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Algèbre linéaire pour matri
es de polyn�mes de Ore

Résumé : Nous dé
rivons un algorithme qui transforme une matri
e de polyn�mes de

Ore à 
oe�
ients dans un domaine de Ore en une forme réduite par lignes. Cet algorithme

est utilisable pour faire des 
al
uls standards d'algèbre linéaire (rang, noyau, dépendan
e

linéaire, résolution d'équations) sur 
e type de matri
es. L'appli
ation prin
ipale de notre

algorithme est la désingularisation de systèmes de ré
urren
es linéaires, ainsi que le 
al
ul

des solutions rationnelles d'une grande 
lasse de systèmes linéaires fon
tionnels. Il s'avère

aussi être e�
a
e sur des matri
es de polyn�mes 
ommutatifs usuels.

Mots-
lés : 
al
ul formel, algèbre linéaire, polyn�mes de Ore, systèmes di�érentiels,

systèmes aux di�éren
es �nies
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Introdu
tion

In order to bound the degree of polynomial solutions of 
ertain linear systems of fun
tional

equations, we used in our ISSAC'2001 paper [3℄ a desingularizing transformation for linear

re
urren
es systems. Given su
h a system

P

h

k=l

M

k

(n)Z

n+k

= G(n), where the M

k

(n) are

matri
es with entries in a suitable integral domain, our transformation was used to ensure

that M

l

(n) had full rank, whi
h then allowed the bounding pro
edure to pro
eed. We study

in this paper that transformation in greater depth, in parti
ular extending it to 
oe�
ients

in an arbitrary left Ore domain, whi
h makes it appli
able to multivariate skew-polynomial

matri
es, for example matri
es over Weyl algebras. In addition, we study its additional

properties and extend its range of appli
ations to the standard 
al
ulations of linear algebra

for skew-polynomial matri
es: 
omputing their ranks and kernels, as well as �nding linear

dependen
es and solving inhomogeneous linear systems. It turns out that our transformation

is a generalisation to matri
es of skew-polynomials of known row�redu
tion methods [6℄, so

we study its arithmeti
 
omplexity in the 
ommutative 
ase, where it is 
omparable to (but

not better than) some of the best methods known. Experimental ben
hmarks 
on�rm this

to be the 
ase in pra
ti
e for 
ommutative matrix polynomials over �nite �elds. Finally, our

ISSAC'2001 use is re
alled as one of the appli
ations of this transformation.

By 
onvention, all rings and �elds in this paper have 
hara
teristi
 0 but are not ne
es-

sarily 
ommutative. Given a nonzero Laurent polynomial p =

P

i

p

i

X

i

(with �nite support),

its degree is deg(p) = maxfi s.t. p

i

6= 0g, while its valuation is �(p) = minfi s.t. p

i

6= 0g.

We use [M ℄

i

to denote the i

th

row of the matrix M .

1 Ore domains and skew-polynomials

We re
all in this se
tion the basi
 de�nitions and properties of Ore domains and skew-

polynomials, whi
h are a 
ommon abstra
tion of di�erential and di�eren
e operators.

De�nition 1 A left Ore domain is a ring R without zero-divisors and su
h that every two

nonzero elements of R have a nonzero 
ommon left multiple.

Any left Ore domain R 
an be embedded in a �eld K of left-fra
tions of R [9℄. The rank of

a left R-module M is then de�ned to be the dimension of K 
M as a ve
tor spa
e over

K, whi
h 
orresponds to the maximal 
ardinality of R-linearly independent subsets of M.

Given a matrixM with entries in R, we use rk

R

(M) to denote the rank of the left R-module

generated by the rows of M , and omit the subs
ript when it is 
lear from the 
ontext.

Any 
ommutative integral domain is obviously a left Ore domain. A 
lassi
al non
om-

mutative left Ore domain is the ring of skew-polynomials, whi
h we pro
eed to des
ribe.

Let R be a ring and � an inje
tive endomorphism of R. A �-derivation is a map Æ : R! R

satisfying

Æ(a+ b) = Æa+ Æb and Æ(ab) = (�a)(Æb) + (Æa)b for any a; b 2 R :

RR n° 4420



4 Abramov & Bronstein

Note that the map 0

R

that sends every a 2 R to 0 is a �-derivation. Let X be an in-

determinate over R. The skew-polynomial ring over R, denoted R[X ;�; Æ℄ is the ring of

usual polynomials in X over R, with the usual polynomial addition and the multipli
ation

given by Xa = �(a)X + Æ(a) for any a 2 R. When Æ = 0

R

, that ring is denoted R[X ;�℄

and is 
alled a di�eren
e operator ring over R. When Æ = 0

R

and � is an automorphism

of R, lo
alizing R[X ;�℄ at the powers of X , we obtain the skew Laurent polynomial ring

R[X;X

�1

;�℄, whi
h is the ring of Laurent polynomials in X over R, with the usual addition

and the multipli
ation given by Xa = �(a)X and X

�1

a = �

�1

(a)X

�1

for any a 2 R.

Lemma 1 If R is a left Ore domain and � is an automorphism of R, then R[X;X

�1

;�℄ is

a left Ore domain.

Proof. By Corollary 1.1 of [8℄, the di�eren
e operator ring R[X ;�℄ is a left Ore domain.

