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Abstract

Wilf and Zeilberger conjectured in 1992 that a hypergeometric term is proper-hypergeometric if and

only if it is holonomic. We prove a slightly modi�ed version of this conjecture in the case of several

discrete variables.

1 Introduction

Let K be a �eld of characteristic zero, n

1

; : : : ; n

d

variables ranging over the nonnegative integers, and E

i

the

corresponding shift operators, acting on functions of n

1

; : : : ; n

d

by E

i

f(n

1

; : : : ; n

i

; : : : ; n

d

) = f(n

1

; : : : ; n

i

+

1; : : : ; n

d

). A K-valued function T (n

1

; : : : ; n

d

) is a hypergeometric term if there are rational functions F

i

2

K(n

1

; : : : ; n

d

) (called the certi�cates of T ) such that E

i

T = F

i

T , for i = 1; : : : ; d. T (n

1

; : : : ; n

d

) is holonomic

if partial derivatives of its generating function

P

n

1

;:::;n

d

�0

T (n

1

; : : : ; n

d

)x

n

1

1

� � �x

n

d

d

lie in a �nite-dimensional

vector space over the rational function �eld K(x

1

; : : : ; x

d

). A holonomic sequence satis�es a system of

homogeneous linear recurrences of a special form. If T is holonomic then its de�nite sums w.r.t. some of

the variables are still holonomic as functions of the remaining variables. If T is also hypergeometric then

the holonomic recurrences satis�ed by these sums can be found e�ciently by means of Zeilberger's Creative

Telescoping algorithm [21, 22, 19].

A hypergeometric term is proper if it can be expressed as a product of a polynomial, several factorials

of linear forms with integer coe�cients, their reciprocals, and exponential functions. In [20] it is proved

that proper hypergeometric terms are holonomic. Wilf and Zeilberger conjectured [19, p. 585] that a hy-

pergeometric term is proper if and only if it is holonomic. Their conjecture concerns hypergeometric terms

which depend on several discrete and continuous variables. We prove a slightly modi�ed version of their

conjecture in the discrete case, namely that every holonomic hypergeometric term is conjugate to a proper

term (meaning that the two terms have the same certi�cates). This modi�cation is necessary as shown,

e.g., by the bivariate hypergeometric term T (n; k) = jn� kj which is holonomic since its generating function

P

n;k�0

jn� kjx

n

y

k

= (x=(1� x)

2

+ y=(1� y)

2

)=(1� xy) is rational, but T is not proper (see Example 6).

Our proof of the modi�ed Wilf-Zeilberger conjecture is based on the Ore-Sato Theorem (as it is called

in [5]) which states essentially that for every hypergeometric term T there is a rational function R and a

proper term T

0

such that (E

i

T )=T = (E

i

(RT

0

))=(RT

0

) for all i. This was proved in the bivariate case by

Ore using elementary means [11, 12], and in the multivariate case by Sato using homological algebra [15,

Appendix]. We give an elementary proof of the multivariate Ore-Sato Theorem. The necessary tools that

are useful also for other purposes are developed in Section 3 (normal forms of rational functions) and Section

4 (shift-invariant and pairwise shift-invariant polynomials). The certi�cates F

i

of a hypergeometric term

clearly satisfy the compatibility conditions (E

j

F

i

) =F

i

= (E

i

F

j

) =F

j

. In Section 5 we give an algorithm

which, given compatible rational functions F

1

; : : : ; F

d

, computes compatible rational functions F

0

1

; : : : ; F

0

d

,

and a rational function R such that F

i

= (E

i

R=R)F

0

i

, and the numerators and denominators of F

0

i

factor

�
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into integer-linear factors (i.e., polynomials of the form a

1

x

1

+ � � � + a

d

x

d

+ c where the a

i

's are integers).

In Section 6 we use this structure theorem to prove the Ore-Sato Theorem (Corollary 4). In Section 7 we

show that a rational sequence is holonomic if and only if its denominator factors into integer-linear factors.

Together with the Ore-Sato Theorem, this yields our main result: Every holonomic hypergeometric term

is conjugate to a nontrivial proper term (Theorem 14). In these results, hypergeometric terms are treated

as algebraic objects. But in applications hypergeometric terms are functions which take on speci�c values,

therefore it is important to deal also with the questions of their zeros and of singularities of their certi�cates

{ which have received little attention in the literature referred to above. To overcome these problems we

introduce the notion of nonvanishing rising factorials (Section 1), and two equivalence relations among

nontrivial hypergeometric terms, namely equality modulo an algebraic set, and conjugacy between solutions

of a �rst-order system of recurrences with polynomial coe�cients (Section 2).

After we had obtained our results in the bivariate case [3, 4], it was brought to our attention that the

bivariate Wilf-Zeilberger conjecture has been proved independently, and at almost the same time, also by

Hou [8, 9].

Throughout the paper, K is a �eld of characteristic zero, and N denotes the set of nonnegative integers.

We write u = (u

1

; u

2

; : : : ; u

d

) for d-tuples of numbers or indeterminates, u � v when u

i

� v

i

for 1 � i � d,

and u

T

v =

P

d

i=1

u

i

v

i

. If u

T

v = 0 then u and v are called orthogonal. We denote by e

i

the d-tuple whose

components are zero except the i-th one which is 1, and by s the d-tuple with all components equal to s. The

monomial x

u

1

1

� � �x

u

d

d

is denoted by x

u

. Following [7], we write p? q to indicate that polynomials p; q 2 K[x]

are relatively prime. By a factor of a rational function f 2 K(x) we mean any polynomial factor of either p

or q where f = p=q, p; q 2 K[x], and p? q. We use E

i

to denote the operator that shifts the i-th variable by 1.

In particular, if T : N

d

! K is a d-variate sequence then E

i

T (n

1

; : : : ; n

i

; : : : ; n

d

) = T (n

1

; : : : ; n

i

+1; : : : ; n

d

),

and if f 2 K(x

1

; x

2

; : : : ; x

d

) is a rational function then E

i

T (x

1

; : : : ; x

i

; : : : ; x

d

) = T (x

1

; : : : ; x

i

+ 1; : : : ; x

d

).

We de�ne the rising factorial (�)

n

for all � 2 K and n 2 Z by

(�)

n

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

n�1

Y

i=0

(� + i); n � 0;

�n

Y

i=1

1

�� i

; n < 0 and � 6= 1; 2; : : : ;�n;

0; otherwise:

Let Z(�) be the set of all n 2 Z such that (�)

n

= 0. Obviously,

Z(�) =

8

<

:

fn 2 Z; n+ � � 0g; � 2 Z and � > 0;

fn 2 Z; n+ � > 0g; � 2 Z and � � 0;

;; otherwise:

(1)

Note that (�+ n)

�n

serves as a kind of a pseudo-inverse for (�)

n

, in the following sense:

� if (�)

n

6= 0 then (�+ n)

�n

= 1=(�)

n

,

� if (�)

n

= 0 then (�+ n)

�n

= 0.

It is easy to verify that the sequence (�)

n

satis�es the �rst-order recurrence

(n+ �)(�)

n+1

� (n+ �)

2

(�)

n

= 0 (2)

for all n 2 Z. We will also need another solution of (2) which is nonzero for all � 2 K and n 2 Z. We call it

the nonvanishing rising factorial and denote it (�)

�

n

. It is de�ned as the usual rising factorial, except that

zero factors are omitted wherever they appear:

(�)

�

n

=

8

<

:

(�)

n

; (�)

n

6= 0;

(�)

1��

(0)

�+n

; � 2 Z and � > 0 and �+ n � 0;

(�)

��

(1)

�+n�1

; � 2 Z and � � 0 and �+ n > 0:

Now we have (�+ n)

�

�n

= 1=(�)

�

n

for all n 2 Z.
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Example 1 According to our de�nitions,

(1)

n

=

�

n!; n � 0;

0; n � �1

; (0)

n

=

(

0; n � 1;

(�1)

n

(�n)!

; n � 0

;

(1)

�

n

=

(

n!; n � 0;

(�1)

n+1

(�n�1)!

; n � �1

; (0)

�

n

=

(

(n� 1)!; n � 1;

(�1)

n

(�n)!

