
A Universal Program to Uncouple Linear

Systems ∗

Sergei A. Abramov

Computer Center of

the Russian Academy of Science,

Vavilova 40, Moscow 117967, Russia.

abramov@ccas.ru

Eugene V. Zima

Comput. Math. & Cybernetics dept.,

Moscow State University,

Moscow 119899, Russia.

zima@cs.msu.su

Abstract

We describe a program to uncouple a linear system of equations.
An algorithm is described in terms of an arbitrary Ore polynomial
ring. It allows to adjust the program for the differential, difference,
q-difference and many other cases.

1 Introduction

The search for solutions of a system of linear ordinary differential equations
can be reduced to the search for solutions of scalar (i.e., with one unique

∗Work reported herein was supported in part by the RFBR-INTAS under Grant 95-
IN-RU-412.

1

unknown function) linear equations. Such a reduction is possible for systems
of linear difference and q-difference equations as well.

Theoretically, this reduction is not hard for any kind of system. Algo-
rithms to uncouple linear differential and difference systems are based on very
similar ideas. There is a mathematical abstraction connecting, in particular,
linear ordinary differential, difference and q-difference equations. This is Ore
polynomial rings [1, 2, 3]. In this paper we describe a Maple implementation
of a universal (based on Ore polynomials) algorithm to uncouple a linear sys-
tem to scalar equations. The implementation assumes that coefficients are
polynomials (in the usual sense). If coefficients are rational functions then
preliminary clearing of denominators is needed.

The algorithm has been described by the authors in [4]. It is a general-
ization to an arbitrary Ore polynomial ring of an algorithm to uncouple a
system of linear ordinary differential equations [5].

In Section 2 we recap basic notions connected with Ore polynomial rings.
Then, in Section 3 we describe shortly the uncoupling algorithm. Section 4
discusses a Maple implementation. A few examples of uncoupling can be
found in Section 5.

2 Basic notions of Ore polynomial rings

Let k be a field of characteristic zero, θ an indeterminate over k, σ an auto-
morphism of k, and δ : k → k a map satisfying

δ(a + b) = δa + δb, δ(ab) = σ(a) δb + δa b (1)

for any a, b ∈ k. The Ore polynomial ring k[θ; σ, δ] given by σ and δ is the
ring of polynomials in θ over k with the usual addition. Multiplication in
k[θ; σ, δ] is defined by the following relation

θa = σ(a)θ + δa (2)

for any a ∈ k.
Let V be a linear space over k (if k is a functional field then usually V is

a wider set of functions). Let the application of θ to elements of V be defined
in such a way that

θ(u + v) = θu + θv, θ(au) = σ(a)θu + δa u (3)

2

for u, v ∈ V, a ∈ k. Then we can consider the application of Ore polynomials
A(θ), B(θ), . . . to elements of V , with A(θ)B(θ)v = A(θ)(B(θ)v), (A(θ) +
B(θ))v = A(θ)v + B(θ)v and so on. It allows to consider V as a module
over k[θ; σ, δ]. From here on θa, θu, . . . we denote the results of applying θ to
a, u, . . . rather than products of the elements of k[θ; σ, δ] as in (2).

Let k ⊂ V (this inclusion is natural in the functional case). Thanks to
(3)

θa = σ(a)θ1 + δ(a) (4)

for a ∈ k. Therefore, in order to define the result of application of θ to
an element of k it is enough (in addition to σ and δ) to know θ1, i.e. the
result of application of θ to the unit of k. The following table shows that
linear ordinary differential, recurrent, difference and q-analogs of recurrent
and differential equations can be considered in the framework of the theory
of Ore polynomial rings:

case θ σ δ θ1

differential θf(x) = d
dx

f(x) 1k
d
dx

0
recurrent θf(x) = Ef(x) = f(x + 1) E 0 1
difference θf(x) = ∆f(x) = f(x + 1) − f(x) E ∆ 0
q-recurrent θf(x) = Qf(x) = f(qx) Q 0 1

q-differential θf(x) = Dqf(x) = f(qx)−f(x)
qx−x

Q Dq 0

The list above is not exhaustive. It can be extended easily by special cases
like

a nonstandard θf(x) = x d
dx

f(x) 1k x d
dx

0
q-difference θf(x) = ∆qf(x) = f(qx) − f(x) Q ∆q 0

and so on.