Sin
e every p 2 R[X;X

�1

;�℄ 
an be written as p = X

�s

p

0

where s � 0 and p

0

2 R[X ;�℄, it

follows that R[X;X

�1

;�℄ has no zero divisors. Let p; q 2 R[X;X

�1

;�℄, write p = X

�s

p

0

and

q = X

�t

q

0

where s; t � 0 and p

0

; q

0

2 R[X ;�℄, and let m 2 R[X ;�℄ be a nonzero left 
ommon

multiple of p

0

and q

0

. Then, m = p

00

p

0

= q

00

q

0

for some p

00

; q

00

2 R[X ;�℄, whi
h implies that

m = p

00

X

s

p = q

00

X

t

q is a nonzero left 
ommon multiple of p and q. 2 The above result

allows us to 
onstru
t multivariate skew Laurent polynomial rings over a left Ore domain by

iterating the univariate 
onstru
tion with several automorphisms. Our algorithm, des
ribed

below, 
an be applied to matri
es with entries in su
h rings by 
onsidering them univariate

in their topmost variable. A more general 
onstru
tion of multivariate skew-polynomials,

but with nonnegative exponents only, is des
ribed by [8℄, and se
t. 4.1 des
ribes how our

algorithm 
an be applied to those.

2 Rank-revealing transformations

Let M be a matrix with entries in a ring S. The elementary row operations appli
able to M

are (i) applying a permutation to the rows, (ii) multiplying a row by an element of S that is

not a zero-divisor, and (iii) adding a multiple of a row to another one. A row transformation

is a �nite sequen
e of elementary row operations. Ea
h elementary row operation 
an be

performed by multiplying M on the left by an elementary matrix, namely (i) a permutation

of the identity matrix, (ii) the identity matrix with one entry on its diagonal repla
ed by an

element of S that is not a zero-divisor, and (iii) the identity matrix with at most one nonzero

entry outside its diagonal. Therefore, any row transformation 
an be seen as multiplying M

on the left by a matrix T , whi
h is a �nite produ
t of elementary matri
es.

De�nition 2 Given a matrix M with entries in a left Ore domain R, a row transformation

T is a rank-revealing-transformation (RRT) forM if rk(M) is exa
tly the number of nonzero

rows of TM .

Note that an RRT T for M immediately yields rk(M). In addition, the rows of T 
orre-

sponding to the zero rows of TM form a basis for the left-kernel of M . Therefore, applying

an RRT to the transpose of M yields a basis of its kernel.

INRIA
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The use of various RRTs is 
lassi
 in 
ommutative linear algebra: Gaussian elimination

over 
ommutative �elds and its fra
tion�free variants over 
ommutative integral domains [5℄

obviously satisfy the above de�nition sin
e they produ
e a row-e
helon form of M . For

matrix polynomials over a 
ommutative �eld, there are weaker RRTs that originate from

linear 
ontrol theory: some methods used to 
ompute the row-redu
ed and Popov forms [11℄

are RRTs, as is the algorithm of [14℄ for 
omputing weak Popov forms. We des
ribe now a

skew-variant of row-redu
tion that provides a fra
tion�free RRT for skew-polynomial ma-

tri
es.

Let R be a left Ore domain, � an automorphism of R, R[X;X

�1

;�℄ a skew Laurent

polynomial ring over R, and suppose that we 
an 
ompute ranks and kernels of matri
es

with entries in R. Our RRT is des
ribed as algorithm 1 below, using the following notations:

1

n

denotes the n � n identity matrix, B

t

denotes the transpose of the matrix or ve
tor B,

and if B has entries in R[X;X

�1

;�℄, deg

i

(B) denotes the maximum degree in X of all the

elements of the i

th

row of B. Finally, for V any left R-submodule of R

k

and J any subset

of f1; : : : ; kg, V

J

= fv 2 V su
h that v

j

= 0 for all j 2 Jg is the interse
tion of kernels of

proje
tions and is therefore a left submodule of V .

Algorithm 1: One�step trailing skew�RRT.

Input: An n�m matrix M with entries in R[X;X

�1

;�℄.

Output: An RRT T for M and the transformed matrix TM .

(1) Write M as M =

P

h

k=l

M

k

X

k

where l � h and M

l

6= 0

(2) T  1

n

(3) Z  fi 2 f1; : : : ; ng s.t. the i

th

row of M is 0g

(4) while Ker(M

t

l

)

Z

6= f0g

(5) v  a nonzero element of Ker(M

t

l

)

Z

(6) I  fi 2 f1; : : : ; ng su
h that v

i

6= 0g

(7) Choose i

0

2 I su
h that 8i 2 I; deg

i

0

(M) � deg

i

(M)

(8) A 1

n

with i

0

th

row repla
ed by X

�1

v

t

(9) T  AT , M  AM , update M

l

; : : : ;M

h

(10) if the i

0

th

row of M is 0 then Z  Z [ fi

0

g

(11) return (T;M)

Note the following remarks about the steps of algorithm 1:

� In step (1), the M

k

are matri
es with entries in R.

� Computing Ker(M

t

l

)

Z

in step (5) is done by removing from M

t

l

the 
olumns indexed

by Z and 
omputing the kernel of the resulting matrix.

� In step (5), a full basis of the kernel is not required, a single nonzero ve
tor is su�
ient.