; n � 0

:

Remark 1 Proper hypergeometric terms are usually de�ned in terms of factorials of complex argument, with

z! denoting �(z +1) and 1=z! de�ned to be zero when z is a negative integer. If n is an integer variable and

� 2 C , we can rewrite the sequence (n+ �)! with rising factorials as

(n+ �)! =

�

�! (�+ 1)

n

; � =2 Z;

(1)

n+�

; � 2 Z

(3)

whenever the left-hand side is de�ned (i.e., n+ � is not a negative integer), and its reciprocal as

1

(n+ �)!

=

�

(n+�+1)

�n

�!

; � =2 Z;

(n+ �+ 1)

�(n+�)

; � 2 Z;

(4)

where ordinary factorials (or the �-function) are applied only to constants on the right-hand side. The

advantage of rising factorials over ordinary ones is that the former do not rely on the �-function and are

well de�ned in any �eld of characteristic zero.

Wilf and Zeilberger [18] associate with (n+ �)! its shadow

(�1)

n

(�n� �� 1)!

which satis�es the same �rst-order recurrence w.r.t. n. When � =2 Z the shadow is just a constant-factor

multiple of (n + �)! (the constant being �(sin��)=�), while for � 2 Z the shadow is complementary to

(n+�)!, in the sense that the latter is de�ned when n+� � 0, and the former when n+� < 0. If we replace

the rising factorials in the right-hand side of (3) by their nonvanishing counterparts, nothing changes for

� =2 Z, but for � 2 Z we have instead of (1)

n+�

(1)

�

n+�

=

(

(1)

n+�

= (n+ �)!; n+ � � 0;

(0)

n+�+1

=

(�1)

n+�+1

(�n���1)!

; n+ � < 0:

Thus rewriting factorials in terms of the nonvanishing rising factorials, we either get the factorial itself or

its shadow (perhaps with the opposite sign), whichever is de�ned.

2 Multivariate sequences

By a sequence T (n) we mean a function T : N

d

! K. We call a set A � N

d

algebraic if there is a polynomial

p 2 K[x] n f0g which vanishes on A. Clearly, if A is algebraic and B is not, then B n A is not algebraic.

Also, a �nite union of algebraic sets is algebraic.

Proposition 1 Let F;G 2 K(x) be rational functions which agree on a non-algebraic set B � N

d

. Then

F = G.

Proof: Let F = p=q, G = u=v, where p; q; u; v 2 K[x]. The polynomial pv� qu vanishes on the non-algebraic

set B, hence it is the zero polynomial, and so F = G. 2

De�nition 1 (equality modulo an algebraic set) We write T =

a

T

0

if the set fn 2 N

d

; T (n) 6= T

0

(n)g is

algebraic. A sequence T (n) is trivial if T =

a

0.
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Equality modulo an algebraic set is clearly an equivalence relation. It is also a congruence because T

1

=

a

T

2

and T

0

1

=

a

T

0

2

imply T

1

+T

0

1

=

a

T

2

+T

0

2

and T

1

T

0

1

=

a

T

2

T

0

2

. Trivial sequences can be described as those with

algebraic support. Note however that a nontrivial sequence can vanish on a non-algebraic set.

Example 2 The sequence T (n; k) =

�

n

k

�

= (n � k + 1)

k

(k + 1)

�k

is nontrivial because suppT = f(n; k) 2

N

2

; n � kg is not algebraic. But neither is its complement f(n; k) 2 N

2

; n < kg.

De�nition 2 (hypergeometric term, conjugate hypergeometric terms) A sequence T (n) is a hypergeometric

term if there are polynomials p

i

; q

i

2 K[x] n f0g such that

p

i

(n)(E

i

T (n)) = q

i

(n)T (n) (5)

for all n 2 N

d

and 1 � i � d. Two hypergeometric terms T

1

, T

2

are conjugate if they satisfy (5) with the

same p

i

; q

i

. In this case we write T

1

' T

2

.

Proposition 2 (i) The product of two hypergeometric terms is a hypergeometric term.

(ii) If T

1

' T

2

and T

0

1

' T

0

2

then T

1

T

0

1

' T

2

T

0

2

.

We omit the straightforward proofs.

Proposition 3 If T is a hypergeometric term and T

0

=

a

T then T

0

is a hypergeometric term and T

0

' T .

Proof: Let T satisfy (5) and let p(n)T

0

(n) = p(n)T (n) for all n 2 N

d

. Then

p(n)(E

i

p(n))p

i

(n)(E

i

T

0

(n)) = p(n)(E

i

p(n))q

i

(n)T

0

(n) (6)

for all n 2 N

d

and 1 � i � d, hence T

0

is a hypergeometric term. Clearly T (n) also satis�es (6), so T

0

' T .

2

The converse of Proposition 3 is of course not true, because conjugate hypergeometric terms may di�er

everywhere, as any constant multiple of a term is clearly conjugate to it.

Example 3 The \patchwork" sequence

T (n; k) =

8

<

:

2(n� 2k)!; n > 2k;

3

k

; n = 2k;

7

(�1)

n

(2k�n�1)!

; n < 2k

=

8

<

:

2 (1)

n�2k

; n > 2k;

3

k

; n = 2k;

7 (�1)

n

(2k � n)

n�2k+1

; n < 2k

=

8

<

:

2 (1)

�

n�2k

; n > 2k;

3

k

; n = 2k;

�7 (1)

�

n�2k

; n < 2k

is a hypergeometric term because it satis�es the recurrences

(n� 2k)(n� 2k + 1)T (n+ 1; k) = (n� 2k)(n� 2k + 1)

2

T (n; k); (7)

(n� 2k � 2)(n� 2k � 1)

2

(n� 2k)

2

T (n; k + 1) = (n� 2k � 2)(n� 2k � 1)(n� 2k)T (n; k) (8)

for all n; k 2 N . Clearly, T (n; k) is conjugate to the hypergeometric terms T

1

(n; k) = (1)

n�2k

, T

2

(n; k) =

(�1)

n�2k

(2k�n)

n�2k+1

, and T

3

(n; k) = (1)

�

1;n�2k

which satisfy the same �rst-order recurrences (7) and (8),

but it is not equal to either of them modulo an algebraic set.

Identi�cation of multivariate sequences which agree outside an algebraic set is consistent with identi�-

cation of univariate sequences which agree outside a �nite set (cf. [16]). Such identi�cation enables us to

regard every rational function R 2 K(x) as a sequence R(n), without actually having to specify its values

at the singular points of R. Therefore, if T is a hypergeometric term satisfying (5), we can write

E

i

T (n) =

a

F

i

(n)T (n) (9)

where F

i

= q

i

=p

i

, for 1 � i � d. Sometimes these rational functions are called the certi�cates of T .

4



Example 4 For the term T (n; k) de�ned in Example 3, we have T (n + 1; k) =

a

(n � 2k + 1)T (n; k) and

(n� 2k � 1)(n� 2k)T (n; k + 1) =

a

T (n; k), so its certi�cates are n� 2k + 1 and 1=((n� 2k � 1)(n� 2k)).

It is clear that the certi�cates of a hypergeometric term satisfy certain compatibility conditions.

De�nition 3 (compatible rational functions) Rational functions F

1

; F

2

; : : : ; F

d

2 K(x) are compatible if

they satisfy

(E

j

F

i

)F

j

= (E

i

F

j

)F

i

(10)

for all 1 � i < j � d.

Proposition 4 Let T (n) be a hypergeometric term which satis�es (9). If T 6=

a

0 then

(i) F

1

; F

2

; : : : ; F

d

are compatible,

(ii) F

1

; F

2

; : : : ; F

d

are unique.

Proof: (i) From (9) we have

E

i

E

j

T (n) = (E

j

F

i

(n))(E

j

T (n)) = (E

j

F

i

(n))F

j

(n)T (n)

= (E

i

F

j

(n))(E

i

T (n)) = (E

i

F

j

(n))F

i

(n)T (n)

for n outside some algebraic set A. Hence (E

j

F

i

(n))F

j

(n) = (E

i

F

j

(n))F

i

(n) on suppT n A. As this is a

non-algebraic set, Proposition 1 implies that (E

j

F

i

)F

j

= (E

i

F

j

)F

i

.