3

3 The algorithm

Consider a linear system (in general, inhomogeneous)

f1θy1 = a11y1 + a12y2 + ... + a1nyn + r1,

...

fnθyn = an1y1 + an2y2 + ... + annyn + rn,

aij ∈ k, ri, yi ∈ V , where yi are unknown. The result of the application of θ

is defined in accordance with (3).
The application of the algorithm starts with the following transforma-

tions, which give a scalar equation in y1.
Consider the first equation. If a12 = . . . = a1n = 0 then we already have

an equation in y1 alone. Let a12 6= 0 (if a12 = 0, but a1i 6= 0, i > 2, we can
re-enumerate unknowns). Introduce new unknown z2 (instead of y2):

z2 = a12y2 + ... + a1nyn. (5)

The first equation can be rewritten as

f1θy1 = a11y1 + z2.

In all the remaining equations we can eliminate y2 with the help of (5). After
this elimination the second equation will have the form

g2θy2 = b21y1 + b22z2 + ... + b2nyn + s2. (6)

Application of θ to both the sides of (5) gives us

θz2 = σ(a12)θy2 + δ(a12)y2 + . . . + σ(a1n)θyn + δ(a1n)yn. (7)

We can use (6), (5) together with

g3θy3 = b31y1 + b32z2 + b33y3 + ... + b3nyn + s3,

...

gnθyn = bn1y1 + bn2z2 + bn3y3 + ... + bnnyn + sn

in order to eliminate y2, θy2, θy3, . . . , θyn from (7). After that (7) contains
only θz2, y1, y3, . . . , yn:

h2θz2 = c21y1 + c22z2 + c23y3 + ... + c2nyn + t2.

4

Hence we have as the result of these actions the system

f1θy1 = a11y1 + z2 + r1,

h2θz2 = c21y1 + c22z2 + c23y3 + ... + c2nyn + t2,

g3θy3 = b31y1 + b32z2 + b33y3 + ... + a3nyn + s3,

...

gnθyn = bn1y1 + bn2z2 + bn3y3 + ... + annyn + sn.

(8)

If c23 = c24 = ... = c2n = 0 we can obtain a second order equation in y1 from
the first two equations of (8). The first equation allows to express z2 via
y1, θy1. Applying θ to the first equation we can express θz2 via y1, θy1, θ

2y1.
Substituting in the second equation we have the desired result.

If at least one of c23, c24, ..., c2n (for example c23) is nonzero, then we
introduce the new unknown z3 (instead of y3)

z3 = c23y3 + ... + c2nyn, (9)

and so on until for a value l ≤ n we obtain a system

α1θy1 = β11y1 + z2 + r1,

α2θz2 = β21y1 + β22z2 + z3 + t2,

...

αl−1θzl−1 = βl−1,1y1 + βl−1,2z2 + . . . + βl−1,l−1zl−1 + zl + ul−1,

αlθzl = βl,1y1 + βl,2z2 + . . . + βl,l−1zl−1 + βl,lzl + ul.

(10)

We can get an equation of degree l in y1 with the help of these equations.
In the rest of the initial system we consider y1, z2, . . . , zl as knowns and

perform the same transformations. It gives us an equation of order m, m ≤

n− l, for yl+1 and so on. Finally, we will have several scalar equations (in y1,
yl+1 etc). The sum of their orders will be equal to n. Relations, analogous
to (10), allow to express all zi via y1, yl+1, Formulas (5), (9) and so on
form a triangle system of linear algebraic equations. Hence, we can express
all remaining yi via solutions of scalar equations.

