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Abstract

We propose an algorithm to compute rational function so-
lutions for a first order system of linear difference equations
with rational coefficients. This algorithm does not require
preliminary uncoupling of the given system.

1 Introduction

Let K be a field of characteristic zero. A system of first
order linear difference equations with rational coefficients
over the field K is a system of the form :

y(x + 1) = C(x)y(x) + r(x), (1)

where C(x) is a n × n matrix r(x) and the unknown func-
tion y(x) are a n-dimensional column-vectors. The entries
of C(x) and r(x) are rational functions in x over the field K.

In this paper we consider and solve the problem of com-
puting all the rational solutions of such a system. That is
the functions y ∈ K(x)n that satisfy (1).
Algorithms for solving this problem in the scalar case (that
is the case of a single scalar linear difference equation of
arbitrary order) have been proposed in [1, 2, 3, 4, 5]. The
algorithmic study of systems is, generally, less well devel-
oped. One possible approach for studying linear difference
systems consists in reducing them, by means of cyclic vec-
tors, to scalar linear difference equations. This idea goes
back to Birkhoff [8]. This reduction can be very costly espe-
cially when n is “large”. In this paper we propose an alter-
native approach to solve the above problem. It proceeds in
two steps. In the first step we construct a universal denom-
inator. We mean a polynomial U(x) ∈ K[x] such that: for
all y ∈ K(x)n, if y is a solution of (1), then Uy is a polyno-
mial vector. Then the substitution y(x) = U(x)−1z(x) into
(1) reduces the problem to finding polynomial solutions of
a system in z(x) of the same type as (1). The second step
of our method deals with this last problem.
The rest of this paper is organized as follows. In section 2
we give an algorithm for constructing polynomial solutions
of a given difference system. The method followed is sim-
ilar to the one used in [7] for differential systems. Section
3 gives an algorithm to find universal denominators. This
algorithm generalizes and improves the one presented in [3]
for scalar difference equations. We have implemented our
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algorithms under Maple V. Examples of computations are
given in section 4.

2 Polynomial Solutions

We begin by setting up some notation. If a rational function
a = u/v, u, v ∈ K[x] is not 0, we set ord(a) = − deg a =
− deg u + deg v, and denote by ℓc(a) the leading coefficient
of a, that is the coefficient of x− ord a in the expansion of a
as a power series in x−1. Thus

a = ℓc(a)x− ord a + O(x− ord a−1).

We set ord(0) = −deg 0 = +∞ and ℓc(0) = 0.
If U is a matrix (or a vector) of rational functions then
we define ord U to be the minimum of the orders of its
entries. We define deg U = − ord U and denote by ℓc(U)

the coefficient of x− ord (U) in the expansion of U as a power
series in x−1.
By Matn(K(x)) we denote the algebra of n × n matrices
with entries in K(x). We write GL(n, K(x)) for the group
of invertible matrices in Matn(K(x)).
By In we denote the identity matrix of order n. By
diag(a, b, . . . , c) we denote the square diagonal matrix
whose diagonal elements are a, b, . . ., c.

Let ∆ denote the difference operator defined by

∆u(x) = x(u(x + 1) − u(x)).

Then it is clear that any difference system of the form (1)
can be rewritten as

∆y(x) − M(x)y(x) = f(x). (2)

where M ∈ Matn(K(x)) and f ∈ K(x)n.

A difference system (2) corresponds to a difference oper-
ator

M = ∆ − M

acting on y. Thus system (2) can be written

M(y) = f.

Let T ∈ GL(n, K(x)). The substitution y = Tz trans-
forms system (2) into a new system

∆z(x) − N(x)z(x) = g(x), (3)



where

N(x) = T [M ](x) = T−1(x + 1)(M(x)T (x)− ∆T (x))
g(x) = T−1(x + 1)f(x)

(4)

Two systems (2) and (3) (resp. the matrices M and N) are
called equivalent if there exists T ∈ GL(n, K(x)) such that
(4) holds.

In this section, we shall develop an algorithm which allow
to compute the set of the polynomial solutions (i.e. y ∈
K[x]n) of a given difference system (2).
The class of difference systems of the form (2) has properties
analogous to the class of differential systems

x
dy

dx
− M(x)y(x) = f(x). (5)

It is in this spirit that we treat here difference systems. An
algorithm for computing polynomial solutions of differen-
tial systems of the form (5) was presented in [7]. We will
show that this algorithm can be adapted to compute polyno-
mial solutions of difference systems of type (2). The method
about to be presented may be summarized as follows:
Let a system of the form (2) be given. Our idea is to com-
pute, one after another, the different monomials that occur
in the (possible) general polynomial solution of (2). For this
we put y = cxµ + u where c ∈ Kn and µ ∈ N = {0, 1, 2, · · ·}
are to be determined in such a way that M(y) = f and
deg y = µ > deg u. If such a couple (µ, c) is found then u
satisfies the system :