In addition, if R is itself a skew Laurent polynomial ring, then algorithm 1 
an be used

re
ursively to 
ompute Ker(M

t

l

)

Z

.

RR n° 4420



6 Abramov & Bronstein

� Even though the matrix A of step (8) is more 
omplex than a single elementary matrix,

it is a row transformation be
ause v

i

0

6= 0.

� The produ
ts AT and AM in step (9) are not a
tually 
omputed as matrix produ
ts,

they simply 
orrespond to repla
ing the i

0

th

rows of T andM by the linear 
ombination

of rows given by X

�1

v. Furthermore, if M is represented by the matri
es M

l

; : : : ;M

h

,

then the produ
t AM 
an be performed dire
tly inside those matri
es.

� The matrix T does not need to be updated in step (9) if only rk(M) is needed. Even

if elements of Ker(M

t

) are desired, one 
an store the sequen
e of pairs (v; i

0

) used at

ea
h loop rather than update T , and use them to 
ompute elements of the kernel after

the algorithm has terminated.

We now pro
eed to prove termination and 
orre
tness of algorithm 1.

Lemma 2 Algorithm 1 terminates after at most n(h�min(0; l) + 1) loops.

Proof. Write M =

P

h

k=l

M

k

X

k

before step (9), and let M

0

be M after that step. As noted

above, M

0

is M with the i

0

th

row repla
ed by

X

�1

v

t

M =

h

X

k=l

X

�1

v

t

M

k

X

k

: (1)

Sin
e v

t

M

l

= 0, the starting point of the above sum is k = l+1. In addition, v

i

= 0 whenever

deg

i

(M) > deg

i

0

(M), so v

t

M

k

= 0 for k > deg

i

0

(M). Therefore, using the 
ommutation

rule X

�1

a = �

�1

(a)X

�1

we get

X

�1

v

t

M =

h

X

k=l

X

�1

v

t

M

k

X

k

=

deg

i

0

(M)

X

k=l+1

X

�1

v

t

M

k

X

k

=

deg

i

0

(M)

X

k=l+1

�

�1

(v

t

M

k

)X

k�1

:

It follows that eitherX

�1

v

t

M = 0 or deg

i

0

(M

0

) < deg

i

0

(M). In the �rst 
ase, the 
ardinality

of Z is in
reased in step (10), so that 
ase 
an o

ur at most n times. In the se
ond 
ase,

P

i

deg

i

(M

0

) <

P

i

deg

i

(M), where the sums are taken over the nonzero rows. Sin
e that

sum is at most nh and at least 0 if l � 0, or nl if l < 0, that 
ase 
an o

ur at most

n(h�min(0; l)) times. 2

Lemma 3 rk(M) remains un
hanged throughout algorithm 1.

Proof. Write M =

P

h

k=l

M

k

X

k

before step (9), and let M

0

be M after that step, and

M

0

and M denote the left R[X;X

�1

;�℄-modules generated by the rows of M

0

and M

respe
tively. As noted above, M

0

is M with the i

0

th

row repla
ed by

[M

0

℄

i

0

= X

�1

v

t

M =

n

X

i=1

X

�1

v

i

[M ℄

i

2M;

INRIA
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soM

0

is a left R[X;X

�1

;�℄-submodule ofM. Proposition 9.3 of [9℄ then implies that

rk(M) = rk(M

0

) + rk(M=M

0

) : (2)

Let w =

P

n

i=1

w

i

[M ℄

i

be an arbitrary element ofM. If w

i

0

= 0, then w 2 M

0

. Otherwise,

w

i

0

6= 0, so w

i

0

and X

�1

v

i

0

have a nonzero 
ommon left multiple �w

i0

= �X

�1

v

i

0

where

�; � 2 R[X;X

�1

;�℄ are nonzero. We then have

�w = �w

i

0

[M ℄

i

0

+

X

i6=i

0

�w

i

[M ℄

i

= �X

�1

v

i

0

[M ℄

i

0

+

X

i6=i

0

�w

i

[M

0

℄

i

= �

0

�

[M

0

℄

i

0

�

X

i6=i

0

X

�1

v

i

[M

0

℄

i

1

A

+

X

i6=i

0

�w

i

[M

0

℄

i

2M

0

;

whi
h implies that M=M

0

is a torsion module, hen
e of rank 0, and the lemma follows

from (2). 2

We �nally 
on
lude that algorithm 1 yields a rank-revealing transformation.

Theorem 1 Let (T;M

0

) be the result produ
ed by algorithm 1 on the input matrixM . Then,

rk(M) is the number of nonzero rows of M

0

. Furthermore, rk

R

(M

0

l

) = rk

R[X;X

�1

;�℄

(M) and

the rows of T 
orresponding to the zero rows of M

0

form a basis of Ker(M

t

).

Proof. Let [M

0

℄

i

1

; : : : ; [M

0

℄

i

r

be the nonzero rows of M

0

. Sin
e the algorithm terminated,

we must have had Z = f1; : : : ; ng n fi

1

; : : : ; i

r

g and Ker(M

0t

l

)

Z

= f0g in step (4), whi
h

implies that [M

0

l

℄

i

1

; : : : ; [M

0

l

℄

i

r

are linearly independent over R, hen
e that rk

R

(M

0

l

) � r.

