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Algèbre linéaire pour matries de polyn�mes de Ore

Résumé : Nous dérivons un algorithme qui transforme une matrie de polyn�mes de

Ore à oe�ients dans un domaine de Ore en une forme réduite par lignes. Cet algorithme

est utilisable pour faire des aluls standards d'algèbre linéaire (rang, noyau, dépendane

linéaire, résolution d'équations) sur e type de matries. L'appliation prinipale de notre

algorithme est la désingularisation de systèmes de réurrenes linéaires, ainsi que le alul

des solutions rationnelles d'une grande lasse de systèmes linéaires fontionnels. Il s'avère

aussi être e�ae sur des matries de polyn�mes ommutatifs usuels.

Mots-lés : alul formel, algèbre linéaire, polyn�mes de Ore, systèmes di�érentiels,

systèmes aux di�érenes �nies



Linear algebra for skew-polynomial matries 3

Introdution

In order to bound the degree of polynomial solutions of ertain linear systems of funtional

equations, we used in our ISSAC'2001 paper [3℄ a desingularizing transformation for linear

reurrenes systems. Given suh a system

P

h

k=l

M

k

(n)Z

n+k

= G(n), where the M

k

(n) are

matries with entries in a suitable integral domain, our transformation was used to ensure

that M

l

(n) had full rank, whih then allowed the bounding proedure to proeed. We study

in this paper that transformation in greater depth, in partiular extending it to oe�ients

in an arbitrary left Ore domain, whih makes it appliable to multivariate skew-polynomial

matries, for example matries over Weyl algebras. In addition, we study its additional

properties and extend its range of appliations to the standard alulations of linear algebra

for skew-polynomial matries: omputing their ranks and kernels, as well as �nding linear

dependenes and solving inhomogeneous linear systems. It turns out that our transformation

is a generalisation to matries of skew-polynomials of known row�redution methods [6℄, so

we study its arithmeti omplexity in the ommutative ase, where it is omparable to (but

not better than) some of the best methods known. Experimental benhmarks on�rm this

to be the ase in pratie for ommutative matrix polynomials over �nite �elds. Finally, our

ISSAC'2001 use is realled as one of the appliations of this transformation.

By onvention, all rings and �elds in this paper have harateristi 0 but are not nees-

sarily ommutative. Given a nonzero Laurent polynomial p =

P

i

p

i

X

i

(with �nite support),

its degree is deg(p) = maxfi s.t. p

i

6= 0g, while its valuation is �(p) = minfi s.t. p

i

6= 0g.

We use [M ℄

i

to denote the i

th

row of the matrix M .

1 Ore domains and skew-polynomials

We reall in this setion the basi de�nitions and properties of Ore domains and skew-

polynomials, whih are a ommon abstration of di�erential and di�erene operators.

De�nition 1 A left Ore domain is a ring R without zero-divisors and suh that every two

nonzero elements of R have a nonzero ommon left multiple.

Any left Ore domain R an be embedded in a �eld K of left-frations of R [9℄. The rank of

a left R-module M is then de�ned to be the dimension of K 
M as a vetor spae over

K, whih orresponds to the maximal ardinality of R-linearly independent subsets of M.

Given a matrixM with entries in R, we use rk

R

(M) to denote the rank of the left R-module

generated by the rows of M , and omit the subsript when it is lear from the ontext.

Any ommutative integral domain is obviously a left Ore domain. A lassial nonom-

mutative left Ore domain is the ring of skew-polynomials, whih we proeed to desribe.

