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1 Introduction

Let K be a field of characteristic 0 and L : K[x] → K[x]
an endomorphism of the K-linear space of univariate poly-
nomials over K. We consider the following computational
tasks concerning L:

T1. Homogeneous equation Ly = 0: Compute a basis
of KerL in K[x].

T2. Inhomogeneous equation Ly = f : Given f ∈ K[x],
compute a basis of the affine space L−1(f) in K[x].

T3. Parametric inhomogeneous equation Ly =
∑m

i=1
λifi: Given f1, f2, . . . , fm ∈ K[x], compute a

basis of KerL′ where L′ : (K[x] ⊕ Km) → K[x] and
L′ : (y, λ) 7→ Ly −

∑m

i=1
λifi, for y ∈ K[x], λ ∈ Km.

Many problems and algorithms in differential and difference
algebra contain these tasks as subproblems which, however
conceptually simple, often account for a fair share of the
overall computing time. For instance, the algorithms for

• finding all the rational solutions of differential and
(q-)difference equations [Abr89b, Abr95],

• finding Liouvillian solutions of differential equa-
tions [Sin91],

• finding (q-)hypergeometric solutions of (q-)difference
equations [Pet92, Abr&Pet95],

• factoring linear differential and difference operators
with rational coefficients [Bro&Pet94],

• indefinite hypergeometric summation (Gosper’s algo-
rithm) [Gos78],
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• definite hypergeometric summation (Zeilberger’s “cre-
ative telescoping” algorithm) [Zei91],

all need to find polynomial solutions of operator equations
at some stage. For instance, task T3 is crucial for the al-
gorithms presented in [Sin91] and [Zei91]. Clearly, it is im-
portant to use as efficient algorithms as possible for such
time-critical subproblems.

We consider three types of linear operators: differential,
difference, and q-difference operators, all with polynomial
coefficients. Throughout the paper, L is the operator, r its
order and d the maximum degree of its coefficients. To find
polynomial solutions of an equation of the form Ly = f , it
is natural to proceed in two steps:

1. Compute a degree bound N for polynomial solutions
of the equation.

2. Given N , compute polynomial solution(s) of degree(s)
≤ N .

Degree bounds required in step 1 are given in [Abr89b]
for the differential and difference cases. Here we improve
slightly upon these bounds and also give them for the q-
difference case. Our main contribution, however, is to step
2 of the above procedure. Usually, it is carried out by means
of undetermined coefficients: expand y(x) with respect to
the usual power basis (xn)∞n=0 and substitute this expres-
sion into the equation, obtaining a triangular system of lin-
ear algebraic equations for ci’s. Then there is a one-to-one
correspondence between solutions of this system and those
of the original equation.

The problem with the method of undetermined coeffi-
cients is that the number of unknown coefficients, N + 1
(respectively N + m + 1 in the parametric case), is often
much larger than the order of the equation, r. We show
that by using appropriate polynomial bases, the resulting
linear system has a band-diagonal matrix which represents
a recurrence for the unknown coefficients. After taking full
advantage of this recurrence, the remaining linear system
that needs to be solved is of size corresponding to the band-
width of that matrix.

In particular, for differential, difference and q-difference
equations, we reduce step 2 of the above procedure to a sys-
tem of r+d linear algebraic equations with only r unknowns
(respectively r + m in the parametric case). Thus, in order



to minimize the number of unknowns in the final linear sys-
tem, one should use the method proposed here when N ≥ r,
and the method of undetermined coefficients when N < r.

In Section 2 we define formal series expansions with re-
spect to distinct-degree bases of K[x], and use them to find
polynomial solutions of operator equations. Section 3 gives
algorithms to solve problems T1, T2 and T3. Given a re-
currence we show how to find all sequences satisfying it on a
specified interval, on which its leading coefficient may vanish
at some points. Section 4 applies these results to the cases
when L is a linear differential, difference, or q-difference op-
erator. In Section 5 we present some empirical evidence
suggesting that our method can be much faster than the
commonly used method of undetermined coefficients. Fi-
nally we show in section 6 how our method can also be used
to compute formal series solutions of the equations we are
considering.

Throughout the paper, the set of nonnegative integers is
denoted by IN. We take the degree of the zero polynomial
to be −∞.

