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Abstract

We introduce the notion of the adjoint Ore ring and give a definition of adjoint polynomial,

operator and equation. We apply this for integrating solutions of Ore equations.

1 Introduction

The goal of this paper is integration (in the difference case: summation) of solutions of Ore equations.
For this purpose we first define an adjoint for an Ore ring, similar to the well-known adjoint for differential
operators, and also similar to ideas in [10]. The use of Ore rings allows to handle the case of differential,
difference and q-difference equations simultaneously.

An application is integration of special functions, like Bessel functions or hypergeometric functions. If
a function satisfies a differential operator L for which the operator L̃ that we will compute has the same
order then we have an easy way to integrate. This will be illustrated with an example. The integrals
of special functions that we obtain this way are often much less complicated than the integrals given by
computer algebra systems.

Another situation where solutions of linear differential equations need to be integrated is the following.
For solving linear differential equations one often applies “reduction of order” in case one of the solutions
was found. Reduction of order leads to the problem of integrating solutions of a differential equation.
In this paper we give a simple and easy to implement method for this problem. Given an operator L,
our algorithm computes an operator L̃ of minimal order such that the derivatives of the solutions of L̃
are the solutions of L. In the case that the order of L̃ equals the order of L, this effectively removes, at
low computational cost, one integration symbol from the symbolic solutions of the original differential
equation. The use of Ore rings makes our algorithm more general, so that it can be applied to the cases
of difference and q-difference equations as well.

A preliminary version of this paper appeared as [4].

2 Integrating factors and adjoints

Let k be a field and let K be a ring that contains k. We consider Ore rings k[∆] and K[∆] for two
different types of ∆:

• Case 1: ∆ is a derivation on K, i.e. ∆(ab) = b∆(a) + a∆(b) for all a, b ∈ K, and it is also a
derivation on k (so ∆(a) ∈ k for a ∈ k).

• Case 2: ∆ = σ − 1 where σ is an automorphism of k and of K.
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In both cases we will assume that the set of constants Const = {a ∈ K|∆(a) = 0} is a subfield of k.
Let k[∆] be the ring of all operators

∑n

i=0 ai∆
i. Similarly define K[∆]. An element operator L ∈ K[∆]

can be viewed as a Const-linear map from K to K, L(y) =
∑n

i=0 ai∆
i(y) ∈ K. We will assume that∑

ai∆
i ∈ K[∆] acts as the zero map on K if and only if all ai are zero. A common situation for such

Ore rings is that one is given an equation L(y) = 0 for some L ∈ k[∆] and one is interested in finding
solutions y of this equation in some (field or ring) extension K of k. By “rational solutions” of L we
mean solutions y ∈ k.

Now k[∆] and K[∆] are rings. The multiplication in these rings corresponds to composition of
operators. Using the relation

• Case 1: ∆ ◦ a = a∆ + ∆(a)

• Case 2: ∆ ◦ a = σ(a)∆ + ∆(a)

any product of elements in K[∆] can be written in a standard form
∑n

i=0 ai∆
i. We define ∆∗ as follows:

• Case 1: ∆∗ = −∆

• Case 2: ∆∗ = σ−1 − 1

and we can define the adjoint ring of k[∆] as k[∆∗]. Note that in case 1 we have k[∆] = k[∆∗] but in
case 2 k[∆] needs not be equal to its adjoint ring. Now we can define the adjoint map from

ad : k[∆] → k[∆∗]

for an operator L =
∑

i ai∆
i as follows:

ad L =
∑

i

(∆∗)i ◦ ai.

This can be rewritten to the standard form ad L =
∑

i bi(∆
∗)i for some bi ∈ k. For brevity we will often

write L∗ instead of ad L.
Now one can verify that the adjoint is a Const-linear bijective map and that

(L ◦ M)∗ = M∗ ◦ L∗

for all L, M ∈ k[∆].

Proposition 1

∆(f) = 0 ⇐⇒ f ∈ Const ⇐⇒ ∆∗(f) = 0.

Additionally for any L ∈ K[∆]
L(1) = 0 ⇐⇒ ∃M L = M ◦ ∆

and
L∗(1) = 0 ⇐⇒ ∃M L = ∆ ◦ M.