M(u) = f −M(cxµ) (6)

which is of the same type as system (2). We can then restart
with u and system (6) and so on. This process can be re-
peated until we obtain a system of the form :

M(w) = g = f −M(c1x
µ1 + · · · + cℓx

µℓ)

which has no polynomial solutions with degree < µℓ. Hence,
the original system (2) has a polynomial solution if and only
if g = 0. This yields a system of linear algebraic equations
for the components of the ci’s. Then, the general solution
of this system gives the general polynomial solution of (2).
We will show in section 2.2 how the couples (µ, c) can be
determined (when it exist). For this we shall first introduce
a useful notion namely the indicial equation for difference
systems and explain how it can be computed.

2.1 The indicial equation

Consider a difference system of the form (2). For 1 ≤ i ≤ n,
let αi = −min (ord(Mi), 0) where Mi denotes the ith row
of the matrix M . Put

D(x) = diag(x−α1 , . . . , x−αn).

Then multiplying on the left (2) by D(x) gives

L(y) = D(x)∆y(x) − A(x)y(x) = b(x), (7)

where A = DM and b = Df . Note that ord (A) ≥ 0 and
ord (D) ≥ 0 (in fact the entries of the matrix D(x) are poly-
nomial in x−1). It then makes sense to set

D0 = D(∞) and A0 = A(∞).

For c ∈ Kn and λ ∈ Z we have

L(cx−λ) = ∆(x−λ)(D0 + O(x−1))c − x−λ(A0 + O(x−1))c.

Using the formal identity:

(x + 1)−λ = x−λ(1 + x−1)−λ = x−λ(1 − λx−1 + · · ·),

one sees that

∆(x−λ) = x−λ(−λ + O(x−1)).

Thus

L(cx−λ) = −x−λ((λD0 + A0)c + O(x−1)). (8)

Now let u ∈ K(x)n (or more generally u ∈ K[[x−1]][x]n a
column vector of meromorphic formal power series in x−1).
By writing

u = ℓc(u)x− ord u + O
(
x− ord u−1

)
,

using the linearity of L and (8) we see that:

L(u) = −x− ord u ((ord u)D0 + A0) ℓc(u) + O
(
x− ord u−1

)

It then follows that

ordL(u) ≥ ord u

and equality holds if and only if (ord u D0 + A0)ℓc(u) 6= 0
or u = 0.
In particular if u is a nonzero solution of the homogeneous
system L(u) = 0 then

((ord u) D0 + A0)ℓc(u) = 0

with ℓc(u) 6= 0, and therefore

det (A0 + (ord u)D0) = 0.

Thus we have proved the

Lemma 1 Let a system of the form (7) be given. Then
ordL(u) ≥ ord u, for all u ∈ K(x)n and equality holds if and
only if u = 0 or ℓc(u) 6∈ ker (A0 + (ord u)D0). In particular,
if u 6= 0 and L(u) = 0 then det (A0 + (ord u)D0) = 0 and
ℓc(u) ∈ ker (A0 + (ord u)D0).

In view of the above result, it is natural to expect that
the values of λ for which the determinant det (A0 + λD0)
is zero, will play an important and a particular role for the
problem of searching polynomial solutions (or more gener-
ally formal power series solutions) of the given difference
system. However, it may happen that this determinant van-
ishes identically in λ, in which case it is quite useless to us.
This motivates the following definition

Definition 1 System (2) (or the corresponding difference
operator M) is said to be simple if det (A0 + λD0) 6≡ 0 (as
a polynomial in λ). In this case the polynomial E(λ) =
det (A0 + λD0) will be called the indicial polynomial of (2)
(or of M).
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As an example of simple systems, take a system of the form
(2) with ord(M) ≥ 0. In this case D = In and A = M .
So D0 = In and A0 = M(∞). Hence det (A0 + λD0) =
det (M(∞) + λIn) 6≡ 0. Consequently, the system is simple
and its indicial polynomial has degree n.
We will prove later (see the appendix) the following propo-
sition

Proposition 1 Every difference system of the form (2) can
be reduced to an equivalent system (3) which is simple.
Moreover the transformation T can be chosen so that its
inverse T−1 be polynomial in x.

The fact that the inverse transformation T−1 (in the
above proposition) can be chosen polynomial is important
when one is interested in the polynomial solutions of (2),
since in this case, if y is a polynomial solution of (2) then
z = T−1y is a polynomial solution of the equivalent system
(3). Thus without any loss of generality we may suppose
that the given system is simple.