Let R be a ring and � an injetive endomorphism of R. A �-derivation is a map Æ : R! R

satisfying

Æ(a+ b) = Æa+ Æb and Æ(ab) = (�a)(Æb) + (Æa)b for any a; b 2 R :

RR n° 4420



4 Abramov & Bronstein

Note that the map 0

R

that sends every a 2 R to 0 is a �-derivation. Let X be an in-

determinate over R. The skew-polynomial ring over R, denoted R[X ;�; Æ℄ is the ring of

usual polynomials in X over R, with the usual polynomial addition and the multipliation

given by Xa = �(a)X + Æ(a) for any a 2 R. When Æ = 0

R

, that ring is denoted R[X ;�℄

and is alled a di�erene operator ring over R. When Æ = 0

R

and � is an automorphism

of R, loalizing R[X ;�℄ at the powers of X , we obtain the skew Laurent polynomial ring

R[X;X

�1

;�℄, whih is the ring of Laurent polynomials in X over R, with the usual addition

and the multipliation given by Xa = �(a)X and X

�1

a = �

�1

(a)X

�1

for any a 2 R.

Lemma 1 If R is a left Ore domain and � is an automorphism of R, then R[X;X

�1

;�℄ is

a left Ore domain.

Proof. By Corollary 1.1 of [8℄, the di�erene operator ring R[X ;�℄ is a left Ore domain.

Sine every p 2 R[X;X

�1

;�℄ an be written as p = X

�s

p

0

where s � 0 and p

0

2 R[X ;�℄, it

follows that R[X;X

�1

;�℄ has no zero divisors. Let p; q 2 R[X;X

�1

;�℄, write p = X

�s

p

0

and

q = X

�t

q

0

where s; t � 0 and p

0

; q

0

2 R[X ;�℄, and let m 2 R[X ;�℄ be a nonzero left ommon

multiple of p

0

and q

0

. Then, m = p

00

p

0

= q

00

q

0

for some p

00

; q

00

2 R[X ;�℄, whih implies that

m = p

00

X

s

p = q

00

X

t

q is a nonzero left ommon multiple of p and q. 2 The above result

allows us to onstrut multivariate skew Laurent polynomial rings over a left Ore domain by

iterating the univariate onstrution with several automorphisms. Our algorithm, desribed

below, an be applied to matries with entries in suh rings by onsidering them univariate

in their topmost variable. A more general onstrution of multivariate skew-polynomials,

but with nonnegative exponents only, is desribed by [8℄, and set. 4.1 desribes how our

algorithm an be applied to those.

2 Rank-revealing transformations

Let M be a matrix with entries in a ring S. The elementary row operations appliable to M

are (i) applying a permutation to the rows, (ii) multiplying a row by an element of S that is

not a zero-divisor, and (iii) adding a multiple of a row to another one. A row transformation

is a �nite sequene of elementary row operations. Eah elementary row operation an be

performed by multiplying M on the left by an elementary matrix, namely (i) a permutation

of the identity matrix, (ii) the identity matrix with one entry on its diagonal replaed by an

element of S that is not a zero-divisor, and (iii) the identity matrix with at most one nonzero

entry outside its diagonal. Therefore, any row transformation an be seen as multiplying M

on the left by a matrix T , whih is a �nite produt of elementary matries.

De�nition 2 Given a matrix M with entries in a left Ore domain R, a row transformation

T is a rank-revealing-transformation (RRT) forM if rk(M) is exatly the number of nonzero

rows of TM .

Note that an RRT T for M immediately yields rk(M). In addition, the rows of T orre-

sponding to the zero rows of TM form a basis for the left-kernel of M . Therefore, applying

an RRT to the transpose of M yields a basis of its kernel.

INRIA



Linear algebra for skew-polynomial matries 5

The use of various RRTs is lassi in ommutative linear algebra: Gaussian elimination

over ommutative �elds and its fration�free variants over ommutative integral domains [5℄

obviously satisfy the above de�nition sine they produe a row-ehelon form of M . For

matrix polynomials over a ommutative �eld, there are weaker RRTs that originate from

linear ontrol theory: some methods used to ompute the row-redued and Popov forms [11℄

are RRTs, as is the algorithm of [14℄ for omputing weak Popov forms. We desribe now a

skew-variant of row-redution that provides a fration�free RRT for skew-polynomial ma-

tries.