However, the remaining rows of M

0

l

must be zero sin
e they are zero in M

0

, so rk

R

(M

0

l

) = r.

Let now �

1

; : : : ; �

r

2 R[X;X

�1

;�℄ be not all 0 and su
h that

P

r

j=1

�

j

[M

0

℄

i

j

= 0, and

�

j

= X

��

�

j

for all j, where � = min

jj�

j

6=0

(�(�

j

)). Then, �

j

2 R[X ;�℄ for all j and there

is at least one j su
h that �

j

(0) 6= 0. Multiplying the linear dependen
e on the left by X

��

and on the right by X

�l

we get

0 =

r

X

j=1

X

��

�

j

[M

0

℄

i

j

X

�l

=

r

X

j=1

�

j

[M

0

X

�l

℄

i

j

:

Sin
e the �

j

's are in R[X ;�℄ as well as the entries of M

0

X

�l

, evaluating the above at X = 0

yields

0 =

r

X

j=1

�

j

(0)[M

0

l

℄

i

j

in 
ontradi
tion with [M

0

l

℄

i

1

; : : : ; [M

0

l

℄

i

r

linearly independent over R. Therefore, the r

nonzero rows of M

0

are linearly independent over R[X;X

�1

;�℄, when
e rk

R[X;X

�1

;�℄

(M

0

) =

r. Sin
eM andM

0

have the same rank by lemma 3, we get r = rk

R[X;X

�1

;�℄

(M) = rk

R

(M

0

l

).

Sin
eM

0

= TM , the rows of T 
orresponding to the zero rows ofM

0

are elements of Ker(M

t

).

There are n � rk(M) su
h rows, whi
h is exa
tly the dimension of Ker(M

t

). Finally, the

rows of a row transformation are linearly independent, so we obtain a basis of Ker(M

t

). 2

RR n° 4420



8 Abramov & Bronstein

Corollary 1 Let R be a left Ore domain, � an automorphism of R and R[X;X

�1

;�℄ a skew

Laurent polynomial ring over R. If we 
an 
ompute ranks and kernels of matri
es with entries

in R, then we 
an 
ompute ranks and kernels of matri
es with entries in R[X;X

�1

;�℄.

We only require in algorithm 1 the 
omputation of one nonzero ve
tor in a kernel. It

is frequently the 
ase that algorithms for 
omputing su
h ve
tors return a full basis of

the kernel, or several ve
tors. If fra
tion�free elimination algorithms exist for matri
es

with entries in R, then we 
an use several linearly independent kernel ve
tors in order to

de
rease the number of kernel 
omputations performed by algorithm 1. Our modi�ed RRT

is des
ribed as algorithm 2 below.

Algorithm 2: Multi�step trailing skew�RRT.

Input: An n�m matrix M with entries in R[X;X

�1

;�℄.

Output: An RRT T for M and the transformed matrix TM .

(1) Write M as M =

P

h

k=l

M

k

X

k

where l � h and M

l

6= 0

(2) T  1

n

(3) Z  fi 2 f1; : : : ; ng s.t. the i

th

row of M is 0g

(4) while Ker(M

t

l

)

Z

6= f0g

(5) U  s � n matrix whose rows are R-linearly independent ele-

ments of Ker(M

t

l

)

Z

(6) for j  1 to s

(7) v  [U ℄

j

(8) I  fi 2 f1; : : : ; ng su
h that v

i

6= 0g

(9) Choose i

0

2 I su
h that 8i 2 I; deg

i

0

(M) � deg

i

(M)

(10) A 1

n

with i

0

th

row repla
ed by X

�1

v

t

(11) T  AT , M  AM , update M

l

; : : : ;M

h

(12) if the i

0

th

row of M is 0 then Z  Z [ fi

0

g

(13) Compute a row transformation E over R su
h that the i

0

th


olumn of EU has zeroes in rows j + 1 to s

(14) U  EU

(15) return (T;M)

Fra
tion�free elimination over R, as used in step (13), 
ertainly exists when R is a


ommutative integral domain [5℄, but also in the non
ommutative 
ase, provided that R is

an e�e
tive left Ore domain in the sense of [8℄, i.e. that nonzero 
ommon left multiples 
an

a
tually be 
omputed in R with their 
ofa
tors. In that 
ase, given a matrix B with entries

in R an entry b

ij

6= 0 
an be used as a pivot to eliminate the j

th


olumn of B: for ea
h k 6= i

su
h that b

kj

6= 0, 
omputing �; � 2 R su
h that �b

ij

= �b

kj

6= 0, then multiplying the k

th

row of B by �� and adding to it � times its i

th

row is a pair of elementary row operations

that brings a 0 at row k and 
olumn j. Termination and 
orre
tness of algorithm 2 follow

from the following lemma.

INRIA
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Lemma 4 rk(U) = s throughout the inner loop of algorithm 2. In addition, the rows j to s

of U are in Ker(M

t

l

)

Z

throughout that loop.