2.2 Algorithm for finding polynomial solutions

Let a simple system of the form (7) be given. Remem-
ber that this means that the polynomial E(λ) = det(A0 +
λD0) 6≡ 0.
In this section we shall develop an algorithm to compute the
polynomial solutions of (7). In fact the method about to be
presented solves the more general problem where the right-
hand side b is assumed to linearly depend on some given
parameters. More precisely, b is assumed to have the form :

b = b0 +
m∑

i=1

pibi,

where the bi are column vectors with entries in K(x) and
the pi’s are given parameters. Our purpose is to determine
the set of all parameters pi for which (7) has polynomial
solutions and to give these solutions.

If b is not zero, we set δ = deg b and b̄ = ℓc(b). If b = 0,
we set δ = −∞ and b̄ = 0. Note that the components of b̄
are polynomials of degree ≤ 1 in the parameters p1, . . . , pm.

Now write y = cxµ + u, with c ∈ Kn and µ ∈ N. Then
L(y) = b gives L(u) = b − L(cxµ) and hence, using (8), one
finds

L(u) = xδb̄ + xµ(−µD0 + A0)c + O
(
xmax (µ,δ)−1

)
(9)

The question is : can we find a vector c ∈ Kn and a µ ∈ N
such that L(y) = b and deg u < µ?
By Lemma 1 we know that degL(u) ≤ deg u. It then follows
that a necessary condition that µ and c exist is that the
degree of the right-hand side of (9) must be < µ.
Let

R = {λ ∈ N| E(−λ) = 0}.

Then several possibilities may occur :

1. If R = ∅ and δ < 0 then the degree of the right-hand
side of (9) is equal to µ for all µ ∈ N. So, in this case
there is no couple (µ, c) answering the above question.

2. If R 6= ∅ and maxR > δ then one may take µ = maxR
(or any element of R that is > δ) and c an arbitrary
nonzero element in ker (A0 − µD0).

3. If R 6= ∅ and δ ≥ maxR or R = ∅ and δ ≥ 0 then the
only possible choice for µ is µ = δ. Indeed if one takes
µ 6= δ the degree of the right-hand side of (9) is ≥ µ
and hence deg u ≥ degL(u) ≥ µ. So, we must choose
µ = δ.
Now if one takes µ = δ then (9) reduces to

L(u) = xδ(b̄ − (δD0 − A0)c) + terms of degree < δ.

Consequently, in order that degL(u) < µ = δ holds c
must be a solution of the linear system

b̄ − (δD0 − A0)c = 0. (10)

This last system has solutions if and only if b̄ belongs
to the image of (A0−δD0) (that is the space generated
by the columns of A0−δD0). Thus, one has to consider
again two cases:

3.1 If one can choose the pi’s so that b̄ ∈ Im(A0 −
δD0) then one can take µ = δ and c any solution
of the system (10).
For instance, if E(−δ) 6= 0 then b̄ ∈ Im(A0−δD0),
for all values of the parameters, and in this case
c is uniquely determined by c = (δD0 − A0)

−1b̄.

3.2 If b̄ 6∈ Im(A0− δD0) for all p1, . . . , pm then there
is no couple (µ, c) answering our question.

Remark 1 It is clear from the discussion above that the de-
gree of the any polynomial solution of a given simple system
(7) is bounded by

max (R∪ {δ}),

here R and δ are as defined above.

The above discussion leads to the following algorithm
next-term which will be used later in the description of
the main algorithm for polynomial solutions. It takes as
input a rational function b, a list R of integers, a list P of
parameters, a list C of linear relations on P (the constraints
on the parameters) and a polynomial σ. The first call
to this algorithm is done with b (the right hand-side of
the given system), R and P as defined above, C = ∅ and
σ = 0. It produces a new set of parameters P , a set C of
linear constraints on these parameters and a polynomial σ,
parameterized by the elements of P , which represents the
possible general solution of the given system.

Algorithm next-term(b,R,P , C, σ)

0. δ := deg b; b̄ := ℓc(b);

1. If R = ∅ and δ < 0 then return(σ,P , C) .

2. If R 6= ∅ and maxR > δ then
set µ := maxR; compute a basis e1, . . . , em of
ker (A0 − µD0); put c := c1e1 + · · · + cmem where the
ci’s designate arbitrary elements of K;
call next-term with b := b − L(cxµ), R := R \ {µ},
P := P ∪ {c1, . . . , cm}, C is not changed and σ :=
σ + cxµ.
Note that in this case the number of elements of R
decreases.

3. If (R 6= ∅ and δ ≥ maxR) or (R = ∅ and δ ≥ 0) then
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3.1 if E(−δ) 6= 0 then set c := (δD0 −A0)
−1b̄ and call

next-term with : b := b − L(xδc), σ := σ + xδc,
R,P , C are not changed.
Note that in this case the degree of b decreases.

3.2 if E(−δ) = 0 then one has to know whether b̄
belongs to Im(A0 − δD0) or not; this condition is
equivalent to a system, say G, of linear equations
in the parameters.