(ii) Assume that in addition to (9), E

i

T (n) =

a

G

i

(n)T (n) for 1 � i � d. Then F

i

(n) = G

i

(n) on

suppT nA, for some algebraic set A. By Proposition 1, F

i

= G

i

. 2

From Proposition 4(ii) it follows that nontrivial hypergeometric terms T

1

and T

2

are conjugate if and

only if they have the same certi�cate.

Obviously every hypergeometric term is conjugate to the zero term, and also to every trivial term. But

when restricted to nontrivial terms, this relation is transitive, and hence an equivalence relation:

Proposition 5 Let T

1

, T

2

, T

3

be hypergeometric terms such that T

1

' T

2

, T

2

' T

3

. If T

2

6=

a

0 then T

1

' T

3

.

Proof: This follows from Proposition 4(ii). 2

De�nition 4 (holonomic) Let K((x)) denote the �eld of fractions of the formal power series ring K[[x]].

A sequence T (n) is holonomic if the set of all partial derivatives of its generating function

P

n�0

T (n)x

n

spans a �nite-dimensional subspace of K((x)) over the sub�eld of rational functions K(x).

Theorem 1 [10, Thm. 3.7] A sequence T (n) is holonomic if and only if there is an s 2 N such that

(i) for each i 2 f1; 2; : : : ; dg, there is a nonempty set H

i

� f0; : : : ; sg

d

and a set of univariate polynomials

fp

h;i

2 K[x] n f0g; h 2 H

i

g such that

X

h2H

i

p

h;i

(n

i

)T (n� h) = 0 (11)

for all n � s, and

(ii) if d � 2, each (d�1)-variate sequence a

i;k

(n

1

; : : : ; n

i�1

; n

i+1

; : : : ; n

d

) = T (n

1

; : : : ; n

i�1

; k; n

i+1

; : : : ; n

d

)

with 1 � i � d and 0 � k � s� 1 is holonomic.

Note that if the coe�cients in (11) are constant we may use the same recurrence for all i 2 f1; 2; : : : ; dg.

Example 5 The term T (n; k) =

�

n

k

�

is holonomic because it satis�es condition (i) of Theorem 1 with the

constant-coe�cient recurrence T (n; k)� T (n� 1; k)� T (n� 1; k � 1) = 0 valid for n; k � s = 1. Condition

(ii) is satis�ed as well because T (n; 0)� T (n� 1; 0) = 0 for n � 1, and T (0; k) = 0 for k � 1.

The term T (n; k) from Example 3 is also holonomic, because it satis�es condition (i) of Theorem 1 with

the constant-coe�cient recurrence T (n; k�2)�4T (n�2; k�3)+3T (n�4; k�4) = 0 valid for n; k � s = 4.

Condition (ii) is obviously satis�ed as well.

5



Theorem 2 The product of two holonomic sequences is holonomic.

For a proof, see [10, Thm. 3.8(i)] or [20, Prop. 3.2'].

De�nition 5 (factorial term) A sequence T (n) is a factorial term if there are u 2 K

d

, p; q 2 N , � 2 K

p+q

,

and a

1

;a

2

; : : : ;a

p

2 Z

d

such that

T (n) = u

n

p

Y

i=1

(�

i

)

a

T

i

n

p+q

Y

i=p+1

(�

i

+ a

T

i

n)

�a

T

i

n

(12)

for all n 2 N

d

.

De�nition 6 (proper term) A sequence T is a proper term if there is a polynomial P 2 K[x] and a factorial

term T

0

such that

T = P T

0

: (13)

Note that the de�nitions of hypergeometric, holonomic, factorial, and proper terms are all symmetric in

the variables n

1

; n

2

; : : : ; n

d

. Hence if T (n) has one of these properties, then so does T (�(n)) where � is any

permutation of n.

Theorem 3 Every proper term is hypergeometric and holonomic.

Proof: Let T (n) be a proper term. Then T (n) = P (n)T

0

(n) where P 2 K[x] is a polynomial and T

0

(n) is of

the form (12). As a rational function, P (n) is clearly hypergeometric. By using (2) repeatedly, each factor

on the right-hand side of (12) is hypergeometric as well. Hence, by Proposition 2, T (n) is hypergeometric.

Similarly, each factor of T (n) satis�es a recurrence with constant coe�cients: If r = deg

n

1

P (n) then

�

r+1

n

1

P (n) = 0. Clearly, u

n+1

= u

1

u

n

. If f(n) = (�)

a

T

n+c

or f(n) = (� + a

T

n)

�(a

T

n)

then f(n + h) =

f(n) where h is any nonzero integer vector orthogonal to a. The same is true of the factors of each (d� 1)-

variate sequence T (n

1

; : : : ; n

i�1

; k; n

i+1

; : : : ; n

d

) where k 2 N . Thus by Theorem 1, each factor of T (n) is

holonomic, hence by Theorem 2, so is T (n). 2

For factorial terms, this result can be found in [17], and for proper terms in [20, 19, 14].

Wilf and Zeilberger conjectured [19, p. 585] that the converse of Theorem 3 holds as well. Taken literally,

this is not true as we show in Example 6 of Section 3. However, we prove in Theorem 14 a slightly modi�ed

version of their conjecture, namely that over an algebraically closed �eld, every holonomic hypergeometric

term is conjugate to a nontrivial proper term.

3 A normal form for rational functions

In this section E denotes the shift operator corresponding to x, so that Ef(x) = f(x+1) for every f 2 K(x).

Theorem 4 For every rational function F 2 K(x) there are polynomials a; b; c 2 K[x] such that

(i) F =

a

b

�

Ec

c

,

(ii) a?E

k

b for all k 2 N ,

(iii) a? c and b?Ec.

For a proof, see [13] or [14]. The original version of this theorem (without (iii)) is due to Gosper [6].

De�nition 7 (PNF) If a, b, c, F satisfy (i) and (ii) of Theorem 4, then (a; b; c) is a polynomial normal

form or PNF of F . A PNF which satis�es (iii) of Theorem 4 is strict.

Lemma 1 If (a; b; c) is a strict PNF of p=q where p; q 2 K[x], then a j p and b j q.

6



Proof: We have pbc = aqEc, hence a j pbc and b j aqEc. By (ii) and (iii), a? bc and b? aEc, so a j p and b j q.

2

In place of (ii), we need the stronger property that a?E

k

b for all k 2 Z. To achieve this we allow c to

be a rational function.

De�nition 8 (shift-reduced) A rational function u 2 K(x) is shift-reduced if there are a; b 2 K[x] such

that u = a=b and a?E

k

b for all k 2 Z.

Theorem 5 For every rational function F 2 K(x) there are rational functions u; v 2 K(x) such that

(i) F = u �

Ev

v

,

(ii) u is shift-reduced.

Proof: If F = 0 take u = 0 and v = 1. Otherwise let (a; b; c) be a PNF of F , and (a

1

; b

1

; c

1

) a strict PNF of

b=a. We claim that taking u = b

1

=a

1

, v = c=c

1

satis�es (i) and (ii). Indeed,

u �

Ev

v

=

b

1

a

1

�

c

1

Ec

1

�

Ec

c

=

a

b

�

Ec

c

= F;

proving (i). Because a

1

?E

k

b

1

for k � 0, we have b

1

?E

k

a

1

for k � 0. By Lemma 1, a

1

j b and b

1

j a. As

a?E

k

b for k � 0, it follows that b

1

?E

k

a

1

for k � 0 as well, proving (ii). 2

De�nition 9 (RNF) If u, v, F are as in Theorem 5, (u; v) is a rational normal form, or RNF, of F . We

denote the set of all RNF's of F by RNF

x

(F ).

Note that together with an algorithm for computing strict PNF (to be found in [13] or [14]), the proof

of Theorem 5 provides an algorithm for computing an element of RNF

x

(F ).

Theorem 6 Let (u; v) and (u

1

; v

1

) be two RNF's of F 2 K(x)nf0g. Write u = zp=q and u

1

= z

1

p

1

=q

1

where

z; z

1

2 K, p; q; p

1

; q

1

2 K[x] are monic, p? q, and p

1

? q

1

. Then z = z

1

, deg p = deg p

1

, and deg q = deg q

1

.