Proof: The first statement follows from the definitions. Write L =
∑

i ai∆
i for some ai ∈ K. Now

L = M ◦∆ for some M if and only if a0 = 0. Now the second statement follows because a0 = L(1). For
the third statement, write L∗ ∈ K[∆∗] (note that in general L∗ needs not be an element of K[∆]) as
L∗ =

∑
i ai(∆

∗)i for some ai ∈ K. Now L =
∑

i ∆iai and L = ∆ ◦ M for some M iff a0 = L∗(1) = 0. ✷

An element l ∈ K is an integrating factor for L ∈ K[∆] if lL = ∆ ◦ M , for some M ∈ K[∆]. The
following proposition shows that in the general case the adjoint equation has an important feature which
is well-known in the differential case.

Proposition 2 l ∈ K is an integrating factor for L iff L∗(l) = 0.

Proof: By proposition 1 we have lL = ∆ ◦ M for some M iff (lL)∗(1) = 0. Since l ∈ K we have
l∗(1) = l(1) = l and so (lL)∗(1) = L∗(l). ✷
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3 Accurate integration

An element g ∈ K is a primitive of f ∈ K if ∆(g) = f . Consider the following problem:
Let f ∈ K and the minimal annihilating operator L ∈ k[∆] for f be given. So n = ordL is minimal

with the property that L ∈ k[∆] and L(f) = 0. Decide whether there exists a primitive g of f such that

the minimal annihilating operator L̃ for g has order n. If so, then construct all such g together with
their minimal annihilating operators.
We show that this problem (the problem of the accurate integration) can be solved with the help of
finding integrating factors.

Let g be any primitive of f and L̃ ∈ k[∆] be the minimal annihilating operator for g. Now L◦∆(g) =

L(f) = 0 hence by the minimality of L̃ (and by the fact that k[∆] is a Euclidean ring, c.f. [13]) it follows

that L̃ is a right-hand factor of L ◦ ∆. Hence

ord L̃ ≤ ordL ◦ ∆ = n + 1 and if ord L̃ = n + 1 then L̃ = L ◦ ∆.

Consider the least common left multiple (LCLM) of L̃ and ∆ presented in the form

LCLM(L̃, ∆) = L1 ◦ ∆, (1)

L1 ∈ k[∆], ordL1 ≤ ord L̃. We have L̃(g) = 0, so L1 ◦ ∆(g) = 0, hence L1(f) = 0 and so ordL1 ≥ n by

the minimality of L. So ordLCLM(L̃, ∆) ≥ n + 1 and hence

ord L̃ ≥ n and if ord L̃ = n then GCRD(L̃, ∆) = 1 (2)

where GCRD stands for greatest common right divisor.
Thus there are two alternatives for ord L̃: n or n+1. The questions are: when is ord L̃ = n and what

is L̃ in this case?
If ord L̃ = n then from equation (2) and the extended Euclidean algorithm it follows that

r ◦ ∆ + l̃ ◦ L̃ = 1 (3)

for some l̃, r ∈ k[∆] with ord r < ord L̃ = n and ord l̃ < ord∆ = 1. Applying equation (3) on g results in

r(f) = g.

Applying ∆ on this equation yields ∆ ◦ r(f) = f so (1−∆ ◦ r)(f) = 0. By the minimality of L it follows
that 1 − ∆ ◦ r = l ◦ L for some operator l; hence

∆ ◦ r + l ◦ L = 1. (4)

Conversely, if equations (3),(4), ord r < n and ord l̃ < 1 hold then one can easily verify that ord L̃ = n,

that L̃ is the minimal annihilating operator for r(f) and that ∆(r(f)) = f . Hence equations (3),(4) with

the conditions on ord r and ord l̃ are equivalent to the problem of accurate integration.
The inequality ord l̃ < 1 implies ord l = ord l̃ = 0, i.e. l, l̃ ∈ k. Both sides of (4) are operators and if

we take the adjoints we get
r∗ ◦ ∆∗ + L∗ ◦ l∗ = 1. (5)

Applying the left- and the right-hand sides of (5) to the constant function 1 we obtain