(a) If the relations G are compatible with the set
C of constraints then solve b̄ = (A0 − δD0)c,
let c be the general solution of this system,
(it depends on some arbitrary constants ci),
then call next-term with b := b − L(xδc),
R := R\{δ}, P := P ∪{ci}, C := C ∪G, and
σ := σ + xδc.
Note that in this case the degree of the right-
hand side b and the number of elements of R
decrease.

(b) If the conditions G are not compatible with
the constraints C then return (σ,P ,C).

The above algorithm works for max (R ∪ {deg b}) decreases
in every step. So, after a finite number of steps, one has
R = ∅ and δ < 0, unless the situation in 3.2 (b) occurs in
which case one stops.

Remark 2 The above algorithm computes, in fact, the
singular part of the general meromorphic formal series
solution at ∞ of the given system (that is solution y with
entries in K[[x−1]][x]). Note that only the monomials
which really occur in this singular part are computed.
Thus, the number of necessary steps for computing the
candidate polynomial solution of a given system depends
only on the number of the (non zero) monomials occuring
in the singular part of its general meromorphic formal series
solution at ∞. So, in case of sparse solutions our algorithm
could be very fast.

We proceed now with a description of our algorithm
for searching for polynomial solutions with a system
M(y) = ∆(y) − My = f as our starting point. Here
M ∈ Matn(K(x)) and f = f0 +

∑m

i=1 pifi where the fi’s are
in K(x)n and the pi’s are some parameters. The output is a
triplet (P , C, y) where P is a set of parameters, C is a set of
linear relations on the elements of P and y is a polynomial
parameterized by the entries of P which is solution of the
given system when the constraints C hold.

Algorithm PS

1. Apply, if necessary, the algorithm of super-reduction (see
the appendix) to reduce the given system to an equiv-
alent simple system. Let L(z) = b denote the resulting
system and T the matrix which achieves the reduction
(one has y = Tz).
Note that the components of the new right-hand side b
are (as the components of f) linear in the parameters
pi’s.

2. Let E(λ) := det(A0 +λD0) be the indicial polynomial of
L . Set R := {λ ∈ N, E(−λ) = 0}, P := {p1, . . . , pm}
(P is the set of free parameters, it may be empty), C :=
∅ (the set of constraints on these parameters), and σ :=
0.

3. Call next-term with b,R,P , C, and σ.
One then obtains a new set of parameters P , a set C
of linear constraints on these parameters and a poly-
nomial σ =

∑
cµxµ where the cµ’s are column vectors,

the components of which are linear in the elements of
P .

4. Substituting y = Tσ in the system M(y) = f yields a
system, say F , of linear equations in the parameters P .

5. If the system F is compatible with the constraints C then
y = Tσ gives the general solution of our problem, oth-
erwise, there is no polynomial solution.

In conclusion of this section we have to refine our sup-
positions on the field K. Indeed we must know how to find
integer roots of an algebraic equation E(λ) = 0 over K. Our
coefficient field is so-called suitable field in the sense of the
following definition:

1) K is of characteristic zero;
2) there is an algorithm for finding integer roots of alge-

braic equations over K in one unknown.
The field Q is obviously suitable. It is easy to see that a

simple extension (algebraic or transcendental) of a suitable
field K is itself suitable.

3 Universal Denominators

Let a linear difference equation of the form

an(x)y(x + n) + · · · + a0(x)y(x) = b(x) (11)

or a system of difference equations

u1(x)y1(x + 1) + v11(x)y1(x) + · · · + v1m(x)ym(x) = w1(x)

· · · (12)

um(x)ym(x+1)+vm1(x)y1(x)+· · ·+vmm(x)ym(x) = wm(x)

with polynomial coefficients ai(x), b(x), ui(x), vij(x), wj(x)
over the field K. One can start searching for rational func-
tion solutions of (11) or (12) with constructing a universal
denominator. We mean a polynomial U(x) which is a mul-
tiple of the denominator of any rational solution of (11) or
(12). After constructing U(x) one can substitute z(x)/U(x)
in (11) for y(x) (resp. z1(x)/U(x), . . . , zm(x)/U(x) in
(12) for y1(x), . . . , ym(x)) , where z(x), z1(x), . . . , zm(x)
are unknown polynomials. This results in an equation
for z(x) with polynomial coefficients and a polynomial
right-hand side (or, resp. a system of such equations for
z1(x), . . . , zm(x)). The search for polynomial solutions has
been considered in section 2.