2 Formal series expansions in K[x]

Let (Pn(x))∞n=0 be a sequence of polynomials from K[x] such
that

P1. deg Pn = n for n ≥ 0,

P2. Pn |Pm for 0 ≤ n < m.

Then {P0, P1, . . .} is a basis of the K-linear space K[x] and
every polynomial from K[x] has a unique expansion in terms
of polynomials Pn(x). Let ln : K[x] → K be linear function-
als such that ln(Pm) = δmn. Then

p(x) =

deg p
∑

n=0

ln(p)Pn(x) (1)

for all p ∈ K[x].

Example 1 Take Pn(x) = (x − a)n/n! where a ∈ K is

arbitrary. Then ln(p) = p(n)(a), and (1) is Taylor’s formula
for p(x).

Example 2 Take Pn(x) =
(

x−a

n

)

where a ∈ K is arbitrary.

Then ln(p) = ∆np(a), and (1) is Newton’s interpolation
formula for p(x).

Example 3 Take Pn(x) = xn/(nq)! where (nq)! =
1q2q . . . nq and mq = 1+q+. . .+qm−1. Then ln(p) = Dn

q p(0),
where Dqp(x) = (p(qx) − p(x))/(qx − x), and (1) is a q-
analogue of Taylor’s formula for p(x).

Let K[[(Pn)∞n=0]] denote the algebra of formal series of
the form

s(x) =

∞
∑

n=0

cnPn(x)

where cn ∈ K, and let l̃n : K[[(Pn)∞n=0]] → K be linear func-

tionals such that l̃n(s(x)) = cn. Operations in K[[(Pn)∞n=0]]
are defined by setting

l̃n(s + t) = l̃n(s) + l̃n(t), (2)

l̃n(s t) =
∑

k,m: k+m≥n

l̃k(s)l̃m(t) ln(PkPm), (3)

for all s, t ∈ K[[(Pn)∞n=0]]. From property P2 it follows that
ln(PkPm) = 0 when n < max{k, m}, hence the sum in (3)
is finite. By virtue of (1), (2) and (3), K[x] is a subalgebra

of K[[(Pn)∞n=0]], and l̃n agrees with ln on K[x].

Example 4 If Pn(x) = xn then K[[(Pn)∞n=0]] = K[[x]], the
usual algebra of formal power series over K.

In order to extend L to an endomorphism L̃ of the K-linear
space K[[(Pn)∞n=0]], we assume additionally that

P3. there are A, B ∈ IN, and elements αi(n) ∈ K for n =
0, 1, 2, . . . and i = −A, 1 − A, . . . , B, such that

LPn =

B
∑

i=−A

αi(n) Pn+i (4)

where α−A(n) is not identically zero, and Pk is taken
to be 0 when k < 0.

Define L̃ on s ∈ K[[(Pn)∞n=0]] by

L̃s =

∞
∑

n=0

(

B
∑

i=−A

αi(n − i) l̃n−i(s)

)

Pn (5)

where l̃k is taken to be 0 when k < 0.
The operator L̃ has been defined in (5) so as to agree

with L on K[x]. This enables us to replace the equation

Ly = f in K[x] with L̃y = f in K[[(Pn)∞n=0]]. By (5), the
latter equation is equivalent to

A
∑

i=−B

α−i(n + i) l̃n+i(y) = ln(f), (6)

for all n ≥ 0. This is a recurrence for the unknown sequence
〈l̃n(y)〉∞n=0 ∈ K, of effective order at most A + B (in fact
A+ b where b is given below in (8)), with leading coefficient
α−A(n + A), and homogeneous for n > deg f .

Theorem 1 Let Ly = f where y is a polynomial. Then
deg y ≤ N where

N = max{−b − 1, deg f − b} ∪ {n ∈ IN; αb(n) = 0)}, (7)

b = max{k ∈ ZZ; αk(n) 6≡ 0} (8)

and αk is as in (4).

Proof Let y be a polynomial of degree N satisfying Ly =
f . Clearly b ≤ B; it can even happen that b < 0. We
distinguish two cases: either N + b < 0 and hence N < −b,
or N + b ≥ 0. In the latter case, equation (6) holds for
n ≥ N + b. When n > N + b, the left-hand side of (6) is
zero. For n = N + b it equals αb(N)lN (y), as lN+b−i(y) = 0
when i < b. Now either αb(N) 6= 0 and then N + b = deg f ,
or else N is a root of αb(x). In summary: either N < −b,
or N = deg f − b, or αb(N) = 0. ✷

Our algorithm is based on the following simple observa-
tion.