Let R be a left Ore domain, � an automorphism of R, R[X;X

�1

;�℄ a skew Laurent

polynomial ring over R, and suppose that we an ompute ranks and kernels of matries

with entries in R. Our RRT is desribed as algorithm 1 below, using the following notations:

1

n

denotes the n � n identity matrix, B

t

denotes the transpose of the matrix or vetor B,

and if B has entries in R[X;X

�1

;�℄, deg

i

(B) denotes the maximum degree in X of all the

elements of the i

th

row of B. Finally, for V any left R-submodule of R

k

and J any subset

of f1; : : : ; kg, V

J

= fv 2 V suh that v

j

= 0 for all j 2 Jg is the intersetion of kernels of

projetions and is therefore a left submodule of V .

Algorithm 1: One�step trailing skew�RRT.

Input: An n�m matrix M with entries in R[X;X

�1

;�℄.

Output: An RRT T for M and the transformed matrix TM .

(1) Write M as M =

P

h

k=l

M

k

X

k

where l � h and M

l

6= 0

(2) T  1

n

(3) Z  fi 2 f1; : : : ; ng s.t. the i

th

row of M is 0g

(4) while Ker(M

t

l

)

Z

6= f0g

(5) v  a nonzero element of Ker(M

t

l

)

Z

(6) I  fi 2 f1; : : : ; ng suh that v

i

6= 0g

(7) Choose i

0

2 I suh that 8i 2 I; deg

i

0

(M) � deg

i

(M)

(8) A 1

n

with i

0

th

row replaed by X

�1

v

t

(9) T  AT , M  AM , update M

l

; : : : ;M

h

(10) if the i

0

th

row of M is 0 then Z  Z [ fi

0

g

(11) return (T;M)

Note the following remarks about the steps of algorithm 1:

� In step (1), the M

k

are matries with entries in R.

� Computing Ker(M

t

l

)

Z

in step (5) is done by removing from M

t

l

the olumns indexed

by Z and omputing the kernel of the resulting matrix.

� In step (5), a full basis of the kernel is not required, a single nonzero vetor is su�ient.

In addition, if R is itself a skew Laurent polynomial ring, then algorithm 1 an be used

reursively to ompute Ker(M

t

l

)

Z

.

RR n° 4420



6 Abramov & Bronstein

� Even though the matrix A of step (8) is more omplex than a single elementary matrix,

it is a row transformation beause v

i

0

6= 0.

� The produts AT and AM in step (9) are not atually omputed as matrix produts,

they simply orrespond to replaing the i

0

th

rows of T andM by the linear ombination

of rows given by X

�1

v. Furthermore, if M is represented by the matries M

l

; : : : ;M

h

,

then the produt AM an be performed diretly inside those matries.

� The matrix T does not need to be updated in step (9) if only rk(M) is needed. Even

if elements of Ker(M

t

) are desired, one an store the sequene of pairs (v; i

0

) used at

eah loop rather than update T , and use them to ompute elements of the kernel after

the algorithm has terminated.

We now proeed to prove termination and orretness of algorithm 1.

Lemma 2 Algorithm 1 terminates after at most n(h�min(0; l) + 1) loops.

Proof. Write M =

P

h

k=l

M

k

X

k

before step (9), and let M

0

be M after that step. As noted

above, M

0

is M with the i

0

th

row replaed by

X

�1

v

t

M =

h

X

k=l

X

�1

v

t

M

k

X

k

: (1)

Sine v

t

M

l

= 0, the starting point of the above sum is k = l+1. In addition, v

i

= 0 whenever

deg

i

(M) > deg

i

0

(M), so v

t

M

k

= 0 for k > deg

i

0

(M). Therefore, using the ommutation

rule X

�1

a = �

�1

(a)X

�1

we get

X

�1

v

t

M =

h

X

k=l

X

�1

v

t

M

k

X

k

=

deg

i

0

(M)