Let the initial conditions for equations of the initial system be given. Then
it is easy to get initial conditions for split scalar equations. For example for
an l-order equation in y1 one can find linear expressions of θy1, . . . , θ

l−1y1

via y1, . . . , yn. If y1, . . . , yn are functions and the values y1(0), . . . , yn(0) are
known, then these linear expressions allow to compute θy1(0), . . . , θl−1y1(0).
In order to construct the linear expressions mentioned above, we apply θ

5

to the first equation of the initial system and then eliminate in the right-
hand side all θyi by means of equations of the initial system. This gives a
linear expression for θ2y1. Repeating these steps we obtain expressions for
θ3y1, θ

4y1, . . . Analogous expressions can be obtained for the scalar equation
in yl+1 and so on.

4 The program

The algorithm from the previous section has been implemented in Maple 5.3

with several improvements like

• preliminary splitting of scalar equations on each step,

• reducing coefficients by their gcd,

• choosing the most suitable unknown for excluding on each step

and others.
The user is provided with the three main procedures set_Ore_ring,

uncpl_sys and get_sol. Procedure set_Ore_ring(indvar, case) sets
the program to a concrete k[θ; σ, δ] by selecting the independent variable
and concrete δ, σ and θ1. It takes unassigned names as parameters. The
value of the first parameter stands for the name of the independent vari-
able, the value of the second parameter selects a concrete k[θ; σ, δ]. In
the standard cases (differential, difference, recurrent, q-recurrent,
q-difference, q-differential) adjustment of the program is hidden from
the user; for example, the call

set_Ore_ring(x,differential)

sets the program to the differential case with x as independent variable.
If the value of the second parameter is nonstandard, the program

prompts the user for input of definitions of δ and σ (in procedural form)
and the value of θ1. Below we show a Maple session setting the program to
the nonstandard case:

> set_Ore_ring(x, ‘nonstandard‘);

Enter definition of automorphism sigma

> proc(y) y end;

6

Enter definition of map delta

> proc(y) x^2*diff(y,x) end;

What is the value of theta_1 ?

> 0

program is set to the nonstandard case

Procedure uncpl_sys(sys,unklst) takes a system of linear equations as
the first parameter, a list of unknowns as the second parameter and returns
the result of uncoupling. The result is a list of scalar equations, expressions
of auxiliary unknowns in terms of solutions of these equations and linear
expressions of the remaining unknowns via solutions of the scalar equations
and the auxiliary unknowns. There is the optional third parameter ch_flag
of type Boolean, which is set true by default. If ch_flag=false then the
choice of the most suitable unknown for excluding is switched off.

Procedure get_sol(unres, unkl) takes the result of uncoupling and the
list of unknowns as parameters and finds a solution of the initial system by
means of standard Maple tools. In the differential case the procedure dsolve
is used for this purpose. If the optional third papameter has the value rat,
then Bronstein’s procedure ratlode (from the Maple share library) to find
rational solutions is used instead of dsolve.

5 Examples of uncoupling

In this section we give several examples of using the program from the pre-
vious section together with timings1.

Example 1. Consider the well known combinatorial problem: n pairs of
inimical knights are invited to dinner. How many ways y1(n) are there to seat
them at a round table so that no enemies are beside each other? Let y2(n)
be the number of ways to seat them so that exactly one pair of enemies is
beside each other; y3(n) be the number of ways to seat them so that exactly
two pairs of enemies are beside each other. It is possible to show [6], that for
n ≥ 2

Ey1(n) = 2(2n − 1)ny1(n) + 2(2n − 1)y2(n) + 2y3(n),
Ey2(n) = 4n(n + 1)y1(n) + 2(n + 1)y2(n),
Ey3(n) = 2n(n + 1)y1(n) + 2(n + 1)y2(n),

(11)

1All the reported timings were obtained on 66Mhz IBM PC 486DX.