Theorem 2 Let N and b be as in (7) and (8), respectively,
with N ≥ 0. Then for every y ∈ K[[(Pn)∞n=0]] the following
are equivalent:

(i) y is a polynomial which satisfies Ly = f ,



(ii) the sequence 〈l̃n(y)〉∞n=0 satisfies (6) for n ≤ N + b,

and l̃n(y) = 0 for n > N .

Proof By (5) and since N is an upper bound for degree of
polynomial solutions of Ly = f , it is clear that (i) implies
(ii).

Conversely, to see that (ii) implies (i), let n > N + b.
Then n− b > N , hence all terms appearing on the left of (6)
are zero. Also, n > N + b ≥ deg f − b + b = deg f , thus the
right side of (6) is zero as well. It follows that (6) is satisfied
for all n ≥ 0. Then by (5), y is a polynomial which satisfies
Ly = f . ✷

Thus to find all polynomial solutions y ∈ K[[(Pn)∞n=0]]
of Ly = f , it suffices to compute all vectors
(l̃−B(y), l̃1−B(y), . . . , l̃N+A+B(y)) which satisfy (6) for 0 ≤

n ≤ N +b, then select those with l̃n(y) = 0 for n < 0 and for

n > N and set y =
∑N

n=0
l̃n(y)Pn(x). This can be done by

using recurrence (6) in either the forward or backward direc-
tion, taking conditions at one end as initial conditions and
those at the other end as constraints on the free parameters.
The backward direction approach in the case of differential
and difference equations and the power basis Pn(x) = xn

has been essentially used already in [Abr89a, Abr&Kva91].
Here we describe the forward direction approach, which can
be implemented more efficiently, specially in the nonsingu-
lar case where computing with indeterminates can be com-
pletely avoided. In the differential and difference case, it
is always possible to choose a basis for which the forward
direction will be nonsingular (see section 4).

3 The algorithm

3.1 Forward solutions of recurrences

Here we show how to find a generating set for the affine space
of vectors v = (v0, v1, . . . , vN+A+b) ∈ KN+A+b+1 which sat-
isfy

A
∑

i=−b

α−i(n + i) vn+i = ln(f), (9)

for 0 ≤ n ≤ N + b (take vn = 0 for n < 0). Let

S = {n ∈ IN; α−A(n) = 0}

be the set of singularities of (9), and N = {0, 1, . . . , A−1}∪
S . Denote by σ the cardinality of the set {n ∈ S ; A ≤ n ≤
N + A + b}.

As we compute from (9), we maintain a list of vectors
V, a list of indeterminates I, a list of equations E , and an
additional vector g. Throughout the course of the algorithm,
V and I will have equal length whose current value will be
denoted by t. The only operations performed on these lists
are appending a new element, and extending all vectors in
V by one component. We denote the current elements of V
and I by V = (v(1), v(2), . . . , v(t)) and I = (ci1 , ci2 , . . . , cit),
respectively. Note that we start indexing elements of lists
with 1 and components of vectors with 0.

Initially, the lists V, I, E are empty, and g is the empty
vector. Next, for n = 0, 1, . . . , N+A+b, repeat the following:
If n /∈ N then set

vn = −

(

A+b
∑

i=1

αi−A(n − i) vn−i

)

/ α−A(n) (10)

for all v ∈ V, and

gn =

(

ln−A(f) −

A+b
∑

i=1

αi−A(n − i) gn−i

)

/ α−A(n) (11)

while leaving E and I unchanged.
Otherwise (n ∈ N ) set vn = 0 for all v ∈ V, gn = 0, and
append a new element to each of the lists V, I, E :

V := V + (e(n+1)),

I := I + (cn),

E := E + (En−A), provided that n ≥ A.

Here e(k) denotes the vector of length k with a 1 in the last
position and zeros everywhere else, + denotes concatenation
of lists, and En is Equation (9). Before appending En−A

to E , replace each indeterminate ck with
∑t−1

j=1
cij

v
(j)
k

. This

ensures that only indeterminates from I appear in E . Should
the equation be 0 = 0 after this replacement, we do not need
to add it to E .