For a proof, see [4].

Example 6 Let T (n; k) = jn � kj. Then (n � k)T (n+ 1; k)� (n � k + 1)T (n; k) = 0 and (n� k)T (n; k +

1) � (n � k � 1)T (n; k) = 0 for all n; k 2 N , so T (n; k) is a hypergeometric term. It is also holonomic as

it satis�es condition (i) of Theorem 1 with the constant-coe�cient recurrence T (n; k)� T (n� 1; k � 1) = 0

valid for n; k � s = 1, and condition (ii) is obviously satis�ed as well.

We claim that jn� kj is not equal to any proper term, not even modulo an algebraic set. To prove this,

assume on the contrary that jn � kj =

a

T

0

(n; k) where T

0

(n; k) is a proper term. Let Q 2 K[x; y] be a

nonzero polynomial such that jn� kjQ(n; k) = T

0

(n; k)Q(n; k) for all n; k 2 N . Write

T

0

(n; k) = P (n; k) u

n

v

k

p

Y

i=1

(�

i

)

a

i

n+b

i

k

q

Y

j=1

(�

j

+ c

j

n+ d

j

k)

�(c

j

n+d

j

k)

where P 2 K[x; y], u; v; �

i

; �

j

2 K, and a

i

; b

i

; c

j

; d

j

2 Z. If (�

i

)

a

i

n

0

+b

i

k

0

= 0 for some n

0

; k

0

2 N then, by

(1), �

i

2 Z and either �

i

> 0 and �

i

+a

i

n

0

+b

i

k

0

� 0, or �

i

� 0 and �

i

+a

i

n

0

+b

i

k

0

> 0. In the former case,

a

i

< 0 or b

i

< 0, so (�

i

)

a

i

n+b

i

k

vanishes on the non-algebraic set f(n; k) 2 N

2

; �

i

+ a

i

n+ b

i

k � 0g. In the

latter case, a

i

> 0 or b

i

> 0, so (�

i

)

a

i

n+b

i

k

vanishes on the non-algebraic set f(n; k) 2 N

2

; �

i

+a

i

n+b

i

k > 0g.

In either case, T

0

(n; k), and hence jn� kjQ(n; k) would vanish on a non-algebraic set, which is false. Hence

(�

i

)

a

i

n+b

i

k

6= 0 for all n; k 2 N . In the same way we see that (�

j

+ c

j

n+ d

j

k)

�(c

j

n+d

j

k)

6= 0 for all n; k 2 N .

Therefore we can write

T

0

(n; k) = P (n; k) u

n

v

k

Q

p

i=1

(�

i

)

a

i

n+b

i

k

Q

q

j=1

(�

j

)

c

j

n+d

j

k

:

7



Pick n

0

; k

0

2 N such that n

0

< k

0

and Q(n

0

; k

0

) 6= 0. Such n

0

; k

0

certainly exist, for otherwise the

univariate polynomial Q(n

0

; k) would be identically zero for each n

0

, as it would vanish for all k > n

0

, and

hence Q itself would be the zero polynomial. Let t(n) = T

0

(n; k

0

)Q(n; k

0

) = jn � k

0

jQ(n; k

0

). This is a

univariate hypergeometric term which can be written in the form

t(n) = p(n)w

n

Q

p

0

i=1

(

i

)

n

Q

q

0

j=1

(�

j

)

n

; for all n 2 N ; (14)

where p 2 K[x], w; 

i

; �

j

2 K, and (

i

)

n

; (�

j

)

n

6= 0 for all n 2 N . If 

i

� �

j

2 Z then (

i

)

n

=(�

j

)

n

is a rational

function of n, hence we can rewrite (14) as

t(n) = r(n)w

n

t

0

(n); for all n 2 N ;

where r 2 K(x) is a rational function, and t

0

(n) is a nonvanishing univariate hypergeometric term whose

certi�cate f

0

(n) = t

0

(n + 1)=t

0

(n) is a shift-reduced rational function. Let f(n) = t(n + 1)=t(n) = jn + 1�

k

0

jQ(n+1; k

0

)=(jn�k

0

jQ(n; k

0

)) =

a

(n+1�k

0

)Q(n+1; k

0

)=((n�k

0

)Q(n; k

0

)). Then both (w f

0

(n); r(n))

and (1; (n�k

0

)Q(n; k

0

)) belong to RNF

n

(f). It follows from Theorem 6 that w f

0

(n) = 1, hence t

0

(n) = c=w

n

for all n 2 N , where c 2 K n f0g is a constant, so t(n) = c r(n) for all n 2 N . But t(n) = jn� k

0

jQ(n; k

0

) =

a

(n � k

0

)Q(n; k

0

), therefore by Proposition 1, the two rational functions c r(n) and (n � k

0

)Q(n; k

0

) are

identical, and t(n) = (n � k

0

)Q(n; k

0

) for all n 2 N . Thus we have jn � k

0

jQ(n; k

0

) = (n � k

0

)Q(n; k

0

)

for all n 2 N , and in particular, jn

0

� k

0

jQ(n

0

; k

0

) = (n

0

� k

0

)Q(n

0

; k

0

). As Q(n

0

; k

0

) 6= 0, it follows that

jn

0

� k

0

j = n

0

� k

0

, contrary to our choice of n

0

< k

0

. This contradiction shows that jn� kj is not equal to

any proper term, not even modulo an algebraic set. Note however that jn� kj is conjugate to the nontrivial

proper term n� k, as well as to any term T

00

of the form

T

00

(n; k) =

�

a (n� k); n � k;

b (n� k); n < k

where a; b 2 K are arbitrary.

4 Shift invariance and integer linearity

De�nition 10 (shift-invariant, pairwise shift-invariant, integer-linear) A rational function f 2 K(x) is

shift-invariant if there is a nonzero integer vector a 2 Z

d

such that f(x + a) = f(x). A rational function

f 2 K(x) is pairwise shift-invariant if for each pair of indices i; j, 1 � i < j � d, there are h

ij

; h

ji

2 Z, not

both zero, such that E

h

ij

i

E

h

ji

j

f(x) = f(x). A polynomial p 2 K[x] is integer-linear if p(x) = u � (a

T

x) + v

where a 2 Z

d

and u; v 2 K.

Note the following facts:

� If d = 2, the notions of shift invariance and pairwise shift invariance coincide.

� Any constant polynomial is integer-linear (take u = 0).

� Over an algebraically closed �eld, any univariate polynomial factors into integer-linear factors.

Lemma 2 Let f 2 K(x), a 2 K, a 6= 0. If f(x+ a) = f(x) then f(x) = c 2 K.

Proof: Write f(x) = p(x)=q(x) where p; q 2 K[x]. Let x

0

2 K be such that q(x

0

+ ka) 6= 0 for all k 2 N .

By induction on k, f(x

0

+ ka) = f(x

0

) for all k 2 N . Write c = f(x

0

). Then r(x) = p(x) � c q(x) 2 K[x]

vanishes on fx

0

+ ka; k 2 Ng. In characteristic zero this is an in�nite set, hence r is the zero polynomial,

and f(x) = c as claimed. 2

Lemma 3 Let f 2 K(x), a 2 K

d

, a

d

6= 0. If f(x + a) = f(x) then there is a (d � 1)-variate rational

function h 2 K(x

1

; x

2

; : : : ; x

d�1

) such that

f(x) = h(x

1

�

a

1

a

d

x

d

; : : : ; x

d�1

�

a

d�1

a

d

x

d

):

Furthermore, if f 2 K[x] then h 2 K[x

1

; x

2

; : : : ; x

d�1

].