Proof. rk(U) = s at step (5) and it does not 
hange when U is multiplied on the left by

the row transformation E at step (14), so it remains s throughout the inner loop. When

j = 1, the rows of U are in Ker(M

t

l

)

Z

by de�nition, so suppose now that the rows j to s of

U are in Ker(M

t

l

)

Z

for a given j < s at step (7). Let M

0

be M after step (11), Z

0

be Z after

step (12) and U

0

= EU be U after step (14). Sin
e M

l

and M

0

l

di�er only at row i

0

, and the

i

0

th

entries of [U

0

℄

j+1

; : : : ; [U

0

℄

s

are 0, those rows are in Ker(M

0

l

). In addition, the entries of

[U ℄

j

; : : : ; [U ℄

s

whose indi
es are in Z are zero and Z

0

� Z [ fi

0

g, so [U

0

℄

j+1

; : : : ; [U

0

℄

s

are in

Ker(M

0

l

)

Z

0

and the lemma follows by indu
tion. 2

As a 
onsequen
e of lemma 4, the element v of step (7) in algorithm 2 is always in

Ker(M

l

)

Z

, so lemmas 2 and 3 as well as theorem 1 remain valid for algorithm 2.

We note that there is also a �leading� variant of algorithm 1 that works with M

h

rather

than M

t

: one uses Ker(M

t

h

)

Z

in steps (4) and (5), then pi
ks an entry of v 
orresponding

to a row of M of minimal valuation rather than maximal degree in step (7), whi
h be
omes

(7) Choose i

0

2 I su
h that 8i 2 I; �

i

0

(M) � �

i

(M)

where �

i

(M) denotes the minimum valuation in X of all the elements of the i

th

row of M .

Finally, X

�1

is repla
ed by X in the de�nition of A in step (8), whi
h be
omes

(8) A 1

n

with i

0

th

row repla
ed by Xv

t

.

Lemmas 2 and 3 are easily seen to remain valid with the above modi�
ations, as well

as theorem 1, ex
ept that we now have rk

R

(M

0

h

) = rk

R[X;X

�1

;�℄

(M) instead of M

0

l

, whi
h

is the essential reason for using the leading rather than the trailing version at times (as in

se
tion 4.3 below). Of 
ourse, the above modi�
ations 
an be applied to algorithm 2 as well.

While we have mentionned only ranks and kernels in the dis
ussion so far, our algorithm,

like any RRT, 
an be used to �nd linear dependen
ies between ve
tors with entries in

R[X;X

�1

;�℄, as well as to solve inhomogeneous systems of the form MZ = b, sin
e this 
an

be redu
ed to �nding the kernel of the augmented matrix [M j b℄.

3 Complexity and experimental results

Let M =

P

h

k=l

M

j

X

k

be a matrix with entries in R[X;X

�1

;�℄ and d = h �min(0; l) + 1.

The number of loops of algorithm 1 at most nd by Lemma 2, so we only need to 
ount

the 
ost of ea
h loop. Using formula (1) for updating M at step (9), we must 
ompute d

produ
ts of the form v

t

M

k

, ea
h 
osting nmmultipli
ations of R. Counting an appli
ation of

�

�1

to be one operation in R, left-multiplying ea
h v

t

M

k

by X

�1

also 
osts nm operations,

so step (9) has an arithmeti
 
omplexity of O(nmd). Computing Ker(M

t

l

)

Z


an be done

in O(n

2

m) operations in R when R is a 
ommutative integral domain. When R is an

e�e
tive left Ore domain, 
ounting the 
omputation of a nonzero 
ommon left multiple to

be one operation in R, then non
ommutative elimination also has an arithmeti
 
omplexity of

RR n° 4420



10 Abramov & Bronstein

O(n

2

m), so the worst-
ase arithmeti
 
omplexity of algorithm 1 is O(n

2

md

2

+n

3

md). When

n = m = d = O(�), the 
omplexity of 
omputing rk(M) is then O(�

5

). In the 
ommutative

univariate 
ase, this is the same than the 
omplexity of Chinese remaindering, although we

expe
t row�redu
tion to perform somewhat better be
ause proving the rank with Chinese

remaindering always requires nd modular images, while the bound of Lemma 2 is generally

pessimisti
. Computing the rank with the weak Popov form of [14℄ has a 
omplexity of

O(nmd

2

rk(M)), whi
h is better than row�redu
tion when rk(M) << �, but is the same

when rk(M) = O(�).

Given the similarities in arithmeti
 
omplexity with the above two methods, algorithm 1

has been implemented on top of the �

it

library [7℄ by G. Chatley (
hatley�iitk.a
.in) and

extensive ben
hmarks 
arried out. For polynomials over �nite �elds (where the arithmeti


and binary 
omplexity are the same) the results, shown in �gure 1 below, 
on�rm the above

analysis, namely that when n;m; d and rk(M) all have the same orders, algorithm 1 lies

between weak Popov forms and Chinese remaindering, the timings being proportional with

small 
onstant ratios (less than 2). In the 
ase of full rank matri
es, algorithm 1 and Chinese

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

5 10 15 20 25 30 35 40 45 50

m
se

cs

n = m = d

Algorithm 1
Chinese remaindering

Weak Popov form

Figure 1: Results for square matri
es of rank n� 1 over F [x℄, F a �nite �eld.

remaindering outperformed the weak Popov form by an order of magnitude, sin
e the rank
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an be proven full after a �small� number of loops (see theorem 2 below). So the fastest

overall approa
h in pra
ti
e is either to do a random evaluation 
he
k and pro
eed with

weak Popov form if the rank is not full, or to apply row�redu
tion dire
tly in all 
ases. Also

as expe
ted, the above three methods all outperform fra
tion�free elimination by one order

of magnitude, as illustrated by �gure 2 below, where the timings for two�step fra
tion�free

elimination on the same examples have been added.