7

y1(2) = 2, y2(2) = 0, y3(2) = 4. In the session below we first set the program
to the recurrent case and then (after initial assignments) call the procedure
uncpl_sys:

> set_Ore_ring(n, ‘recurrent‘):

> eq1:= theta(y1(n),n) =

> 2*(2*n-1)*n*y1(n) + 2*(2*n-1)*y2(n) + 2*y3(n):

> eq2:= theta(y2(n),n) =

> 2*(n+1)*2*n*y1(n) + 2*(n+1)*y2(n):

> eq3:= theta(y3(n),n) =

> 2*(n+1)*n*y1(n) + 2*(n+1)*y2(n):

> eq:=[eq1,eq2,eq3]:

> varl:=[y1(n), y2(n), y3(n)]:

> rez:=uncpl_sys(eq, varl);

rez :=
[

[(64 n2 + 32 n + 8 n4 + 40 n3) y1(n) + (−1 − n) θ(θ(θ(y1(n))))

+ (20 n2 + 20 + 34 n + 4 n3) θ(θ(y1(n)))

+ (40 + 108 n + 108 n2 + 8 n4 + 48 n3) θ(y1(n)) = 0,

y3 z(n) = θ(y1(n)) − (4 n2 − 2 n) y1(n), y2 z(n) = %1 − 6 θ(y1(n)) n

− 2 θ(y1(n)) − 4 θ(y1(n)) n2 − (28 n2 + 12 n + 16 n3) y1(n)],
[

y2(n) =
y2 z(n)

16 n + 8 + 8 n2
, y3(n) =

1

2
y3 z(n) −

1

2

(4 n − 2) y2 z(n)

16 n + 8 + 8 n2

]

]

%1 := θ(θ(y1(n)))

Here (in 2 seconds) we get as the result one scalar equation in y1(n), expres-
sions of auxiliary functions via y1(n) and linear expressions of y2(n), y3(n)
via y1(n) and auxiliary functions. Using the remark at the end of Section 3,
it is possible to get the initial conditions for the scalar equation y1(2) = 2,
y1(3) = 32, y1(4) = 1488. The scalar equation has the following solution
with these initial conditions

y1(n) =
n
∑

k=0

(−1)k

(

n

k

)

2k(2n − k − 1)! .

Example 2. In order to demonstrate the work of the program in the
q-recurrent case we consider the system (11) using Q instead of E.

8

> set_Ore_ring(n, ‘q-recurrent‘):

> eq1:= theta(y1(n),n) =

> 2*(2*n-1)*n*y1(n) + 2*(2*n-1)*y2(n) + 2*y3(n):

> eq2:= theta(y2(n),n) =

> 2*(n+1)*2*n*y1(n) + 2*(n+1)*y2(n):

> eq3:= theta(y3(n),n) =

> 2*(n+1)*n*y1(n) + 2*(n+1)*y2(n):

> eq:=[eq1,eq2,eq3]:

> varl:=[y1(n), y2(n), y3(n)]:

> rez:=uncpl_sys(eq, varl);

rez :=
[

[(8 n2 q + 8 n3 q2 + 8 n2 q2 + 8 n q) y1(n) + (2 q + 4 n2 q4) θ(θ(y1(n)))

+ (12 n2 q3 + 8 n3 q4 + 4 n q2 − 4 n2 q2 − 4 n q) θ(y1(n))

− θ(θ(θ(y1(n)))) = 0,

y3 z(n) = θ(y1(n)) − (4 n2 − 2 n) y1(n), y2 z(n) = %1

− 4 n2 q2 θ(y1(n)) + 2 n q θ(y1(n))

− (−4 n2 − 4 n + 16 n3 q + 16 n2 q) y1(n)],
[

y2(n) =
y2 z(n)

8 n2 q + 8 n q
, y3(n) =

1

2
y3 z(n) −

1

2

(4 n − 2) y2 z(n)

8 n2 q + 8 n q

]

]

%1 := θ(θ(y1(n)))

Here (in 4 seconds) we again get one scalar equation in y1(n), and expressions
for the remaining unknowns via y1(n).

Example 3. In both the examples above we get one scalar equation.
Now we consider a differential linear system [8] which will be split into several
scalar equations:

x2y′

1 = (1 + 4x)y1 − 5xy2 + 7xy3 − 8xy4 + 8xy5 − 6xy6,

x2y′

2 = −10xy1 + (9x + 1)y2 − 14xy3 + 16xy4 − 16xy5 + 12xy6,

x2y′

3 = −5xy1 + 5xy2 + (1 − 8x)y3 + 8xy4 − 8xy5 + 6xy6,

x2y′

4 = 10xy1 − 10xy2 + 14xy3 + (1 − 17x)y4 + 16xy5 − 12xy6,

x2y′

5 = 5xy1 − 5xy2 + 7xy3 − 8xy4 + (1 + 7x)y5 − 6xy6,

x2y′

6 = −5xy1 + 5xy2 − 7xy3 + 8xy4 − 8xy5 + (1 + 5x)y6.