The problem of constructing a universal denominator has
been considered in the scalar case in [2, 3, 4]. The main aim
of this section is the presentation of an algorithm to com-
pute a universal denominator in the case of system (12).
But first we recall briefly the situation in the scalar case
(section 3.1). We will discuss some details of the algorithm
described in [4] (the version of this algorithm described in
[3] has a defect). We remind also the main notions and two
theorems, which were proven in [4] and are needed to verify
this algorithm. Then (section 3.2) we pass to the case of
system (12) and show that the “scalar” algorithm lets one
construct a universal denominator U(x) for rational func-
tions y1(x), . . . , ym(x). We demonstrate also how to modify
one of mentioned theorem to verify this approach to con-
struct U(x).
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3.1 Scalar equations

Recall the algorithm which has been proposed in [4] for (11).
First of all we set

A(x) = an(x − n), B(x) = a0(x)

and compute
dis(A(x),B(x)) (13)

meaning the greatest nonnegative integer N (if it exists)
such that A(x) and B(x + N) have a nontrivial common di-
visor. If such N does not exist then we set dis(A(x),B(x)) =
−1. Observe that (13) can be compute as the largest
nonnegative integer root of the polynomial R(m) where
R(m) = Resx(A(x),B(x + m)). But it is not the only way:
Y.K.Man and F.J.Write proposed a more effective algorithm
in [10].

Set N = dis(A(x),B(x)). Then the following algorithm
UD(A, B,N) performance

1. U(x) := 1;
2. for i = N, N − 1, ..., 0 do

d(x) := gcd(A(x),B(x + i));
A(x) := A(x)/d(x);
B(x) := B(x)/d(x − i);
U(x) := U(x)d(x)d(x− 1) · · · d(x − i)

od.

lets one get a universal denominator (in [3] the loop
for i = 0, 1, ..., N do

was mistakenly used). To verify this algorithm some notions
and theorems were proposed in [4].

First of all we call a polynomial special if its full factor-
ization over K has the form

pγ0(x)pγ1(x + 1) . . . pγh(x + h) (14)

where p(x) is irreducible, h, γ0, . . . , γh are nonnegative in-
tegers. We will show the structure of a special polynomial
by drawing in the plane (l, γ) for any p(x + l)γ , γ > 0, the
vertical segment with the ends (l, 0), (l, γ). In Fig.1 is shown
the diagram of the special polynomial

x(x + 1)2(x + 2)2(x + 3)(x + 4)3(x + 5)5 · · · (15)

(x + 6)3(x + 7)5(x + 9)3(x + 11)4(x + 12)2.

✲
l

✻γ

0 12
Fig.1

We call two special polynomials related if their product
is special again.

Let g(x) be a special polynomial of the form (14). We
call a divisor

pσ(x + l) (16)

of g(x) critical of the first kind if the relationship

pσ1(x + l1)|g(x) (17)

along with l1 > l implies σ1 < σ and along with σ1 > σ
implies l1 < l. We call a divisor of the form (16) of g(x)

critical of the second kind if the relationship (17) along
with l1 < l implies σ1 < σ and along with σ1 > σ implies
l1 > l.

Let pα1(x + M1), . . . , p
αs(x + Ms) be all critical divisors

of the first kind, and pβ1(x + m1), . . . , p
βt(x + mt) be all

critical divisors of the second kind. Let M1 > . . . > Ms

and m1 < . . . < mt. Then α1 < . . . < αs and β1 < . . . <
βt; mt ≤ Ms. Let α0 = β0 = 0 additionally.

In Fig.2 are marked all critical divisors of polynomial
(15).

m1m2 m3m4 M3 M2M1

β1

β2

β3

β4 α3

α2

α1

Fig.2

Let A(x),B(x) ∈ K[x]. We will call a special polynomial
g(x) of the form (14) bounded by the pair (A(x),B(x)) if

pαi−αi−1(x + Mi)|A(x), i = 1, . . . , s, (18)

pβj−βj−1(x + mj)|B(x), j = 1, . . . , t. (19)

Theorem 1 ([4]) Let the result of the substitution of a ra-
tional function S(x) with special denominator in the left-
hand side of (11) be a polynomial. Then the denominator of
S(x) is bounded by (an(x − n), a0(x)).

Theorem 2 ([4]) Let a special polynomial g(x) be bounded
by (A(x),B(x)). Let (13) be positive and be equal to N . Let

d(x) = gcd(A(x),B(x + N)),

c(x) = d(x)d(x− 1) · · · d(x − N).

Let
g̃(x) = g(x)/ gcd(g(x), c(x)),

Ã(x) = A(x)/d(x), B̃(x) = B(x)/d(x − N).

Then g̃(x) is bounded by (Ã(x), B̃(x)) and g(x)|c(x)g̃(x).

Theorem 2 shows that the algorithm UD lets one com-
pute a polynomial U(x) divisible by any special polynomial
bounded by (A(x),B(x)).

Any rational non–polynomial function S(x) can be pre-
sented in the form S1(x)+· · ·+Sk(x) where S1(x), . . . , Sk(x)
are rational functions with nonrelated special denominators.
The product of the denominators is equal to the denomina-
tor of S(x). Therefore if S(x) is a solution of (11) then every
Si(x), i = 1, . . . , k, has the denominator which is bounded
by (an(x − n), a0(x)). And we obtain the desired universal
denominator by algorithm UD.