0

200000

400000

600000

800000

1e+06

1.2e+06

5 10 15 20 25 30 35 40 45 50

m
se

cs

n = m = d

Algorithm 1
Chinese remainding

2-step Bareiss
Weak Popov form

Figure 2: Comparison of two�step fra
tion�free elimination to the 
urves of �gure 1.

Unlike the weak Popov form, row�redu
tion does not require the 
oe�
ients to be from

a �eld. However, as for the weak Popov form, it su�ers from growth of the 
oe�
ients in

R, so its pra
ti
al usefulness is either for 
oe�
ients in �nite �elds, where su
h growth does

not o

ur, or for matri
es of skew-polynomials, for whi
h the other fast methods are not

appli
able.
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12 Abramov & Bronstein

4 Appli
ations

4.1 Matri
es over Weyl algebras

Corollary 1 means that our algorithms are appli
able so far to nested skew Laurent polyno-

mials. Su
h rings are however isomorphi
 to lo
alisations of the Weyl algebras, so we 
an

apply our algorithms to perform linear algebra on matri
es over Weyl algebras. Let C be

a 
ommutative �eld and A

m

(C) be the Weyl algebra C[x

1

; : : : ; x

m

; �

1

; : : : ; �

m

℄ where the

produ
t is given by the 
ommutation rules

�

i

�

j

= �

j

�

i

; x

i

x

j

= x

j

x

i

; and �

i

x

j

� x

j

�

i

= Æ

ij

;

where Æ

ij

is 1 if i = j and 0 if i 6= j. Let C[n

1

; : : : ; n

m

℄ be the usual polynomial ring in m

variables, and R

m

(C) be the nested skew Laurent polynomial ring

R

m

(C) = C[n

1

; : : : ; n

m

℄[X

1

; X

�1

1

;�

1

℄ � � � [X

m

; X

�1

m

;�

m

℄

where �

i

is the automorphism of R

m

(C) overC de�ned by �

i

(n

j

) = n

j

+Æ

ij

and �

i

(X

j

) = X

j

.

Then, the map

�

m

: C[x

1

; x

�1

1

; : : : ; x

m

; x

�1

m

; �

1

; : : : ; �

m

℄! R

m

(C)

given by

�

m

(x

i

) = X

�1

i

�

m

(x

�1

i

) = X

i

and �

m

(�

i

) = (n

i

+ 1)X

i

(3)

extends to a C-algebra isomorphism between those two left Ore domains. Therefore, ranks

and kernels of matri
es with entries in A

m

(C) 
an be 
omputed by applying �

m

, using

algorithm 1 or 2 on their images, and applying �

�1

m

to the basis of the kernels (although this

gives generators in the lo
alisation, they 
an be multiplied by suitable powers of the x

i

's to

obtain generators in A

m

(C)). As mentioned earlier, this means that we 
an also �nd linear

dependen
es over A

m

(C) and solve linear systems with 
oe�
ients in A

m

(C).

4.2 Deterministi
 x-adi
 lifting for solving linear systems

Let F be a 
ommutative �eld and F [X ℄ a 
ommutative univariate polynomial ring over F .

Taking � to be identity on F , algorithms 1 and 2 are appli
able to matri
es with entries in

F [X ℄. Let A be a nonsingular n�nmatrix with entries in F [X ℄ and b 2 F [X ℄

n

be given. The

asympto
ally fastest way to 
ompute the unique solution z 2 F (x)

n

of Az = b is by using p-

adi
 lifting [10℄, where the p-adi
 expansion of z is 
omputed for an irredu
ible p 2 F [X ℄ that

does not divide det(A). Sin
e the 
omputations are done in F [X ℄=(p), 
hoosing p = X � �

for some � 2 F is preferable. When F is large enough, a suitable � 
an be 
hosen at

random, but this 
ould be impossible over small �nite �elds, where a higher-degree p may

be required. Our algorithm 
an be used as a nonsingular alternative to the singular x-adi


lifting of [15℄ in the following way: let (T;A

0

) be the result of applying algorithm 1 or 2

to A. Then, A

0

= TA and theorem 1 implies that rk

F

(A

0

(0)) = n sin
e A is nonsingular.

Therefore, A

0

(0) 
an be inverted in F and nonsingular x-adi
 lifting 
an be applied to the

INRIA
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modi�ed system A

0

z = Tb, whose unique solution z is also the unique solution of Az = b.

In pra
ti
e, we do not need to 
ompute expli
itly the RRT T , it is su�
ient to 
arry out on

b the elementary row operations being 
arried out on A throughout the algorithm, whi
h

yields Tb.

In the 
ommutative polynomial 
ase, the number of loops performed by the algorithm

on nonsingular inputs 
an be given quite pre
isely (this result was already presented as

Lemma 3.5 of [6℄, where 
ommutative row�redu
tion was des
ribed).

Theorem 2 Let R be a 
ommutative integral domain and M be a nonsingular square matrix

with entries in the 
ommutative polynomial ring R[X ℄. If X does not divide every entry in

M , then algorithm 1 terminates after exa
tly N loops, where N � 0 is su
h that X

N

j det(M)

and X

N+1

=j det(M).