8



Proof: De�ne

h(x) = f(x

1

+

a

1

a

d

x

d

; : : : ; x

d�1

+

a

d�1

a

d

x

d

; x

d

):

Then f(x) = h(x

1

�

a

1

a

d

x

d

; : : : ; x

d�1

�

a

d�1

a

d

x

d

; x

d

) and h(x

1

; : : : ; x

d�1

; x

d

+ a

d

) = h(x). Considering h as an

element of K(x

1

; x

2

; : : : ; x

d�1

)(x

d

), Lemma 2 implies that, in fact, h 2 K(x

1

; x

2

; : : : ; x

d�1

). 2

Proposition 6 A d-variate rational function f 2 K(x) is shift-invariant if and only if there are nonzero

integer vectors v

1

;v

2

; : : : ;v

d�1

2 Z

d

and a (d � 1)-variate rational function g 2 K(x

1

; x

2

; : : : ; x

d�1

) such

that

f(x) = g(v

T

1

x; v

T

2

x; : : : ; v

T

d�1

x): (15)

Furthermore, if f 2 K[x] then g 2 K[x

1

; x

2

; : : : ; x

d�1

].

Proof: Let a 2 Z

d

be a nonzero vector such that f(x+ a) = f(x). W.l.g. assume that a

d

6= 0. By Lemma

3, there is a (d� 1)-variate rational function h 2 K(x

1

; x

2

; : : : ; x

d�1

) such that

f(x) = h(x

1

�

a

1

a

d

x

d

; : : : ; x

d�1

�

a

d�1

a

d

x

d

):

Then f(x) = g(a

d

x

1

� a

1

x

d

; a

d

x

2

� a

2

x

d

; : : : ; a

d

x

d�1

� a

d�1

x

d

) = g(v

T

1

x; v

T

2

x; : : : ; v

T

d�1

x) where

g(x

1

; x

2

; : : : ; x

d�1

) = h(x

1

=a

d

; x

2

=a

d

; : : : ; x

d�1

=a

d

), and v

i

= a

d

e

i

� a

i

e

d

6= 0.

Conversely, assume that f is of the form (15). Let a 2 Z

d

be a nonzero integer vector such that

v

T

1

a = v

T

2

a = � � � = v

T

d�1

a = 0. Then f(x+ a) = f(x). 2

Proposition 7 A d-variate rational function f 2 K(x) is pairwise shift-invariant if and only if there is a

nonzero integer vector v 2 Z

d

and a univariate rational function g 2 K(x) such that

f(x) = g(v

T

x):

Furthermore, if f 2 K[x] then g 2 K[x].

Proof: First let f be pairwise shift-invariant. We prove by induction on d that f(x) = g(v

T

x).

� d = 1: The assertion holds vacuously.

� d > 1: Consider f as an element of K(x

d

)(x

1

; : : : ; x

d�1

). By the induction hypothesis, there are

g

0

2 K(x

d

)(x) and v

0

1

; : : : ; v

0

d�1

2 Z, not all zero, such that

f(x

d

)(x

1

; : : : ; x

d�1

) = g

0

(x

d

)(u) (16)

where u = v

0

1

x

1

+ � � �+ v

0

d�1

x

d�1

. W.l.g. assume that v

0

1

6= 0. Regarding g

0

as an element of K(x

d

; x),

we can write (16) as f(x) = g

0

(x

d

; u). Now

g

0

(x

d

; u) = f(x) = E

h

1d

1

E

h

d1

d

f(x) = f(x

d

+ h

d1

)(x

1

+ h

1d

; x

2

; : : : ; x

d�1

) = g

0

(x

d

+ h

d1

; u+ v

0

1

h

1d

):

By Proposition 6 applied to the bivariate rational function g

0

, there are g 2 K(x) and a; b 2 Z not

both zero such that

f(x) = g

0

(x

d

; u) = g(au+ bx

d

) = g(v

T

x)

where v = (av

0

1

; : : : ; av

0

d�1

; b) 6= 0.

Conversely, let f(x) = g(v

T

x) and 1 � i < j � d. If v

i

= v

j

= 0 then set h

ij

= h

ji

= 1, otherwise set

h

ij

= v

j

, h

ji

= �v

i

. In both cases E

h

ij

i

E

h

ji

j

f(x) = f(x). 2

Corollary 1 Assume that K is algebraically closed. If p 2 K[x] is irreducible and pairwise shift-invariant

then p is integer-linear.

Proof: By Proposition 7, there is q 2 K[x] and a nonzero integer vector a 2 Z

d

such that p(x) = q(a

T

x). As

p is irreducible, so is q, hence deg q � 1. Thus there are c; d 2 K such that q(x) = cx+ d and, consequently,

p(x) = c � (a

T

x) + d. 2

9



Lemma 4 Fix a pair of indices i; j, 1 � i < j � d. If for every irreducible factor p of P 2 K[x] with

deg

x

i

p; deg

x

j

p > 0 there are a; b 2 Z, a > 0, such that E

i

a

E

j

b

p jP , then for every irreducible factor p of P

with deg

x

i

p; deg

x

j

p > 0 there are A;B 2 Z, A > 0, such that E

i

A

E

j

B

p = p.

Proof: Pick any irreducible factor p

0

of P such that deg

x

i

p

0

; deg

x

j

p

0

> 0. Construct a sequence of noncon-

stant irreducible factors p

l

of P such that p

l+1

= E

i

a

l

E

j

b

l

p

l

where a

l

; b

l

2 Z and a

l

> 0, for l � 0. As K[x]

is a unique factorization domain, there are indices l

0

< l

1

such that p

l

0

= p

l

1

. By de�nition of p

l

, it follows

that

p

l

0

= E

i

A

E

j

B

p

l

0

(17)

where A = a

l

0

+ a

l

0

+1

+ � � �+ a

l

1

�1

> 0 and B = b

l

0

+ b

l

0

+1

+ � � �+ b

l

1

�1

are integers. We have additionally

p

l

0

= E

i

A

0

E

j

B

0

p

0

; (18)

where A

0

= a

0

+ a

1

+ � � �+ a

l

0

�1

> 0 and B

0

= b

0

+ b

1

+ � � �+ b

l

0

�1

are integers. Applying E

i

�A

0

E

j

�B

0

to

(17) and using (18) we obtain p

0

= E

i

A

E

j

B

p

0

. 2

Theorem 7 Let K be algebraically closed, and P 2 K[x]. If for each irreducible factor p of P and for each

pair of indices i; j, 1 � i < j � d with deg

x

i

p; deg

x

j

p > 0 there are a; b 2 Z, a > 0, such that E

i

a

E

j

b

p jP ,

then P factors into integer-linear factors.

Proof: Lemma 4 implies that each irreducible factor of P is pairwise shift-invariant. Hence by Corollary 1,

each irreducible factor of P is integer-linear. 2

For the case d = 2, a di�erent proof of Theorem 7 using algebraic functions is given in [2, Lemma 3].

5 Compatible rational functions

Theorem 8 [1] Let a; b; u; v 2 K[x] n f0g, u? v, r = u=v, p an irreducible factor of v, and

a(x)r(x + 1) = b(x)r(x): (19)

Then there are m;n 2 N , m � 1, n � 0, such that p(x+m) divides a(x) and p(x� n) divides b(x).

Proof: Rewrite (19) as

a(x)u(x+ 1)v(x) = b(x)u(x)v(x + 1): (20)

Let m 2 N , m � 1, be such that p(x +m � 1) divides v(x) but p(x +m) does not. Then (20) implies

that p(x+m) j a(x)u(x+ 1)v(x). As p(x+m)?u(x+ 1)v(x), it follows that p(x+m) j a(x).

Let n 2 N , n � 0, be such that p(x� n) divides v(x) but p(x � n� 1) does not. Then (20) implies that

p(x� n) j b(x)u(x)v(x + 1). As p(x� n)?u(x)v(x+ 1), it follows that p(x� n) j b(x). 2

The following property of divisibility in K[x] will be used freely.

Proposition 8 Let p; q 2 K[x], p irreducible, deg

x

d

p 6= 0. Then p j q in K[x] if and only if p j q in

K(x

1

; : : : ; x

d�1

)[x

d

].

Proof: Divisibility in K[x] obviously implies divisibility in K(x

1

; : : : ; x

d�1

)[x

d

].

