-
bra-system user can be sure that the obtained sum was
computed correctly.

On the more theoretical side, if @(z) mentioned
above has some poles at integer points, then, neverthe-
less, one can find the sum of a sequence, which, how-
ever, is not the sequence of values of @(k), k € Z, but is
associated with @(z) in a natural way. This can yield an
interesting (and, probably, unexpected) identity. We
call this sequence associated with ¢(z), the bottom of
©(2). If @(z) is defined for all z € Z, then its bottom
coincides with the sequence @(k), k € Z.
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