After termination of this extension loop, t = A + σ, E
contains σ equations, and the vectors v(j) and g have length
N+A+b+1. Denote by sj(L̃) and h(L̃, f) the corresponding
polynomials

sj(L̃) =

N+A+b
∑

n=0

v(j)
n Pn for j = 1, 2, . . . , t ,

and

h(L̃, f) =

N+A+b
∑

n=0

gnPn .

Denote by E(L̃, f) the final list of equations. Our algorithm
proceeds from here on in slightly different ways for tasks T1,
T2, and T3. Those are covered in the next 3 subsections.

In the nonsingular case (σ = 0), this algorithm reduces
to starting with

V := (e(1), e(2), . . . , e(A)),

I := (c0, c1, . . . , cA−1),

E := (),

g := (0, 0, . . . , 0) ∈ KA

and simply using (10) and (11) to extend g and the vectors
in V for n = A,A + 1, . . . , N + A + b. This makes I and E
unnecessary in that case.

Note that in the course of repeatedly applying for-
mulas (10) and (11), we have to evaluate the polyno-
mials αi at successive integer values of n. Through ei-
ther the method of finite differences or chains of recur-
rences [Zima84, Bach&al94], this can be done efficiently, us-
ing only deg(αi) additions in K for each evaluation.

A detailed example of the singular case of this algorithm
is given in Section 4.3.

3.2 Homogeneous equation

Compute sj = sj(L̃) for j = 1, 2, . . . , t and find the general
solution (ci1 , ci2 , . . . , cit) of the homogeneous linear system

composed of E(L̃, 0) and of

t
∑

j=1

cij
ln(sj) = 0, for N < n ≤ N + A + b.



Then y =
∑t

j=1
cij

sj is the general polynomial solution of

Ly = 0 over K.

3.3 Inhomogeneous equation

Compute sj = sj(L̃) for j = 1, 2, . . . , t and h = h(L̃, f).
Then find the general solution (ci1 , ci2 , . . . , cit) of the inho-

mogeneous linear system composed of E(L̃, f) and of

t
∑

j=1

cij
ln(sj) = −ln(h), for N < n ≤ N + A + b.

Then y =
∑t

j=1
cij

sj + h is the general polynomial solution

of Ly = f over K. Clearly, any particular solution of the
above linear system yields a particular polynomial solution
of Ly = f .

3.4 Parametric inhomogeneous equation

Let Ni denote the degree bound corresponding to fi, and
N = max1≤i≤m Ni. Compute sj = sj(L̃) for j = 1, 2, . . . , t

and hi = h(L̃, fi), for i = 1, 2, . . . , m. Let E(L̃, fi) =

(u(1) · c = ri1, u
(2) · c = ri2, . . . , u

(σ) · c = riσ), where c =

(ci1 , ci2 , . . . , cit) is the vector of indeterminates, u(k) are con-
stant vectors of length t, and · denotes inner product. Now
find the general solution (ci1 , ci2 , . . . , cit , λ1, λ2, . . . , λm) of
the homogeneous linear system composed of

u(k) · c =

m
∑

i=1

λirik, for 1 ≤ k ≤ σ,

and

t
∑

j=1

cij
ln(sj) +

m
∑

i=1

λiln(hi) = 0, for N < n ≤ N + A + b.

Then y =
∑t

j=1
cij

sj +
∑m

i=1
λihi is the general polynomial

solution of Ly =
∑m

i=1
λifi over K.

3.5 The size of the linear system

The final linear system has at most σ + A + b equations
and σ + A unknowns (resp. σ + A + m unknowns, in the
parametric case).

4 Choosing the polynomial basis

4.1 Differential equations

Let L =
∑r

k=0
pk(x)Dk where pk(x) ∈ K[x], pr 6= 0, and

Dp(x) = dp(x)/dx. Choose a ∈ K such that pr(a) 6= 0. The
polynomials Pn(x) = (x − a)n/n! clearly satisfy properties
P1 and P2 from Section 2. Let d = max∪r

k=0{j; lj(pk) 6= 0}.
Since PmPn =

(

m+n

m

)

Pm+n and DkPn = Pn−k, using (1) on
pk we obtain

LPn =

r
∑

k=0

pkPn−k =

d
∑

i=−r

Pn+i

d
∑

j=0

(

n + i

j

)

lj(pj−i)

where pk = 0 when k < 0 or k > r. Comparing this with
(4) we read off

A = r,

B = d,

αi(n) =

d
∑

j=0

(

n + i

j

)

lj(pj−i),

thus P3 is satisfied. Obviously, αi(n) is a polynomial in n.