X

k=l+1

X

�1

v

t

M

k

X

k

=

deg

i

0

(M)

X

k=l+1

�

�1

(v

t

M

k

)X

k�1

:

It follows that eitherX

�1

v

t

M = 0 or deg

i

0

(M

0

) < deg

i

0

(M). In the �rst ase, the ardinality

of Z is inreased in step (10), so that ase an our at most n times. In the seond ase,

P

i

deg

i

(M

0

) <

P

i

deg

i

(M), where the sums are taken over the nonzero rows. Sine that

sum is at most nh and at least 0 if l � 0, or nl if l < 0, that ase an our at most

n(h�min(0; l)) times. 2

Lemma 3 rk(M) remains unhanged throughout algorithm 1.

Proof. Write M =

P

h

k=l

M

k

X

k

before step (9), and let M

0

be M after that step, and

M

0

and M denote the left R[X;X

�1

;�℄-modules generated by the rows of M

0

and M

respetively. As noted above, M

0

is M with the i

0

th

row replaed by

[M

0

℄

i

0

= X

�1

v

t

M =

n

X

i=1

X

�1

v

i

[M ℄

i

2M;

INRIA



Linear algebra for skew-polynomial matries 7

soM

0

is a left R[X;X

�1

;�℄-submodule ofM. Proposition 9.3 of [9℄ then implies that

rk(M) = rk(M

0

) + rk(M=M

0

) : (2)

Let w =

P

n

i=1

w

i

[M ℄

i

be an arbitrary element ofM. If w

i

0

= 0, then w 2 M

0

. Otherwise,

w

i

0

6= 0, so w

i

0

and X

�1

v

i

0

have a nonzero ommon left multiple �w

i0

= �X

�1

v

i

0

where

�; � 2 R[X;X

�1

;�℄ are nonzero. We then have

�w = �w

i

0

[M ℄

i

0

+

X

i6=i

0

�w

i

[M ℄

i

= �X

�1

v

i

0

[M ℄

i

0

+

X

i6=i

0

�w

i

[M

0

℄

i

= �

0

�

[M

0

℄

i

0

�

X

i6=i

0

X

�1

v

i

[M

0

℄

i

1

A

+

X

i6=i

0

�w

i

[M

0

℄

i

2M

0

;

whih implies that M=M

0

is a torsion module, hene of rank 0, and the lemma follows

from (2). 2

We �nally onlude that algorithm 1 yields a rank-revealing transformation.

Theorem 1 Let (T;M

0

) be the result produed by algorithm 1 on the input matrixM . Then,

rk(M) is the number of nonzero rows of M

0

. Furthermore, rk

R

(M

0

l

) = rk

R[X;X

�1

;�℄

(M) and

the rows of T orresponding to the zero rows of M

0

form a basis of Ker(M

t

).

Proof. Let [M

0

℄

i

1

; : : : ; [M

0

℄

i

r

be the nonzero rows of M

0

. Sine the algorithm terminated,

we must have had Z = f1; : : : ; ng n fi

1

; : : : ; i

r

g and Ker(M

0t

l

)

Z

= f0g in step (4), whih

implies that [M

0

l

℄

i

1

; : : : ; [M

0

l

℄

i

r

are linearly independent over R, hene that rk

R

(M

0

l

) � r.

However, the remaining rows of M

0

l

must be zero sine they are zero in M

0

, so rk

R

(M

0

l

) = r.