Conversely, let q = p r where r 2 K(x

1

; : : : ; x

d�1

)[x

d

]. As p is irreducible in K[x] and deg

x

d

p 6= 0,

p is primitive when considered as an element of K[x

1

; : : : ; x

d�1

][x

d

]. Write r = (�=�) r

0

, q =  q

0

where

�; �;  2 K[x

1

; : : : ; x

d�1

] and q

0

; r

0

2 K[x

1

; : : : ; x

d�1

][x

d

] are primitive. Then

�  q

0

= �p r

0

:

By Gauss's Lemma p r

0

is primitive, hence � = � . It follows that r =  r

0

2 K[x], hence p j q in K[x]. 2

10



Theorem 9 Let F;G 2 K(x; y) be compatible rational functions. Let (G

0

; R) be an RNFof G, considered as

a rational function of y over K(x), and F

0

(x; y) = F (x; y)R(x; y)=R(x + 1; y). Then

(i) F (x; y) = F

0

(x; y)

R(x+1;y)

R(x;y)

,

(ii) G(x; y) = G

0

(x; y)

R(x;y+1)

R(x;y)

,

(iii) F

0

; G

0

are compatible rational functions,

(iv) each irreducible factor p 2 K[x; y] of either F

0

or G

0

is shift-invariant.

Proof: Properties (i) and (ii) follow from the de�nitions of F

0

and G

0

, respectively. The compatibility

condition (10) for F , G implies that

F

0

(x; y)G

0

(x+ 1; y) = F

0

(x; y + 1)G

0

(x; y); (21)

so F

0

, G

0

are compatible. It remains to prove (iv). Write

F

0

(x; y) =

s(x; y)

t(x; y)

; G

0

(x; y) =

u(x; y)

v(x; y)

(22)

where s; t; u; v 2 K[x; y], s(x; y)? t(x; y), and u(x; y)? v(x; y +m) for all m 2 Z.

Let p 2 K[x; y] be an irreducible factor of s, t, u, or v. If deg

x

p = 0 or deg

y

p = 0 then p is trivially

shift-invariant. In the case deg

x

p; deg

y

p > 0 we use two lemmas.

Lemma 5 Let F

0

, G

0

, s; t; u; v be as in (21), (22). If p 2 K[x; y] is an irreducible factor of uv, deg

y

p 6= 0,

then there are A;B 2 Z, A > 0, such that p(x+A; y +B) divides st.

Proof: a) If p j v rewrite (21) as

s(x; y)t(x; y + 1)G

0

(x+ 1; y) = s(x; y + 1)t(x; y)G

0

(x; y):

By Theorem 8, there is m 2 Z, m � 1, such that

p(x+m; y) j s(x; y)t(x; y + 1):

Then p(x+m; y) j s(x; y) or p(x+m; y�1) j t(x; y). Take (A;B) = (m; 0) in the former case, (A;B) = (m;�1)

in the latter.

b) If p ju rewrite (21) as

s(x; y + 1)t(x; y)

1

G

0

(x+ 1; y)

= s(x; y)t(x; y + 1)

1

G

0

(x; y)

:

By Theorem 8, there is m 2 Z, m � 1, such that

p(x+m; y) j s(x; y + 1)t(x; y):

Then p(x+m; y�1) j s(x; y) or p(x+m; y) j t(x; y). Take (A;B) = (m;�1) in the former case, (A;B) = (m; 0)

in the latter. 2

Lemma 6 Let F

0

, G

0

, s; t; u; v be as in (21), (22) where G

0

(x; y) is shift-reduced w.r.t. y. If q 2 K[x; y] is

an irreducible factor of st and deg

x

q 6= 0, then there is C 2 Z such that q(x; y + C) divides uv.

Proof: a) If q j t rewrite (21) as

u(x; y)v(x+ 1; y)F

0

(x; y + 1) = u(x+ 1; y)v(x; y)F

0

(x; y):

11



By Theorem 8, there are m;n 2 Z such that

q(x; y +m) ju(x; y)v(x + 1; y) and q(x; y � n) ju(x+ 1; y)v(x; y):

Since u=v is shift-reduced w.r.t. y it follows that q(x; y +m) ju(x; y) or q(x; y � n) j v(x; y). Take C = m in

the former case, C = �n in the latter.

b) If q j s rewrite (21) as

u(x+ 1; y)v(x; y)

1

F

0

(x; y + 1)

= u(x; y)v(x + 1; y)

1

F

0

(x; y)

:

By Theorem 8, there are m;n 2 Z such that

q(x; y +m) ju(x+ 1; y)v(x; y) and q(x; y � n) ju(x; y)v(x+ 1; y):

Since u=v is shift-reduced w.r.t. y it follows that q(x; y +m) j v(x; y) or q(x; y � n) ju(x; y). Take C = m in

the former case, C = �n in the latter. 2

Proof of Thm. 9 (cont'd): If p is an irreducible factor of uv then by Lemma 5 there are A;B 2 Z, A > 0,

such that p(x+A; y+B) divides st. By Lemma 6, there is C 2 Z such that p(x+A; y+B+C) divides uv.

Hence by Lemma 4, all irreducible factors of uv are shift-invariant.

If p is an irreducible factor of st then by Lemma 6 there is C 2 Z such that p(x; y + C) divides uv. By

Lemma 5, there are A;B 2 Z, A > 0, such that p(x+A; y+B +C) divides st. By Lemma 4, all irreducible

factors of st are shift-invariant. 2

Corollary 2 Let F;G 2 K(x; y) be compatible rational functions over an algebraically closed �eld K. Then

F

0

; G

0

2 K(x; y) mentioned in Theorem 9 factor into integer-linear factors.

Proof: By Theorem 9 and Corollary 1. 2

Theorem 10 Let F

1

; F

2

; : : : ; F

d

2 K(x) be compatible rational functions over an algebraically closed �eld

K. Then there are compatible rational functions F

0

1

; F

0

2

; : : : ; F

0

d

2 K(x) which factor into integer-linear

factors, and a rational function R 2 K(x) such that F

i

= F

0

i

� (E

i

R)=R, for i = 1; 2; : : : ; d.

Proof: We present an algorithm for computing F

0

1

; F

0

2

; : : : ; F

0

d

, and R with desired properties.

Algorithm Multi-RNF

input: compatible functions F

1

; F

2

; : : : ; F

d

2 K(x);

output: R;F

0

1

; F

0

2

; : : : ; F

0

d

2 K(x) satisfying Theorem 10;

R

1

:= 1;

for i = 1; : : : ; d do

F

(1)

i

:= F

i

;

for k = 2; : : : ; d do

select (F

(k)

k

; S

k

) 2 RNF

x

k

(F

(k�1)

k

);

R

k

:= S

k

R

k�1

;

for i = 1; : : : ; d; i 6= k; do

F

(k)

i

:= F

(k�1)

i

S

k

=(E

i

S

k

);

return R

d

; F

(d)

1

; : : : ; F

(d)

d

:

We claim that for k = 1; 2; : : : ; d:

(i) F

(k)

1

; F

(k)

2

; : : : ; F

(k)

d

are compatible,

12



(ii) for i = 1; 2; : : : ; d we have F

i

= F

(k)

i

E

i

R

k

R

k

,

(iii) each irreducible factor of any of F

(k)

1

; : : : ; F

(k)

d

is pairwise shift-invariant as a polynomial in x

1

; : : : ; x

k

.

The proof of this claim is by induction on k.

� k = 1: In this case, (i) { (iii) hold trivially.

� k > 1: Assume that (i) { (iii) hold at k � 1.

(i) Multiplying F

(k�1)

i

(E

i

F

(k�1)

j

) = (E

j

F

(k�1)

i

)F

(k�1)

j

by S

k

=(E

i

E

j

S

k

) we obtain F

(k)

i

(E

i

F

(k)

j

) =

(E

j

F

(k)

i

)F

(k)

j

.

(ii) F

i

= F

(k�1)

i

�

E

i

R

k�1

R

k�1

= F

(k�1)

i

�

S

k

E

i

S

k

�

E

i

S

k

S

k

�

E

i

R

k�1

R

k�1

= F

(k)

i

�

E

i

R

k

R

k

.

(iii) Let p be an irreducible factor of F

(k)

i

. By construction, p is a shift of some irreducible factor q of

F

(k�1)

i

or F

(k�1)

k

. By the induction hypothesis, for each pair of indices u; v, 1 � u < v � k � 1,

there are a; b 2 Z, not both zero, such that E

a

u

E

b

v

q = q. As p is a shift of q, E

a

u

E

b

v

p = p as well.