Since α−A(n+A) =
∑d

j=0

(

n

j

)

lj(pj+r) = l0(pr) = pr(a) 6= 0

by the choice of a, recurrence (9) has no singularities and
σ = 0. Hence the final linear system has at most r + d
equations and r unknowns.

The value of b required for the degree bound is the max-
imum i such that lj(pj−i) 6= 0, for some j. This is the same
as the maximum i such that deg pj−i = j. Writing k = j− i,
we obtain b = max0≤k≤r(deg pk − k).

Alternatively, we can work with the power basis Pn(x) =
xn which also satisfies P1, P2 and P3, but here recur-
rence (9) can have singularities.

4.2 Difference equations

Let L =
∑r

k=0
pk(x)∆k where pk(x) ∈ K[x], pr 6= 0, and

∆p(x) = p(x + 1) − p(x). Choose a ∈ K such that pr(n +
a) 6= 0 for all nonnegative integer n. For example, take
a = 0 if pr(x) has no nonnegative integer zero, else take
a = max{x ∈ IN; pr(x) = 0} + 1. The polynomials Pn(x) =
(

x−a

n

)

clearly satisfy properties P1 and P2 from Section 2.

Let d = max∪r
k=0{i; li(pk) 6= 0} as before. Multiplying a

variant of the well-known Chu-Vandermonde identity
(

x

n

)

=
∑

i

(

x − m

i − m

)(

m

m + n − i

)

by
(

x

m

)

, revising binomials and replacing x by x− a, we get

PmPn =
∑

i

(

i

m

)(

m

i − n

)

Pi. (12)

Since ∆kPn = Pn−k, using (1) on pk and then (12) we find

LPn =

r
∑

k=0

pkPn−k

=

d
∑

i=−r

Pn+i

r
∑

k=0

d
∑

j=0

(

n + i

j

)(

j

i + k

)

lj(pk)

where pk = 0 when k < 0 or k > r. Comparing this with (4)
we read off

A = r,

B = d,

αi(n) =

r
∑

k=0

d
∑

j=0

(

n + i

j

)(

j

i + k

)

lj(pk),

thus P3 is satisfied. Obviously, αi(n) is a polynomial in

n. Since α−A(n + A) =
∑r

k=0

∑d

j=0

(

n

j

)(

j

k−r

)

lj(pk) =
∑d

j=0

(

n

j

)

lj(pr) = pr(n + a) 6= 0 for all nonnegative inte-

ger n, by the choice of a, recurrence (9) has no singularities



and σ = 0. Hence the final linear system has at most r + d
equations and r unknowns.

The value of b required for the degree bound can be
shown to be b = max0≤k≤r(deg pk − k) as in the differential
case.

If we work with the basis Pn(x) =
(

x

n

)

conditions P1, P2,

P3 are satisfied but recurrence (9) may have singularities.
The power basis Pn(x) = xn does not satisfy P3.

4.3 q-Difference equations

Here we assume that q ∈ K is not zero and not a root
of unity. Let L =

∑r

k=0
pk(x)Qk where Qp(x) = p(qx),

pk(x) ∈ K[x], pr 6= 0, and not all l0(pk) are zero. The
polynomials Pn(x) = xn clearly satisfy properties P1 and
P2 from Section 2. Let d = max∪r

k=0{j; lj(pk) 6= 0}. Since

PmPn = Pm+n and QkPn = qnkPn, using (1) on pk we
obtain

LPn =

r
∑

k=0

pkqnkPn =

d
∑

i=0

Pn+i

r
∑

k=0

qnkli(pk)

where pk = 0 when k < 0 or k > r. Comparing this with (4)
we read off

A = 0,

B = d,

αi(n) =

r
∑

k=0

qnkli(pk), (13)

thus P3 is satisfied. Obviously, αi(n) is a polynomial in qn.
The value of b required for the degree bound equals d.
However, as α−A(n + A) = α0(n) =

∑r

k=0
qnkl0(pk) can

have nonnegative integer roots, recurrence (9) may be sin-
gular with σ ≤ r. Hence the final linear system has at most
r + d equations and r unknowns.