3.2 Systems of equations

Let a system of the form (12) be given. We assume the
determinant of the matrix




v11(x) . . . v1m(x)
...

...
vm1(x) . . . vmm(x)


 (20)
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to be a nonzero polynomial (otherwise either system
(12) is incompatible or the number of unknowns in
(12) can be reduced). Then there exist polynomials
ûi(x), v̂ij(x), ŵj(x), i, j = 1, . . . , m, over K such that

û1(x)y1(x)+ v̂11(x)y1(x+1)+· · ·+ v̂1m(x)ym(x+1) = ŵ1(x)

· · ·

ûm(x)ym(x)+v̂m1(x)y1(x+1)+· · ·+v̂mm(x)ym(x+1) = ŵm(x).

Let’s concentrate on the search for a universal denominator
of rational solution of (12). Set

a1 = lcm(u1(x), . . . , um(x)), a0 = lcm(û1(x), . . . , ûm(x)) (21)

and show that if

A(x) = a1(x−1), B(x) = a0(x), N = dis(A(x),B(x)), (22)

then performing algorithm UD gives a universal denomina-
tor U(x). We start with the following analogue of Theorem
1.

Theorem 3 Let S1(x), . . . , Sm(x) be rational functions
with related special denominators g1(x), . . . , gm(x). Let

ul(x)Sl(x + 1) + vl1(x)S1(x) + · · · + vlm(x)Sm(x), (23)

and

ûl(x)Sl(x) + v̂l1(x)S1(x + 1) + · · · + v̂lm(x)Sm(x + 1)

be polynomials, for l = 1, . . . , m. Let g(x) =
lcm(g1(x), . . . , gm(x)) and polynomials a1(x), a0(x) be de-
fined by (21), A(x) = a1(x− 1), B(x) = a0(x). Then g(x) is
bounded by (A(x),B(x)).

Proof There exist an irreducible p(x) ∈ K[x] and nonneg-
ative integer h, γij , i = 0, . . . , m, j = 1, . . . , h, such that

gi(x) = pγi0(x)pγi1(x + 1) · · · pγih(x + h).

It is obvious that

g(x) = pσ0(x)pσ1(x + 1) · · · pσh(x + h),

with σi = max{γ1i, . . . , γmi}, i = 0, . . . , h. Let A(x) =
a1(x − 1) and pα1(x + M1), . . . , p

αs(x + Ms) be all criti-
cal divisors of g(x) of the first kind, α0 = 0. Let us prove
(18). By definition of α1, . . . , αs we have

αk−1 = max{σMk+1, σMk+2, . . . , σh} (24)

for k = 2, . . . , s (see Fig.3).

. . . . . . . . .

MkMk + 1 Mk−1 M1

αk

αk−1

α1

Fig.3

Let k be such that 1 ≤ k ≤ s. Show that for any µ and j

(pµ(x + Mk + 1)|gj(x)) ⇒ (µ ≤ αk−1). (25)

If k = 1 then obviously µ = α0 = 0. If k ≥ 2 then

µ ≤ γj,Mk+1 ≤ σMk+1

and µ ≤ αk−1 due to (24). Thus (24) is proven. Let αk =
γl,Mk

. Consider the expression (23) which has to be equal
to a polynomial. The denominator of Sl(x + 1) is divisible
by pαk(x + Mk + 1) while by (25) the denominator of any
of rational functions S1(x), . . . , Sm(x) is divisible at best by
pαk−1(x + Mk + 1). Thus

pαk−αk−1(x + Mk + 1)|ul(x).

But a1(x) = lcm(u1(x), . . . , um(x)) and A(x) = a1(x − 1),
therefore

pαk−αk−1(x + Mk)|A(x).

Similar reasoning lets one prove (19) for B = a0(x). ✷

Theorem 2 shows that applying algorithm UD to (22)
allows to compute a polynomial U(x) divisible by any special
polynomial bounded by (A(x),B(x)). Let y1(x), . . . , ym(x)
be rational functions which satisfy system (12) and suppose
there is at least one non–polynomial among them. We can
represent these functions in the form of sums

yi(x) = Si1(x) + · · · + Sir(x),

i = 1, . . . , m; r is a natural number, in such a way that
a) in each of columns of the matrix




S11(x) . . . S1r(x)
...

...
Sm1(x) . . . Smr(x)




placed rational functions with related special denominators
and there is at least one non–polynomial function among
them;

b) non–polynomial functions placed on different columns
have nonrelated denominators. Then any rational function

ui(x)S1j(x + 1) + vi1(x)S1j(x) + · · · + vim(x)Smj(x),

i = 1, . . . , m, j = 1, . . . , r, is a polynomial.
By Theorem 3 the least common multiple gj(x) of the

denominators of

S1j(x), . . . , Smj(x)

j = 1, . . . , r, is bounded by (A(x),B(x)). Therefore al-
gorithm UD gives a polynomial U(x) divisible by any
gj(x), j = 1, . . . , r. It implies that U(x) is divisible by
the denominator of any rational function Sij(x) and it is
evident that U(x) is divisible by the denominator of any of
rational functions y1(x), . . . , ym(x).