Now let 1 � u < k. By Theorem 9 applied to F

(k�1)

k

as a rational function of x = x

u

, y = x

k

, and

considering all the other x

i

as parameters, there are a; b 2 Z, not both zero, such that E

a

u

E

b

k

p = p.

This shows that p is pairwise shift-invariant as a polynomial in x

1

; : : : ; x

k

.

This �nishes the proof of our claim. As K is algebraically closed, it follows from Corollary 1 that each

irreducible factor of F

(d)

1

is an integer-linear polynomial in x

1

; : : : ; x

d

, hence the claim at k = d implies the

correctness of Algorithm Multi-RNF and thus the assertion of the theorem. 2

6 The structure of hypergeometric terms

De�nition 11 (Z-term) A hypergeometric term T (n) is a Z-term if its certi�cates F

i

in (9) factor into

integer-linear factors, for i = 1; 2; : : : ; d.

Theorem 11 Let T (n) be a hypergeometric term over an algebraically closed �eld K. Then there is a

rational function R 2 K(x) and a Z-term T

0

(n) such that T =

a

RT

0

.

Proof: Let F

i

2 K(x), i = 1; : : : ; d, be such that E

i

T =

a

F

i

T , i = 1; : : : ; d, and let R;F

0

1

; : : : ; F

0

d

2 K(x)

be the rational functions associated with F

1

; : : : ; F

d

by Theorem 10. Take any hypergeometric term T

0

such

that

T

0

=

a

T

R

:

Then T =

a

RT

0

, and

E

i

T

0

=

a

E

i

T

E

i

R

=

a

F

i

R

E

i

R

�

T

R

=

a

F

0

i

T

0

; for 1 � i � d:

As F

0

1

; : : : ; F

0

d

factor into integer-linear factors, T

0

is a Z-term. 2

De�nition 12 (uniform term) Let a

1

; a

2

; : : : ; a

d

be relatively prime integers. A Z-term T (n) is uniform of

type a = (a

1

; a

2

; : : : ; a

d

) if there are univariate rational functions F

i

2 K(x) such that

E

i

T (n) =

a

F

i

(a

T

n)T (n) (23)

for 1 � i � d.

Proposition 9 For every integer vector a = (a

1

; a

2

; : : : ; a

d

) there is an integer matrix A 2 Z

d�d

such that

the �rst row of A is a, and detA = gcd(a

1

; a

2

; : : : ; a

d

).

Proof: By induction on d.
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� d = 1: This is clear, assuming gcd(a) = a.

� d > 1: Write d = gcd(a

1

; a

2

; : : : ; a

d

) and d

0

= gcd(a

1

; a

2

; : : : ; a

d�1

). There are u; v 2 Z such that

ud

0

� va

d

= gcd(d

0

; a

d

) = d. By the induction hypothesis there is a matrix A

0

2 Z

(d�1)�(d�1)

whose

�rst row equals (a

1

; a

2

; : : : ; a

d�1

) while detA

0

= gcd(a

1

; a

2

; : : : ; a

d�1

). Let

a

0

A

0

u

0

a

d

A =

where a

0

= (v=d

0

)(a

1

; a

2

; : : : ; a

d�1

). Then the �rst row of A is a, and

detA = u detA

0

+ (�1)

d+1

a

d

(v=d

0

)(�1)

d�2

detA

0

= ud

0

� va

d

= d:

2

Theorem 12 If K is algebraically closed, any uniform term T (n) is conjugate to a nontrivial factorial term.

Proof: Let T (n) be a uniform term of type a. By Proposition 9, there is a unimodular integer matrix

A 2 Z

d�d

whose �rst row is a. Using (23) repeatedly, we �nd that for �xed u 2 N ,

E

u

i

T (n) =

a

F

i;u

(a

T

n)T (n); (24)

E

�u

i

T (n) =

a

F

i;�u

(a

T

n)T (n); (25)

where F

i;u

(a

T

n) =

Q

u�1

j=0

E

j

i

F

i

(a

T

n) and F

i;�u

(a

T

n) = 1=

Q

u

j=1

E

�j

i

F

i

(a

T

n). Let

T

0

(n) = T (A

�1

n) (26)

be a K-valued function de�ned on the integer cone A

�1

n � 0. Write n

0

= A

�1

n. Then

E

i

T

0

(n) = E

i

T (A

�1

n)

=

a

T (A

�1

n+
~
a

(i)

) = T (n

0

+
~
a

(i)

) (27)

where
~
a

(i)

is the i-th column of A

�1

. As a

T

n

0

= a

T

A

�1

n = n

1

, we obtain from (27) using (24), (25) that

E

i

T

0

(n) = f

i

(n

1

)T

0

(n)

for 1 � i � d, where f

i

(n

1

) =

Q

d

j=1

F

j;~a

(i)

j

(n

1

+ s

j

) and s

j

=

P

d

k=j+1

a

k

~a

(i)

k

.

From the compatibility condition (10) applied to F

i

and F

1

it follows that f

i

(n

1

) is constant for 2 � i � d.

Factoring f

1

(x) over K we can write

f

1

(x) = v

1

p

Y

i=1

(x+ �

i

)

p+q

Y

i=p+1

(x+ �

i

)

�1

;

f

i

(x) = v

i

;

where v

i

2 K, p; q 2 N , and �

i

2 K. Then the sequence

H

0

(n) = v

n

p

Y

i=1

(�

i

)

n

1

p+q

Y

i=p+1

(�

i

+ n

1

)

�n

1

(28)
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(de�ned onA

�1

n � 0) satis�es the same hypergeometric recurrences as T

0

(n). Using the inverse substitution

of (26), we see that T (n) = T

0

(An) is conjugate to H(n) = H

0

(An). But

H(n) = u

n

p

Y

i=1

(�

i

)

a

T

n

p+q

Y

i=p+1

(�

i

+ a

T

n)

�a

T

n

(where u

i

= v

~
a

(i)

) is a factorial term. In (28), when �

i

2 Z we are free to replace (�

i

)

n

1

by (1)

�

i

+n

1

�1

or

by (0)

�

i

+n

1

. We can do likewise with its pseudoinverse (�

i

+ n

1

)

�n

1

. By a judicious choice between these

alternatives we can always make H(n) nontrivial. 2

Corollary 3 If K is algebraically closed, any Z-term T (n) is conjugate to a nontrivial factorial term.

Proof: W.l.g. assume that T is nontrivial. Let T (n) be a Z-term such that E

i

T (n) =

a

F

i

(n)T (n). Let

F

i

(x) = F

(i)

1

(x)F

(i)

2

(x) � � �F

(i)

m

(x) be a factorization of F

i

such that F

(i)

k

F

(j)

k

is a uniform rational function

for all 1 � k � m and 1 � i � j � d, while F

(i)

k

F

(i)

l

where 1 � i � d and 1 � k < l � m is not

(unless one of F

(i)

k

, F

(i)

l

is constant). It follows from the unique factorization of polynomials in K[x] that

F

(1)

k

; F

(2)

k

; : : : ; F

(d)

k

are compatible for each k. It can be shown that there are uniform terms T

k

(n) satisfying

E

i

T

k

(n) =

a

F

(i)

k

(n)T

k

(n). Then T (n) '

Q

m

k=1

T

k

(n). As in the proof of Theorem 12, we can achieve that

T (n) will be nontrivial. Since products of factorial terms are factorial, the claim follows from Theorem 12.

2

Corollary 4 (Ore-Sato Theorem) If K is algebraically closed, any hypergeometric term T (n) is conjugate

to R(n)T

0

(n) where R 2 K(x) n f0g is a rational function and T

0

(n) is a nontrivial factorial term.

Proof: W.l.g. assume that T is nontrivial. By Theorem 11, T =

a

RT

00

where R 2 K(x) and T

00

is a Z-term.