Unlike the cases of difference and differential equations,
there seems to be no obvious choice of a polynomial basis
Pn which would guarantee nonsingularity of (9) in the q-
difference case.

Example 5 Consider the equation

(1 − q10 − (q − q10) x) y(q2x) −

(1 − q20 − (q2 − q20) x) y(qx) +

q10(1 − q10 − (q2 − q11) x) y(x) =

(q21 − q20 − q12 + q10 + q2 − q)x (14)

Here r = 2, d = 1 and deg f = 1. From (13) we find

α0(n) = (1 − q10)(qn − 1)(qn − q10), (15)

α1(n) = (q10 − q)(qn − q)(qn − q10).

Since b = d = 1, degrees of polynomial solutions either equal
deg f − b = 0 or are roots of αd(n) = α1(n), therefore they
belong to the set {0, 1, 10} and we take N = 10. From (15)
we find N = S = {n ∈ IN; α0(n) = 0} = {0, 10}. Recur-
rence (9) in this case is

α0(n)vn + α1(n − 1)vn−1 = ln(f), for 0 ≤ n ≤ 11.

We start with V = I = E = () and g = (). At n = 0 we
set g = (0) and put the vector (1) into V, c0 into I and

equation α0(0)c0 = l0(f) into E . This equation turns out
to be the identity 0 = 0, so E remains empty. We per-
form next the extension step for n = 1, 2, . . . , 11. Except
at n = 10 we use the formulas vn = −α1(n − 1)vn−1/α0(n)
and gn = (ln(f)−α1(n−1)gn−1)/α0(n), obtained from (10)
and (11). At n = 9 we have V = ((1,−1, 0, 0, 0, 0, 0, 0, 0, 0))
and g = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0). At n = 10 we extend both
vectors with 0 and append (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) to V,
c10 to I and equation α1(9)c9 = 0 to E . However, since c9

is not in I we replace it by v
(1)
9 c0. But v

(1)
9 = 0, hence the

new equation is 0 = 0 again, and E remains empty. After
one more step (which extends all three vectors by 0 thanks
to α1(10) = 0) the extension loop terminates with V =
((1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)),
g = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), I = (c0, c10) and E = ().
The corresponding polynomials are s1 = 1 − x, s2 = x10

and h = x. The final linear system consists of a single
equation c0l11(s1) + c10l11(s2) = −l11(h) which holds iden-
tically. Hence the general polynomial solution of (14) is
y(x) = x + C1(1 − x) + C2x

10. As it happens, there exist
solutions for all three possible degrees (0, 1, and 10).

5 Some time comparisons

Table 1 shows the times that were needed to find the rational
solutions of the Legendre equation

Lm(y) = (1 − x2) y′′ − 2x y′ + m(m + 1) y = 0

where n is a fixed positive integer. This equation has a one-
dimensional space of rational solutions generated by the mth

Legendre polynomial which has degree m. For that equation
and the basis Pn(x) = xn/n! we get r = 2, d = 2, A = 2,
B = 2, p0 = m(m + 1), p1 = −2x, p2 = 1 − x2, α−2 = 1,
α−1 = α1 = α2 = 0, α0(n) = m(m + 1) − n(n + 1), b = 0
and N = max{0, m} = m, so recurrence (9) is:

vn+2 + (m(m + 1) − n(n + 1)) vn = 0

for n ≥ 0.

m Ratlode Series Orthopoly
20 0.25 0.18 0.06
30 0.35 0.20 0.13
40 0.60 0.23 0.23
50 0.83 0.28 0.43
100 1.98 0.35 3.62
200 6.35 0.67 56.17
500 40.05 1.52 2736.72
1000 161.67 5.70 •
10000 • 398.92 •
15000 • 935.70 •
19000 • 1612.50 •

Table 1: Maple CPU seconds to solve Lm(y) = 0 (SPARC
10/41).

Ratlode is the ratlode package of the Maple share li-
brary, which uses a straightforward implementation of the
method of undetermined coefficients; Series is a straight-
forward implementation of the method presented here, and
Orthopoly is the built-in orthopoly[P] function of Maple
which computes Legendre polynomials. A dot indicates that
the computation did not terminate after 24 hours.