Remark that lcm(û1(x), . . . , ûm(x)) is equal to the least
common denominator of all the entries of the inverse of ma-
trix (20) of the original system.

3.3 Preliminary transformations of equations and
systems

We can add to UD preliminary steps which allow in
some situations to decrease the degree of the universal
denominator. We consider again two cases.
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1. Equation (11). If the polynomials a0(x), a1(x −
1), . . . , an(x−n) have a nontrivial common divisor d(x) then
the substitution y(x) = z(x)/d(x) gives an equation with
polynomial coefficients, whose degrees are decreased:

ãn(x)y(x + n) + · · · + ã0(x)y(x) = b(x),

where ãj(x) = aj(x)/d(x + j), j = 0, . . . , n. It makes sense
to use the following version of UD:

Algorithm UDscal;
input: equation (11);
output: universal denominator U(x);
1. U(x) := gcd(an(x − n), . . . , a1(x − 1), a0(x));
2. A(x) := an(x − n)/U(x); B(x) := a0(x)/U(x);N :=
dis(A(x),B(x));
3. Step 2 of algorithm UD.

2. System (12). Analogous simplification is pos-
sible if for some i, 1 ≤ i ≤ m, the polynomials
v1i(x), v2i(x), . . . , vmi(x), ui(x − 1) have a nontrivial
common divisor. It makes sense to use the following version
of UD:

Algorithm UDsys;
input: system (12);
output: universal denominator U(x);
1. U(x) := 1;

for i = 1, 2, . . . , m do

di(x) := gcd(ui(x − 1), v1i(x), v2i(x), . . . , vmi(x));
v1i(x) := v1i(x)/di(x); . . . ; vmi(x) := vmi(x)/di(x);

od.

U(x) := lcm(d1(x), . . . , dm(x));
2. A(x) := lcm(u1(x − 1)/d1(x), . . . , um(x − 1)/dm(x));
3. Compute B(x) which is equal to the lcm of the denomi-
nators of the elements of the matrix inverse of (20);
4. N := dis(A(x),B(x));
5. Step 2 of algorithm UD.

The following example shows that the described prelim-
inary transformations can decrease the universal denomina-
tor. Consider the scalar equation

x(x + 10)y(x) − 2(x + 1)(x + 11)y(x + 1)
+ (x + 2)(x + 12)y(x + 2) = 0

with solutions 1
x
, 1

x+10
. If we use UD then we get U(x) =

x(x + 1) · · · (x + 10), but if we use UDscal then we get
U(x) = x(x + 10). In the same time UDscal,UDsys can
not increase the degree of U(x) in comparison with UD be-
cause A(x),B(x) which are used by UDscal,UDsys divide
those A(x),B(x) which are used by UD.

4 Examples of computations

Our algorithms are implemented in Maple V. The two main
functions are called deltaRS and deltaPS. They take as
input a system y(x + 1) = A(x)y(x) + b(x) and return the
general rational (resp. polynomial) solution of the given
system if it exists and the empty set { } otherwise. We give
here some examples solved by these two functions.

Consider the matrix A(x) given by :




x−1
x+5

(7 x+4+x2)x

x+5
−x − 1 −

(x2+5 x+5)(x−1)

x+5

x−1
(x+1)(x+5)x

x−1
(x+1)(x+5)

0 x−1
(x+1)(x+5)

x−1
x+5

x(x−1)
x+5

−x −x3+3 x2−5 x−5
x+5

− x−1
x(x+5)

−x−1
x+5

1 (x+4)(x−1)
x+5




.

For the system y(x + 1) = A(x)y(x) the function
deltaPS returns :

[xc1, 0, (x − 2) c1,−c1],

while the function deltaRS gives

[
x7c1 + 9 x6c1 + x5c2 + 40 x4c1 − x4c2 + 499 x3c1 − 21 x3c2

x (x − 1) (x + 4) (x + 3) (x + 2) (x + 1)

+
551 x2c1 − 23 x2c2 + 100 xc1 − 4xc2 + 300 c1 − 12 c2

x (x − 1) (x + 4) (x + 3) (x + 2) (x + 1)
,

−4
−25 c1 + c2

x2 (x + 2) (x + 4)
,

x5c1 + 8 x4c1 + x3c2 − 10x3c1 − 70 x2c1

(x + 1) (x + 2) (x + 3) (x + 4)

+
2x2c2 − 7xc2 + 99 xc1 − 11 c2 + 227 c1

(x + 1) (x + 2) (x + 3) (x + 4)
,

−
x2c1 + 6 xc1 + c2 − 17 c1

(x + 2) (x + 4)
]

Here c1 and c2 designate arbitrary constants. If one takes
c2 = 25c1 then one gets the solution already found by
deltaPS.