L∗(l) = 1. (6)

For each solution l ∈ k of (6) we have (1 − lL)∗(1) = 1 − L∗(l) = 0 and so by proposition 1 it follows
that equation (4) allows a unique solution r. The minimal annihilating operator of g is defined up to a

left-hand factor in k. Therefore we can take l̃ = 1 and

L̃ = 1 − r ◦ ∆. (7)
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This operator annihilates one-unique primitive r(f) of f . If operators r0 and r1 correspond to different
solutions l0 and l1 of (6) then the primitives r0(f) and r1(f) of f are also different (otherwise the
operator r0 − r1 of order < n annihilates f). Since primitives are determined up to constants it follows
that (r0 − r1)(f) must be a constant.

L̃ maps the primitive r(f) of f to 0. Furthermore it maps any constant to itself. Hence it maps any
primitive of f to a constant.

The preceding can be formulated as the following

Proposition 3 Let L ∈ k[∆] be the minimal annihilating operator for f ∈ K and L∗(l) = 1, l ∈ k. Then

the equality ∆ ◦ r + l ◦ L = 1 uniquely determines r. In turns r lets find the operator L̃ ∈ k[∆] (up to a
factor in k) annihilating the primitive

g = r(f) (8)

of f . If formula (7) is used to construct L̃ then L̃(g1) ∈ Const for any primitive g1 of f . ✷

If (6) has no solution in k then no primitive of f has a minimal annihilating operator over k of order
n. If (6) has a unique solution in k then a primitive and its minimal annihilating operator can be defined
uniquely by (8),(7).

Proposition 4 Let M be the set of all solutions of (6) in k. Then M is empty, or M has only one
element, or M has the form

M = {l0 + Ch|C ∈ Const} (9)

where l0, h ∈ k, h 6= 0. In the last case any primitive of f has a minimal annihilating operator of order
n.

Proof: Suppose there exists a solution l0 of (6). Then the solution space of (6) is of the form l0 + V
where V is the solution space of L∗(l) = 0. The map l 7→ r(f) (r depends on l by (4)) is an injective
(here we use that L is minimal) linear map from l0 + V to the set of primitives of f . Since the set of
primitives is an affine space of dimension 1, V must have dimension ≤ 1. ✷

Note that if the solution space of L∗(l) = 0 has dimension > 1 then the map l 7→ r(f) can not be
injective because the image of this map has dimension ≤ 1. The fact that the map is not injective means
that there exists an r, ord r < ordL, with r(f) = 0 which contradicts our assumption that L is minimal.

Let now M have the form (9). Denote by lC the solution l0+Ch of (6) and by rC and L̃C the operators
which are found starting with lC . Since h is an integrating factor for L we have hL = ∆◦M, ordM = n−1.
Now from (4) and (7) we obtain

rC = r0 − CM (10)

L̃C = L̃0 + CM ◦ ∆ (11)

where r0 and L̃0 correspond to the solution l0 of (6). The operator L̃C is the minimal annihilating
operator for the primitive

gC = rC(f) (12)

of f .
Let g be a primitive of f and C ∈ Const. Then L̃C(g) = L̃0(g) + CM(∆g) = L̃0(g) + CM(f) and

M(∆g) ∈ Const because L̃C(g), L̃0(g) ∈ Const. Additionally M(f) 6= 0 because ordM < ordL. Taking

C = −
L̃0(g)

M(f)
(13)

we obtain the value of C such that g = rC(f).
The price which we pay for solving the problem of the accurate integration is finding solutions in k of

the equation L∗(y) = 1. If k is the rational function field, then the last problem can be solved effectively
in all cases mentioned in the examples below (c.f. [1, 2, 3]).

An implementation called integrate sols is available in the DEtools package in Maple V release 5.
As one can see below the algorithm is very short and easy to implement.
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Procedure IntegrateSolutions
Input: L ∈ k[∆]

L∗ := adjoint(L)
Compute the rational solutions of L∗(y) = 1
if there exists a rational solution then

Let l be a rational solution.
r := LeftQuotient(1 − lL, ∆)

L̃ := 1 − r ◦ ∆
else

L̃ := L ◦ ∆
The integration operator r does not exist.

end if

Output: L̃ and, if it exists, r as well.