Table 2 shows the times that were needed to find poly-
nomial solutions of the equation

B̃m(y) = y(x + 1) − y(x) = mxm−1

where m is a fixed positive integer. This equation has gen-
eral solution of the form y(x) = Bm(x) + C where Bm(x) is
the Bernoulli polynomial of degree m, and C is an arbitrary
constant. For that equation and the basis Pn(x) =

(

x

n

)

we
get r = 1, d = 0, A = 1, B = 0, p0 = 0, p1 = 1, α−1 = 1,
α0 = 0, b = −1 and N = max{0, m} = m, so recurrence (9)
is simply the recurrence of order 0

vn+1 = ∆nf(0)

for n ≥ 0 where f(x) = mxm−1.

n Poly Series BernoulliB
20 2.48 0.43 0.25
30 7.90 0.72 1.82
40 20.40 1.12 7.30
50 45.12 1.48 20.90
100 635.83 6.07 554.43
200 9471.98 36.70 14768.7
300 49663.60 114.57 •
400 • 282.83 •
700 • 2084.08 •

Table 2: Mathematica CPU seconds to solve B̃n(y) = nxn−1

(SPARC 10/41).

Poly is a straightforward implementation of the method
of undetermined coefficients; Series is a straightforward im-
plementation of the method presented here, and BernoulliB
is the built-in BernoulliB[n, x] function of Mathematica
which computes Bernoulli polynomials. As the first two im-
plementations return solutions satisfying y(0) = 0, the n-
th Bernoulli number (BernoulliB[n] of Mathematica) has
been added to their respective outputs in order to obtain
identical results in all three cases. A dot indicates that the
computation did not terminate after 24 hours.

6 Formal series solutions

In conclusion, we remark that our algorithm can also be
used to compute formal series solutions in K[[(Pn)∞n=0]] of
equations of the form Ly = f : let M = max(S). Using our
extension loop for n = 0, 1, . . . , M , we can construct the set
P of all the polynomials p ∈ K[x] satisfying deg(p) ≤ M
and

Lp(x) ≡ f (mod PM+1(x)) . (16)

The set P together with recurrence (9) describes all the
solutions in K[[(Pn)∞n=0]] of Ly = f , in the sense that any
such solution must be an element of P prolongated by (9).

Example 6 Consider the equation

(q6x3 + 1) y(q2x) − q14y(x) = 0

with the usual power basis Pn(x) = xn. The recurrence (9)
in this case is

(

(qn)2 − q14
)

vn + (qn)2vn−3 = 0 for n ≥ 0 (17)

so N = S = {7} and M = 7. After performing the extension
step for n = 0, 1, . . . , 7, solving (16) yields P = {Cx7} where
C is an arbitrary constant. P together with (17) describes
all the power series solutions of the original equation, namely

y(x) = C

(

x7 +
q6

1 − q6
x10 +

q6

1 − q6

q12

1 − q12
x13 + · · ·

)

= C

∞
∑

k=0

q3k(k+1)

(q6; q6)k

x3k+7

where (a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1).

In the differential and (q-)difference cases, we can com-
pute [Abr89b, Abr95] a universal denominator d(x) ∈ K[x]
such that any solution of Ly = f of the form

z(x)

p(x)
(18)

where z(x) ∈ K[[(Pn)∞n=0]] and p ∈ K[x] can be written
as z̃(x)/d(x) where z̃(x) ∈ K[[(Pn)∞n=0]]. So we can ap-
ply our algorithm after doing the change of variable z(x) =
d(x)y(x), obtaining all solutions of the form (18). This leads
to formal Laurent series in the differential case.
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[Pet92] M. Petkovšek (1992): Hypergeometric solutions
of linear recurrences with polynomial coefficients, J.
Symb. Comp. 14, 243–264.

[Sin91] M. F. Singer (1991): Liouvillian solutions of lin-
ear differential equations with Liouvillian coefficients,
J. Symb. Comp., vol. 11, 251–273.

[Zei91] D. Zeilberger (1991): The method of creative tele-
scoping, J. Symb. Comput. 11, 195–204.

[Zima84] E. V. Zima (1984): Automatic Construction
of Systems of Recurrence Relations, USSR Comput.
Maths. Math. Phys., vol. 24, 193–197.