Proof. Sin
e X does not divide every entry in M , then M(0) 6= 0, so write M =

P

h

k=0

M

k

X

k

before step (9), and let M

0

be M after that step. Then, M

0

= AM where

A is the matrix 
omputed at step (8). It follows that EM

0

= VM where E is the identity

matrix with the i

0

th

diagonal element repla
ed by X and V is the identity matrix with the

i

0

th

row repla
ed by v

t

. Noting that det(V ) = v

i

0

6= 0 and taking determinants on both

sides, we get

X det(M

0

) = v

i

0

det(M) ;

so a power of X is divided out of det(M) every pass through the loop. Theorem 1 implies

that (TM)(0) is nonsingular, where T is the row tranformation produ
ed by the algorithm,

therefore det(TM) is not divisible by X , whi
h implies that we go exa
tly N times through

that loop, where X

N

j det(M) and X

N+1

=j det(M). 2

Sin
e ea
h loop in algorithm 1 
osts O(n

2

d + n

3

) operations in F (see se
t. 3) and

nonsingular x-adi
 lifting has a 
omplexity of O(n

3

d

1+�

) where 0 < � � 1 depends on

the multipli
ation algorithm in F [X ℄, we see that our desingularisation pro
edure does not


hange the 
omplexity as long as N << nd, whi
h is generally

1

the 
ase. We then get the

same arithmeti
 
omplexity than [15℄, but we expe
t nonsingular x-adi
 lifting to have less

overhead in pra
ti
e than their algorithm.

4.3 Desingularisation of linear re
urren
e systems

This appli
ation of our algorithm was des
ribed in [3℄. Let C be a 
ommutative �eld, C

Z

be

the 
ommutative ring of fun
tions from Z to C and � be the shift automorphism of C

Z

given

by (�f)(n) = f(n + 1) for all f 2 C

Z

. Let R be a subring of C

Z

satisfying the following

properties:

(i) R is an integral domain.

(ii) R is 
losed under �.

1

There are of 
ourse matri
es for whi
h N � nd, but there are as many matri
es for whi
h approximately

nd random points must be tried before a nonsingular redu
tion is found.
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(iii) 8f 2 R n f0g; fn 2 Z s.t. f(n) = 0g is �nite and 
an be 
omputed.

The 
lassi
al example of su
h a ring is the polynomial ring R = C[n℄, but rings su
h as

C[q

n

℄ or C[n; q

n

℄ where q 2 C

�

is not a root of unity also have those properties [2℄. Viewing

the elements of R as C-valued sequen
es, 
onsider the system of linear re
urren
e equations

h

X

k=l

M

k

(n)Z

n+k

= G(n) for all n > � (4)

where the M

k

(n) are p� q matri
es with entries in R, M

l

(n) and M

h

(n) are not identi
ally

0, G(n) is a ve
tor with entries in C

Z

, and � is either a �xed integer or �1, in whi
h 
ase

the re
urren
es are valid for all n 2 Z.

We say thatm 2 Z is a singularity of the system (4) if rk(M

h

(m)) < q. When p = q andm

is not a singularity, then (4) 
an be used to 
ompute uniquely Z

m+h

given Z

m+l

; : : : ; Z

m+h�1

,

so we are interested in systems having �nitely many singularities. When p < q, then every

m 2 Z is a singularity, so suppose that p � q. In that 
ase, our algorithm 
an be used to

transform the system, when it is possible, into an equivalent one with �nitely many singular-

ities, thereby �desingularizing� it: 
onsider the skew Laurent polynomial ring R[X;X

�1

;�℄

and the p�q matrixM =

P

h

k=l

M

k

X

k

. Applying the �leading� variant of algorithm 1 or 2 to

M yields a row transformation T and M

0

= TM su
h that rk

R

(M

0

h

) = rk

R[X;X

�1

;�℄

(M) = r

and M

0

has exa
tly r nonzero rows. If r < q, then (4) is underdetermined and 
annot be

desingularized. If r = q, then M

0

h

has at least one nonzero q� q minor, and the singularities

of (4) must be among its �nite set of zeroes. Furthermore, M

0

yields the system

h

X

k=l

M

0

k

(n)Z

n+k

= G

0

(n) for all n > � (5)

where G

0

(n) is the result of updating G(n) inside the loop of algorithm 1 or 2 via G v

t

G.

If any zero row of M

0


orresponds to a nonzero entry of G

0

(n), then (5) has no solutions.

Otherwise, taking the q nonzero rows ofM

0

and the 
orresponding entries in G

0

(n) turns (5)

into a square system of full rank. By 
onstru
tion, it is 
lear that any solution of (4) must

be a solution of (5), but the 
onverse is not ne
essarily true. To re
over the solutions of (4)

from those of (5), we must add the following steps to algorithm 1 or 2: �rst initialize a set

of 
onstraints B  ;, then inside the loop add to B the linear 
onstraint

h

X

k=l

[M

k

(m)℄

i

0

Z

m+k

= G

i

0

(m)

for ea
h m 2 Z su
h that v

i0

(m) = 0. At the end, the solutions of (4) are exa
tly the

solutions of (5) that satisfy all the 
onstraints in B.