(12)

In the session below we first set the program to the differential case and then
(after initial assignments) call the procedure uncpl_sys:

9

> set_Ore_ring(x, ‘differential‘):

> eq1:= theta(y1(x),x)*x^2 =

> (1+4*x)*y1(x) + (-5*x)*y2(x) + (7*x)*y3(x) +

> (-8*x)*y4(x) + (8*x)*y5(x) + (-6*x)*y6(x):

> eq2:= theta(y2(x),x)*x^2 =

> (-10*x)*y1(x) + (9*x+1)*y2(x) + (-14*x)*y3(x) +

> (16*x)*y4(x) + (-16*x)*y5(x) + (12*x)*y6(x):

> eq3:= theta(y3(x),x)*x^2 =

> (-5*x)*y1(x) + (5*x)*y2(x) + (-8*x+1)*y3(x) +

> (8*x)*y4(x) + (-8*x)*y5(x) + (6*x)*y6(x):

> eq4:= theta(y4(x),x)*x^2 =

> (10*x)*y1(x) + (-10*x)*y2(x) + (14*x)*y3(x) +

> (1-17*x)*y4(x) + (16*x)*y5(x) + (-12*x)*y6(x):

> eq5:= theta(y5(x),x)*x^2 =

> (5*x)*y1(x) + (-5*x)*y2(x) + (7*x)*y3(x) +

> (-8*x)*y4(x) + (1+7*x)*y5(x) + (-6*x)*y6(x):

> eq6:= theta(y6(x),x)*x^2 =

> (-5*x)*y1(x) + (5*x)*y2(x) + (-7*x)*y3(x) +

> (8*x)*y4(x) + (-8*x)*y5(x) + (1+5*x)*y6(x):

> eq:=[eq1,eq2,eq3,eq4,eq5,eq6]:

> varl:=[y1(x), y2(x), y3(x), y4(x), y5(x), y6(x)]:

> rez:=uncpl_sys(eq, varl);

rez :=
[

[−x4 θ(θ(y1(x))) + 3 x3 θ(y1(x)) + 2 x2 θ(y1(x)) + 5 x2 y1(x)

− 5 x y1(x) − y1(x) = 0, y2 z(x) = x2 θ(y1(x)) − (1 + 4 x) y1(x)], [

−x2 θ(y3(x)) = 5 x y1(x) + y2 z(x) + (x − 1) y3(x),

−x2 θ(y4(x)) = −10 x y1(x) − 2 y2 z(x) + (x − 1) y4(x),

−x2 θ(y5(x)) = −5 x y1(x) − y2 z(x) + (x − 1) y5(x),

−x2 θ(y6(x)) = 5 x y1(x) + y2 z(x) + (x − 1) y6(x)],
[

y2(x) = −
1

5

y2 z(x)

x
+

7

5
y3(x) −

8

5
y4(x) +

8

5
y5(x) −

6

5
y6(x)

]

]

Here we get (in 3 seconds) as the result a scalar equation of the second order
in y1(x), an expression of auxiliary function y2 z(x) via y1(x), a list of four
scalar first-order equations and a linear expression of y2(x) via solutions of

10

the scalar equations and the auxiliary function. Now we can find the solution
of the system using procedure get_sol:

> get_sol(rez,varl);

[

e(−
1

x
) (C1 + C2 x

6)

x
,−

2

5

e(−
1

x
) (−3 C1 + 5 C2 x

6)

x
,−

e(−
1

x
) (C2 x

6 − C1)

x
,

e(−
1

x
) (2 C2 x

6 + C1)

x
,
e(−

1

x
) (C1 + C2 x

6)

x
,−

e(−
1

x
) (C2 x

6 − C1)

x

]

Example 4. Consider the previous example in the nonstandard case,
taking δ = x2 d

dx
:

> set_Ore_ring(x, ‘nonstandard‘);

Enter definition of automorphism sigma

> proc(y) y end;

Enter definition of map delta

> proc(y) x^2*diff(y,x) end;

What is the value of theta_1 ?