Now applying deltaPS on the non–homogeneous system
y(x+1) = A(x)y(x)+b(x) with b = [x+1, 0, x+1,−1] yields
the general solution:

[xc1, 0, 1 + xc1 − 2 c1,−c1].

A Super–reduced Forms of linear difference sys-
tems

A.1 Definition and properties

The notion of super–irreducibilty has been introduced in
a joint work of Hilali and Wazner [9], and is used there
to study linear homogeneous differential systems near an
irregular singularity. This notion has been generalized
to difference systems (see chapter 7 of [6]). In this ap-
pendix, we will give the definition of super–reduced forms.
Furthermore we will show the connexion between the
super–irreducibility and the notion of simplicity introduced
in section 2.1.

Consider a difference system of the form :

∆y(x) = M(x)y(x), M ∈ Matn(K[[x−1]][x]). (26)

Put q = − ord(M) and define the rational number m(M) by

m(M) =

{
q + n0

n
+ n1

n2 + · · · +
nq−1

nq if q > 0
1 if q ≤ 0
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where ni denotes the number of rows of M of order −q + i
for i = 0, . . . , q − 1.
Finally define the rational number µ(M) by

µ(M) = min {m(T [M ]) | T ∈ GL(n, K[[x−1]][x])}.

Definition 2 System (26) (or the matrix M) is called
super–irreducible iff m(M) = µ(M).

In [6] a criterion to decide whether a system (26) is
super–irreducible is given. We will repeat this criterion here
since it will be used later.
Let us keep the notation above. Suppose q > 0 and define
the integers r1, . . . , rq by

rk = kn0 + (k − 1)n1 + · · · + nk−1.

For 1 ≤ k ≤ q define

Bk(M, λ) = x−rk det
(
λIn + x−q+kM(x)

)

|x=∞
.

Then Bk(M, λ) ∈ K[λ] for all 1 ≤ k ≤ q. In [6] the following
result is proved.

Theorem 4 [6] The system (26) is super–irreducible iff the
polynomials Bk(M, λ) do not vanish identically in λ, for k =
1, . . . , q.

We will now prove the

Proposition 2 If system (26) is super–irreducible then it
is simple.

Proof Consider a system of the form (26) and put
q = − ord(M). If q ≤ 0 then (as mentioned in sec-
tion 2.1) the system is simple. Suppose that q > 0 and
let α = diag(α1, . . . , αn) with αi = −min(0, ord(Mi)),
where Mi, 0 ≤ i ≤ n, denotes the ith row of M . Then
the matrix D(x) = x−α ∈ Matn(K[x−1]) and the matrix
A(x) = x−αM(x) ∈ Matn(K[[x−1]]). Put D0 = D(∞) and
A0 = A(∞), then one has

det(A0 + λD0) = Bq(M, λ).

Indeed, one easily verifies that det(x−α) = x−rq and then

x−rq det(λIn + M(x)) = det(x−α) det(λIn + M(x))
= det(λx−α + x−αM(x)).

Hence

Bq(M, λ) = x−rq det (λIn + M(x))|x=∞

= det (λD(x) + A(x))|x=∞

= det(λD0 + A0).

Now if (26) is super–irreducible then, by Theorem 4, the
polynomial Bq(M, λ) is not zero and (26) is simple. ✷

Remark 3 Note that a system may be simple without
being super-irreducible. Indeed super-irreducibility requires
that Bk(M, λ) 6≡ 0 for all 1 ≤ k ≤ q while simplicity
requires only that Bq(M, λ) 6≡ 0 (as it was mentioned in
the proof above).

An algorithm for computing a super–irreducible form of
a difference system (26) is presented in [6]. It is similar

to the super-reduction algorithm of Hilali-Wazner 1 for lin-
ear systems of differential equations. More precisely, given
a matrix M ∈ Matn(K[[x−1]][x]) this algorithm produces
a nonsingular matrix S which is polynomial in x−1 such

that the equivalent matrix N = S[M ] is super–irreducible.
Moreover, S satisfies det S = γxh, for some integer h and
γ ∈ K \ {0}. This last result implies that the matrix S−1

is of the form S−1 = x−ν(S0 + S1x + · · · + Sdxd) for some
integers ν and d (here S0, . . . , Sd are matrices with elements
in K). If ν > 0 then by setting T = x−νS the matrix T−1

is polynomial in x and the matrix

T [M ] = (1 + x−1)νN(x) − x(1 − (1 + x−1)ν)In

= (1 + O(x−1))N(x) + O(1)In

is still super–irreducible. Thus we have proved Proposition
1.
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