Another question that arises whenever the solutions of (4) are the 
oe�
ients of some sort

of series expansions is whether it has solutions of �nite support. The following 
orre
tion to

Theorem 4 of [3℄ gives an upper bound on the support of su
h solutions when the system is

not underdetermined.
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Theorem 3 Let d 2 Z be su
h that G(d) 6= 0 and G(n) = 0 for all n > d (d = �1 if G

is identi
ally 0), and suppose that (4) has a nonzero solution Z su
h that Z

N

6= 0 for some

N 2 Z satisfying Z

n

= 0 for all n > N . Then, either N � l+max(�; d) or rk(M

l

(N�l)) < q.

Proof. Suppose that N > l + max(�; d). Then, N � l > �, so applying (4) to n = N � l

yields

h

X

k=l+1

M

l

(N � l)Z

N+k�l

+M

l

(N � l)Z

N

= G(N � l) :

For k > l, N + k � l > N , so Z

N+k�l

= 0. In addition, N � l > d, so G(N � l) = 0 and we

obtain M

l

(N � l)Z

N

= 0. Sin
e Z

N

6= 0, we must have rk(M

l

(N � l)) < q. 2

The 
ondition N � l + max(�; d) yields a �nite number of positive values for N , while

the rank 
ondition is a problem similar to desingularisation: if p < q, then the system is

underdetermined and no bound 
an be found. Otherwise, applying the �trailing� variant of

algorithm 1 or 2 to M =

P

h

k=l

M

k

X

k

yields a row transformation T and M

0

= TM su
h

that rk

R

(M

0

l

) = rk

R[X;X

�1

;�℄

(M) = r and M

0

has exa
tly r nonzero rows. If r < q, then (4)

is underdetermined and no bound 
an be found. If r = q, then M

0

l

has at least one nonzero

q � q minor, and all the values of N � l su
h that rk(M

0

l

(N � l)) < q must be among its

�nite set of zeroes. However, when � 6= �1, its value 
hanges during the algorithm, so the

�rst bound N � l+max(�; d) has to be updated as follows: initialize �

i

 � for 1 � i � p,

then update �

i

0

inside the loop via �

i

0

 1 + max

i2I

(�

i

). At the end of algorithm, return

�

0

= max

i

�

i

. The �nite set of bounds for the solutions of (4) is then given by

N � l +max(�

0

; d) or rk(M

0

l

(N � l)) < q :

Finally, we note that when R is the polynomial ring C[n℄, there are fast modular algorithms

for 
omputing the kernels required by algorithms 1 and 2 [13, 15℄. Sin
e those methods have

better 
omplexity than Gaussian elimination in C[n℄ (see �gure 2), using those methods

inside our algorithm yields a better binary 
omplexity than the EG�elimination of [1℄, whi
h

relies on �
areful� Gaussian elimination.

4.4 Solving linear fun
tional systems

This appli
ation, des
ribed in [3℄, relies on the following additional property of the isomor-

phism �

1

given by (3) in the univariate 
ase: for any di�erential operator L 2 A

1

(C) =

C[x; �

x

℄ and any power series y =

P

n�0

y

n

x

n

2 C[[x℄℄, the sequen
e (�

1

L)(y

0

; y

1

; : : :) is the


oe�
ient sequen
e of L(y) [4℄. Therefore, the formal series solutions of a di�erential system

A(x; �

x

)Y = F (x), where A is a matrix with entries in A

1

(C), 
an be found by solving the

linear re
urren
e system MZ = G, where M is the matrix whose entries in C[n℄[X;X

�1

;�℄

are the images of the entries of A by �

1

, and G is the sequen
e of 
oe�
ients of the for-

mal series expansions of F (x). When the system AZ = F is not underdetermined, then

the re
urren
e MZ = G 
an be desingularized by the leading variant of our algorithm (see

se
t. 4.3), thereby allowing the formal Taylor series solutions to be 
omputed. Furthermore,
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the polynomial solutions of AZ = F 
orrespond exa
tly to the series solutions with �nite

support of MZ = G, so an upper bound on the degrees of su
h solutions 
an be 
omputed

by the trailing variant of our algorithm as explained above. The desingularization pro
edure

also yields a bound on the order of the pole at x = 0 of the rational solutions of AZ = F ,

so performing it at all the singularities of the system allows its rational solutions to be 
om-

puted. In parti
ular, di�erential systems of the form Y

0

= A(x)Y + F (x) where A(x) is a

matrix with entries in C(x) are of full rank, so their solutions 
an be 
omputed using this

approa
h.

This approa
h is not restri
ted to di�erential systems: 
hoosing an appropriate persistent

sequen
e of C[x℄ as expansion basis for the power series, one 
an �nd isomorphisms with

properties similar to those of �

1

between other operator algebras and R[X;X

�1

;�℄ for some

suitable 
ommutative integral domain R. This allows our approa
h to be also applied to

di�eren
e and q-di�eren
e systems, as well as mixed di�erential/q-di�eren
e systems, we

refer to [3℄ for additional details. Note �nally that there are several 
hoi
es for the basis of

C[x℄ to use, and that some of them are preferable sin
e they yield re
urren
e systems with

� = �1 in (4), thereby avoiding having to update � during the bounding pro
ess. A more

detailed dis
ussion of basis sele
tion for parti
ular 
lasses of equations is presented by [12℄.
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