4 Examples

Example 1. Let k = C(x), ∆ = D = d
dx

. Applying the described approach to f = lnx,

L = xD2 + D (14)

gives L∗ = xD2 +D, and the general rational solution of the equation L∗(y) = 1 is lC = x+C. Therefore
l0 = x, h = 1. Any primitive of lnx is annihilated by a second order operator. We obtain

L̃C = (x2 + Cx)D2 − xD + 1, rC = (−x2 − Cx)D + x.

It obviously holds for any function f(x) whose minimal annihilating operator has the form (14). For
f(x) = lnx we have rC(f(x)) = x ln x − x − C.

Example 2. The algorithm proposed above lets in some cases integrate special functions.
a) The minimal annihilating operator for Bessel function J1 is x2D2 + xD + (x2 − 1). Now L∗ =

x2D2 + 3xD + x2, and L∗(y) = 1 has a unique rational solution 1
x2 . We obtain

L̃ = D2 +
1

x
D + 1, r = −D −

1

x
.

Thus we get a primitive of J1 in the form

r(J1) = (−D −
1

x
)(J1),

with minimal annihilating operator L̃. Other primitives (r(J1) plus a constant) are annihilated by the
operator L ◦ D of order 3.

b) Another example of integration of special functions is the following: L = xD2 +(C1 +C2x)D+C3.
The solutions of this operator L can be expressed in terms of Whittaker functions. Our algorithm
produces the operator

r =
x

C2 − C3
D +

C1 + C2x − 1

C2 − C3
,

so the solutions y of L can be integrated by our method
∫

y dx = r(y).

Example 3. Let k = Q(n), ∆ = E−1 where E(n) = n+1, E∗ = E−1. Let u0, u1, ... be Fibonacci num-
bers. Apply the described approach to u2

n, L = E3−2E2−2E+1. We obtain L∗ = E−3−2E−2−2E−1+1
(note that E = ∆ + 1 and therefore E∗ = ∆∗ + 1 = E−1 − 1 + 1 = E−1, it lets one work with linear
operators described in terms of E. In general in case 2 one can consider operators from k[σ], setting
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σ∗ = σ−1). The equation L∗(y) = 1 has the unique rational solution − 1
2 . It shows that one unique

primitive of u2
n can be annihilated by an operator of order 3: L̃ = − 1

2L, while r = 1
2 (E2 − E − 3). This

primitive is
1

2
(u2

n+2 − u2
n+1 − 3u2

n).

The inverse of ∆ is the summation operator
∑n−1

i=0 , up to a constant which is 1
2 (u2

2 − u2
1 − 3u2

0) = 0 in
this example. So

n−1∑

i=0

u2
i =

1

2
(u2

n+2 − u2
n+1 − 3u2

n).

There are several methods for proving such formulas. Our algorithm does more in this example, it also
finds this formula. Certainly, we need the minimal annihilator for u2

n. Since u2
n is a d’Alembertian se-

quence this annihilator can easily be constructed, for example, by algorithm [6]. Remark that algorithm
[6] itself uses the accurate integrating algorithm.

Example 4. This is an example of integration of algebraic functions. If the minimal polyno-
mial f(x, y) ∈ C(x)[y] for an algebraic function α(x) is given then the minimal annihilating differ-
ential operator L ∈ C(x)[D] for α(x) can be constructed as follows. The algebraic function α(x)
and its derivatives are elements of C(x, α), which is a C(x)-vector space of dimension degy f(x, y).
One can compute α(x), α′(x), α′′(x), . . . in this vector space. Take ρ the minimal integer such that
α(x), α′(x), α′′(x), . . . , α(ρ)(x) are C(x)-linearly dependent. This linear relation gives L.

Now again k = C(x), ∆ = D = d
dx

. Let f(x, y) = y3 + xy + x2 and let α ∈ k be a root of f(x, y) as a
polynomial in y. One obtains the following annihilating operator for α

L = D2 − 2
1

x(4 + 27x)
D + 2

3x + 1

x2(4 + 27x)
∈ k[D]

The equation L∗(l) = 1 has a unique rational solution −1/45− x/12 + (9x2)/20. This yields

r = (
1

45
+

x

12
−

9x2

20
)D +

162x2 − 9x − 2

180x

and so ∫
α dx = r(α) = (

1

45
+

x

12
−

9x2

20
)α′ +

162x2 − 9x − 2

180x
α.