> 0

program is set to the nonstandard case

> eq1:= theta(y1(x),x) =

> (1+4*x)*y1(x) + (-5*x)*y2(x) + (7*x)*y3(x) +

> (-8*x)*y4(x) + (8*x)*y5(x) + (-6*x)*y6(x):

> eq2:= theta(y2(x),x) =

> (-10*x)*y1(x) + (9*x+1)*y2(x) + (-14*x)*y3(x) +

> (16*x)*y4(x) + (-16*x)*y5(x) + (12*x)*y6(x):

> eq3:= theta(y3(x),x) =

> (-5*x)*y1(x) + (5*x)*y2(x) + (-8*x+1)*y3(x) +

> (8*x)*y4(x) + (-8*x)*y5(x) + (6*x)*y6(x):

> eq4:= theta(y4(x),x) =

> (10*x)*y1(x) + (-10*x)*y2(x) + (14*x)*y3(x) +

> (1-17*x)*y4(x) + (16*x)*y5(x) + (-12*x)*y6(x):

> eq5:= theta(y5(x),x) =

> (5*x)*y1(x) + (-5*x)*y2(x) + (7*x)*y3(x) +

> (-8*x)*y4(x) + (1+7*x)*y5(x) + (-6*x)*y6(x):

11

> eq6:= theta(y6(x),x) =

> (-5*x)*y1(x) + (5*x)*y2(x) + (-7*x)*y3(x) +

> (8*x)*y4(x) + (-8*x)*y5(x) + (1+5*x)*y6(x):

> eq:=[eq1,eq2,eq3,eq4,eq5,eq6]:

> varl:=[y1(x), y2(x), y3(x), y4(x), y5(x), y6(x)]:

> rez:=uncpl_sys(eq, varl);

rez :=
[

[−θ(θ(y1(x))) + 2 θ(y1(x)) + 5 x θ(y1(x)) + 5 x2 y1(x) − 5 x y1(x)

− y1(x) = 0, y2 z(x) = θ(y1(x)) − (1 + 4 x) y1(x)], [

−θ(y3(x)) = 5 x y1(x) + y2 z(x) + (x − 1) y3(x),

−θ(y4(x)) = −10 x y1(x) − 2 y2 z(x) + (x − 1) y4(x),

−θ(y5(x)) = −5 x y1(x) − y2 z(x) + (x − 1) y5(x),

−θ(y6(x)) = 5 x y1(x) + y2 z(x) + (x − 1) y6(x)],
[

y2(x) = −
1

5

y2 z(x)

x
+

7

5
y3(x) −

8

5
y4(x) +

8

5
y5(x) −

6

5
y6(x)

]

]

Here the result of uncoupling (obtained in 2 seconds) looks slightly different
from the previous one. But again we have a second-order scalar equation in
y1(x) and four split first-order scalar equations. Using procedure get_sol

we obtain the same solution as in the standard case:

> get_sol(rez,varl);

[

e(−
1

x
) (C1 + C2 x

6)

x
,−

2

5

e(−
1

x
) (−3 C1 + 5 C2 x

6)

x
,−

e(−
1

x
) (C2 x

6 − C1)

x
,

e(−
1

x
) (2 C2 x

6 + C1)

x
,
e(−

1

x
) (C1 + C2 x

6)

x
,−

e(−
1

x
) (C2 x

6 − C1)

x

]

Example 5. Now we demonstrate how to use the program in order to
get rational solutions of linear systems. Consider the system [7]

y′

1 = y2,

y′

2 = y3 + y4,

y′

3 = y5,

y′

4 = 2y1 + 2xy2 + y5,

y′

5 = x2y1 + 2xy3 + y6,

y′

6 = x2y2 − 2y3.