By Proposition 3, this implies that T ' RT

00

. By Corollary 3, T

00

' T

0

where T

0

is a nontrivial factorial

term. Then RT

00

' RT

0

. As RT

00

6=

a

0, it follows by Proposition 5 that T ' RT

0

. 2

7 Holonomic hypergeometric terms

Theorem 13 Assume that K is algebraically closed. If a rational sequence R(n) is conjugate to a nontrivial

holonomic hypergeometric term T (n) then the denominator of R factors into integer-linear factors.

Proof: We prove this by induction on d.

� d = 1: Every univariate polynomial over an algebraically closed �eld factors into integer-linear factors.

� d > 1: Write R = P=Q where P;Q 2 K[x] and P ?Q. Let Q = VW where V;W 2 K[x] and V is

irreducible. We wish to show that V is integer-linear. Denote T

0

= TW and R

0

= RW = P=V . Then

T

0

is holonomic hypergeometric, T

0

6=

a

0, and T

0

' R

0

. Hence there are F

i

2 K(x) such that both T

0

and R

0

satisfy (9). By Proposition 1, F

i

= (E

i

R

0

)=R

0

. Thus for 1 � i � d,

E

i

T

0

(n) =

a

E

i

R

0

(n)

R

0

(n)

T

0

(n): (29)

We claim that

E

�a

1

1

� � �E

�a

d

d

T

0

(n) =

a

E

�a

1

1

� � �E

�a

d

d

R

0

(n)

R

0

(n)

T

0

(n) (30)

for all a

1

; : : : ; a

d

� 0. The proof is by induction on a

1

+� � �+a

d

. If a

1

+� � �+a

d

= 0 then a

1

= � � � = a

d

= 0

and the claim is trivial. If a

1

+ � � �+ a

d

> 0 assume w.l.g. that a

1

> 0. Then

E

�a

1

1

� � �E

�a

d

d

T

0

(n) =

a

E

�a

1

1

� � �E

�a

d

d

R

0

(n)

E

�(a

1

�1)

1

E

�a

2

2

� � �E

�a

d

d

R

0

(n)

E

�(a

1

�1)

1

E

�a

2

2

� � �E

�a

d

d

T

0

(n)
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=

a

E

�a

1

1

� � �E

�a

d

d

R

0

(n)

E

�(a

1

�1)

1

E

�a

2

2

� � �E

�a

d

d

R

0

(n)

E

�(a

1

�1)

1

E

�a

2

2

� � �E

�a

d

d

R

0

(n)

R

0

(n)

T

0

(n)

=

a

E

�a

1

1

� � �E

�a

d

d

R

0

(n)

R

0

(n)

T

0

(n);

using (29) and the induction hypothesis.

As T

0

is holonomic, Theorem 1(i) implies that there is an s 2 N , a nonempty set H

1

� f0; : : : ; sg

d

, and

univariate polynomials p

h;1

2 K[x] n f0g for each h 2 H

1

such that

X

h2H

1

p

h;1

(n

1

)T

0

(n� h) = 0

for all n � s. Using (30) we see that there is an algebraic set A such that

X

h2H

1

p

h;1

(n

1

)R

0

(n� h) = 0

on suppT

0

nA. As this is non-algebraic, Proposition 1 and R

0

= P=V imply that

X

h2H

1

p

h;1

(n

1

)

P (n� h)

V (n� h)

= 0: (31)

Pick h

0

2 H

1

and clear denominators in (31). The factor V (n � h

0

) appears explicitly in every term

except the one with h = h

0

. Hence V (x� h

0

) which is irreducible divides

p

h

0

;1

(x

1

)P (x� h

0

)

Y

h2H

1

h6=h

0

V (x� h):

If it divides p

h

0

;1

(x

1

) then V (x) 2 K[x

1

]. As it is irreducible, V is integer-linear. Next, V (x � h

0

)

cannot divide P (x � h

0

) because V jQ and P ?Q, hence it divides one of V (x � h) where h 6= h

0

.

But then V (x) = V (x + a) where a = h

0

� h 6= 0. W.l.g. assume that a

d

6= 0. Then by Lemma 3,

there is a (d� 1)-variate polynomial h 2 K[x

1

; : : : ; x

d�1

] such that

V (x) = h(x

1

�

a

1

a

d

x

d

; : : : ; x

d�1

�

a

d�1

a

d

x

d

): (32)

De�ne R

00

(x

1

; : : : ; x

d�1

) := R

0

(x

1

; : : : ; x

d�1

; 0) and T

00

(n

1

; : : : ; n

d�1

) := T

0

(n

1

; : : : ; n

d�1

; 0). Then

R

00

; T

00

are hypergeometric terms and R

00

' T

00

. By Theorem 1(ii), T

00

is holonomic. Therefore by

the induction hypothesis, the denominator V (x

1

; : : : ; x

d�1

; 0) of R

00

factors into integer-linear factors.

From (32) we �nd

V (x

1

; : : : ; x

d�1

; 0) = h(x

1

; : : : ; x

d�1

);

hence

h(x

1

; : : : ; x

d�1

) =

r

Y

i=1

0

@

u

i

d�1

X

j=1

c

ij

x

j

+ v

i

1

A

for some r 2 N , u

i

; v

i

2 K, and c

ij

2 Z. Now it follows from (32) that

V (x) =

r

Y

i=1

0

@

u

i

d�1

X

j=1

c

ij

�

x

j

�

a

j

a

d

x

d

�

+ v

i

1

A

=

1

a

r

d

r

Y

i=1

0

@

u

i

d�1

X

j=1

c

ij

(a

d

x

j

� a

j

x

d

) + a

d

v

i

1

A

:

But V is irreducible, so r = 1 and V is integer-linear.

2
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Example 7 In the literature, rational sequences such as 1=(n

2

+ k

2

) [19, p. 586], 1=(n

2

+ k) [10, p. 358]

and 1=(nk+1) [7, Exer. 5.107] are shown to be nonholonomic by various ad hoc arguments. Using Theorem

13, nonholonomicity of these sequences follows from the fact that their denominators do not factor into

integer-linear factors. Likewise, the trivariate rational sequence T (n;m; k) = 1=((n � m)(k � m) + 1) is

not holonomic by Theorem 13. Note that T (n;m; k) satis�es condition (i) of Theorem 1 with the constant-

coe�cient recurrence T (n;m; k)� T (n� 1;m� 1; k � 1) = 0 valid for n;m; k � s = 1, but condition (ii) is

not satis�ed as the bivariate sequence T (n; 0; k) = 1=(nk + 1) is not holonomic. 2

Lemma 7 If Q 2 K[x]nf0g factors into integer-linear factors then the rational sequence 1=Q(n) is conjugate

to a nontrivial factorial term.

Proof: Write Q(n) = u

Q

p

i=1

�

a

T

i

n+ �

i

�

where u 2 K n f0g, p 2 N , �

i

2 K, and a

i

2 Z

d

for 1 � i � p.

W.l.g. assume that each a

i

has at least one positive component. Then

1

�

i

+ a

T

i

n

'

�

(1)

a

T

i

n+�

i

�1

(a

T

i

n+ �

i

+ 1)

�(a

T

i

n+�

i

)

; if �

i

2 Z and a

i

� 0;

(�

i

)

a

T

i

n

(a

T

i

n+ �

i

+ 1)

�(a

T

i

n+1)

; otherwise

where the right-hand side is conjugate to a nontrivial factorial term. It follows that 1=Q(n) is conjugate to

a nontrivial factorial term as well. 2

Theorem 14 If K is algebraically closed, any holonomic hypergeometric term T (n) is conjugate to a non-

trivial proper term.

Proof: W.l.g. assume that T is nontrivial. By Corollary 4, T ' RT

1

where R 2 K(x; y) n f0g and T

1

is a nontrivial factorial term. By changing all rising factorials in T

1

into their nonvanishing counterparts,

we obtain a conjugate holonomic sequence T

2

which is nowhere zero. Then T ' RT

2

and 1=T

2

is also

holonomic. So R ' T=T

2

. Note that T=T

2

is nontrivial, and holonomic by Theorem 2. Write R = P=Q

where P;Q 2 K[x; y] and P ?Q. By Theorem 13, Q factors into integer-linear factors. By Lemma 7, 1=Q is

conjugate to a nontrivial proper term T

3

. Thus T ' PT

2

T

3

which is a nontrivial proper term. 2
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