We obtain a unique primitive, despite the fact that primitives are not unique, but only unique up to a
constant. Note that our method produces a primitive of α if and only if there is a primitive which is a
k-linear combination of α and its derivatives. So in the hardest case in elementary integration (the case

when logarithmic extensions are needed) our algorithm will not produce a primitive (so then L̃ must be
L ◦ D).

Example 5. Let k = C(x) and v(x) = 1/x. The minimal annihilating differential operator L over k for
v(x) is L = xD + 1. The equation L∗(l) = 1 has no solutions in k. So every primitive of 1/x is only
annihilated by operators of order ≥ 2. The primitives can not be obtained by applying linear differential
operators over k to v(x).

Example 6. Given a first order (i.e. hypergeometric) sequence over C(n), the well-known Gosper’s
algorithm ([11]) decides whether there exists another sequence of such a kind that is a primitive for the
given sequence. The algorithm in this paper generalizes Gosper’s algorithm in two ways: it solves the
analogous problem for a wider class of equations, and for any order n instead of only n = 1. Using (8)
we can express the mentioned primitive explicitly in terms of the given sequence (function). We will
illustrate this in the difference and q-difference cases.

a) Hypergeometric case. Let k = Q(n), ∆ = E − 1. Let sn =
(
2n
n

)
/4n, n = 0, 1, . . . This sequence

is hypergeometric; sn+1/sn = (2n + 1)/(2n + 2). We have L = 2(n + 1)E − (2n + 1). We obtain
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L∗ = 2nE−1 − (2n + 1), and the equation L∗(y) = 1 has the unique rational solution −1. It shows that
one-unique primitive of sn can be annihilated by an operator of order 1, and r = 2n. This primitive is

2nsn =
2n

(
2n
n

)

4n

and in particular
N−1∑

n=0

(
2n
n

)

4n
=

2N
(
2N
N

)

4N
.

b) q-Hypergeometric case. Let q be a new variable. A sequence {hn} is q-hypergeometric if hn+1/hn

is a rational function of q, qn. The sequence

(a; q)n =

{
1, if n = 0,
(1 − a)(1 − aq) · · · (1 − aqn−1), if n > 0,

where a is a parameter is a q-hypergeometric for any fixed value of a due to (a; q)n+1/(a; q)n = 1−aqn−1 =

1 − a qn

q
. We will consider the sequence hn = qn(q; q)n. Here hn+1/hn = q(1 − q · qn). Write x for qn.

Then hn+1/hn = q(1 − qx).
Let k = Q(q)(x), ∆ = Q − 1 where Q(x) = qx, Q∗ = Q−1. We have L = Q − q(1 − qx). We obtain

L∗ = Q−1 − q(1 − qx), and the equation L∗(y) = 1 has the unique rational solution 1/(q2x). It shows
that one-unique primitive of hn can be annihilated by an operator of order 1, and r = −1/(qx). This
primitive is

−
1

q · qn
hn = −

(q; q)n

q

and in particular
N−1∑

n=0

qn(q; q)n =
1 − (q; q)N

q
.

Another way to obtain the last formula was demonstrated in [5].

5 Conclusion

It follows from the results in this paper that the following 3 problems are equivalent.

• Find the solutions l ∈ k of L∗(l) = 1.

• Let f ∈ K. Let the minimal annihilating operator L ∈ k[∆] for f be given. Decide whether there
exists r ∈ k[∆] such that r(f) is a primitive of f . If so, then construct such r.

• The problem of accurate integration.

• Computing solutions (r, l) of equation (4). Note that according to section 3.1 in [12] this is equiv-
alent to computing a complement of Const in the solution space of L ◦ ∆.

Similar problems, but in a more general situation, are studied in [8, 9]. Our approach is less general but
it has the advantage of simplicity, it only uses an adjoint and rational solutions, which are quite efficient.
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