12

> set_Ore_ring(x, ‘differential‘):

> eq1:= theta(y1(x),x) = y2(x):

> eq2:= theta(y2(x),x) = y3(x) + y4(x):

> eq3:= theta(y3(x),x) = y5(x):

> eq4:= theta(y4(x),x) = 2*y1(x) + (2*x)*y2(x) + y5(x):

> eq5:= theta(y5(x),x) = x^2*y1(x) + 2*x*y3(x) + y6(x):

> eq6:= theta(y6(x),x) = x^2*y2(x) -2*y3(x):

> eq:=[eq1,eq2,eq3,eq4,eq5,eq6]:

> varl:=[y1(x), y2(x), y3(x), y4(x), y5(x), y6(x)]:

> rez:=uncpl_sys(eq, varl);

rez :=
[

[−θ(θ(θ(%1))) + 6 %1 + 4 x θ(%1) = 0, y2 z(x) = θ(y1(x)),

y3 z(x) = %1, y5 z(x) = θ(%1) − 2 y1(x) − 2 x θ(y1(x)),

y6 z(x) = θ(θ(%1)) − 4 θ(y1(x)) − 6 x %1 − 2 x2 y1(x)],

[2 θ(y4(x)) = 4 y1(x) + 4 x y2 z(x) + y5 z(x)],
[

y6(x) =
1

2
y6 z(x) + 2 x y4(x), y5(x) =

1

2
y5 z(x),

y3(x) = y3 z(x) − y4(x), y2(x) = y2 z(x)
]]

%1 := θ(θ(y1(x)))

This result was obtained in 4 seconds and consists of a fifth-order scalar
equation in y1(x), a first order equation in y4(x) and linear expressions for
the remaining unknowns via solutions of the scalar equations. We can use
the procedure get_sol with the third parameter set to rat in order to find
all rational solutions of the initial system:

> get_sol(rez, varl, rat);

[

C 0 + C 1 x, C 1,− C 2 − C 2 x − C 2 x
2
, C 2 + C 2 x + C 2 x

2
,− C 0 − 2 C 1 x,

(− C 1 + 2 C 2) x
3 + (− C 0 + 2 C 2) x

2 + 2 C 2 x − 2 C 1

]

13

6 The uncoupling program family

Another universal algorithm to uncouple linear systems is proposed in [7].
Additionally the paper gives a review and an analysis of known methods for
uncoupling systems of linear ordinary differential equations. It was observed
that only very few of them can be generalized to arbitrary Ore polynomial
rings. Once those methods are generalized, different methods give very dif-
ferent uncoupled equations. The generalization of the successive elimination
algorithm which has been done in our publication [4] was considered in this
context. The conclusion is that the generalization “tends to yield equations
with fewer extra singularities than others, which improves the efficiency of
the solving process”. This remark gives a hope that the program which we
describe can be useful.

Acknowledgement

We would like to thank Francis J. Wright who provided us with useful com-
ments on earlier draft.

References

[1] Ore O. (1933): Theory of non-commutative polynomials, Annals of
Mathematics 34, 480–508.

[2] M. Bronstein & M. Petkovšek (1994): On Ore rings, linear operators
and factorisation, Programmirovanie 1, 27–45.

[3] Bronstein M., Petkovšek M. (1996): An Introduction to Pseudo-Linear
Algebra, Theoretical Computer Science, 157, 3–33.

[4] Abramov S.A., Zima E.V. (1995): Ore polynomial rings and linear sys-
tems reduction (in Russian), Vestnik MGU, Ser.15, Computat. Math.
and Cybernetics 3, 50–56.

14

[5] Murray F.J., Miller K.S. (1954): Existence theorems for ordinary differ-
ential equations. New York Univ. Press, Intersciences, New York.

[6] Vilenkin N.Ja. (1969) Combinatorics. (in Russian) Nauka, Moscow.

[7] Bronstein M., Zürcher B. (1996): Uncoupling Algorithms for Pseudo-
Linear Systems, (submited to AAECC).

[8] Barkatou M.A. An algorithm for computing a companion block diagonal
form for a system of linear differential equations. Applicable Algebra in
Engineering, Communication and Computing, 1993, 4, pp. 185-195.

15