Let now �

1

; : : : ; �

r

2 R[X;X

�1

;�℄ be not all 0 and suh that

P

r

j=1

�

j

[M

0

℄

i

j

= 0, and

�

j

= X

��

�

j

for all j, where � = min

jj�

j

6=0

(�(�

j

)). Then, �

j

2 R[X ;�℄ for all j and there

is at least one j suh that �

j

(0) 6= 0. Multiplying the linear dependene on the left by X

��

and on the right by X

�l

we get

0 =

r

X

j=1

X

��

�

j

[M

0

℄

i

j

X

�l

=

r

X

j=1

�

j

[M

0

X

�l

℄

i

j

:

Sine the �

j

's are in R[X ;�℄ as well as the entries of M

0

X

�l

, evaluating the above at X = 0

yields

0 =

r

X

j=1

�

j

(0)[M

0

l

℄

i

j

in ontradition with [M

0

l

℄

i

1

; : : : ; [M

0

l

℄

i

r

linearly independent over R. Therefore, the r

nonzero rows of M

0

are linearly independent over R[X;X

�1

;�℄, whene rk

R[X;X

�1

;�℄

(M

0

) =

r. SineM andM

0

have the same rank by lemma 3, we get r = rk

R[X;X

�1

;�℄

(M) = rk

R

(M

0

l

).

SineM

0

= TM , the rows of T orresponding to the zero rows ofM

0

are elements of Ker(M

t

).

There are n � rk(M) suh rows, whih is exatly the dimension of Ker(M

t

). Finally, the

rows of a row transformation are linearly independent, so we obtain a basis of Ker(M

t

). 2

RR n° 4420



8 Abramov & Bronstein

Corollary 1 Let R be a left Ore domain, � an automorphism of R and R[X;X

�1

;�℄ a skew

Laurent polynomial ring over R. If we an ompute ranks and kernels of matries with entries

in R, then we an ompute ranks and kernels of matries with entries in R[X;X

�1

;�℄.

We only require in algorithm 1 the omputation of one nonzero vetor in a kernel. It

is frequently the ase that algorithms for omputing suh vetors return a full basis of

the kernel, or several vetors. If fration�free elimination algorithms exist for matries

with entries in R, then we an use several linearly independent kernel vetors in order to

derease the number of kernel omputations performed by algorithm 1. Our modi�ed RRT

is desribed as algorithm 2 below.

Algorithm 2: Multi�step trailing skew�RRT.

Input: An n�m matrix M with entries in R[X;X

�1

;�℄.

Output: An RRT T for M and the transformed matrix TM .

(1) Write M as M =

P

h

k=l

M

k

X

k

where l � h and M

l

6= 0

(2) T  1

n

(3) Z  fi 2 f1; : : : ; ng s.t. the i

th

row of M is 0g

(4) while Ker(M

t

l

)

Z

6= f0g

(5) U  s � n matrix whose rows are R-linearly independent ele-

ments of Ker(M

t

l

)

Z

(6) for j  1 to s

(7) v  [U ℄

j

(8) I  fi 2 f1; : : : ; ng suh that v

i

6= 0g

(9) Choose i

0

2 I suh that 8i 2 I; deg

i

0

(M) � deg

i

(M)

(10) A 1

n

with i

0

th

row replaed by X

�1

v

t

(11) T  AT , M  AM , update M

l

; : : : ;M

h

(12) if the i

0

th

row of M is 0 then Z  Z [ fi

0

g

(13) Compute a row transformation E over R suh that the i

0

th

olumn of EU has zeroes in rows j + 1 to s

(14) U  EU

(15) return (T;M)

Fration�free elimination over R, as used in step (13), ertainly exists when R is a

ommutative integral domain [5℄, but also in the nonommutative ase, provided that R is

an e�etive left Ore domain in the sense of [8℄, i.e. that nonzero ommon left multiples an

atually be omputed in R with their ofators. In that ase, given a matrix B with entries

in R an entry b

ij

6= 0 an be used as a pivot to eliminate the j

th

olumn of B: for eah k 6= i

suh that b

kj

6= 0, omputing �; � 2 R suh that �b

ij

= �b

kj

6= 0, then multiplying the k

th

row of B by �� and adding to it � times its i

th

row is a pair of elementary row operations

that brings a 0 at row k and olumn j. Termination and orretness of algorithm 2 follow

from the following lemma.

INRIA
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Lemma 4 rk(U) = s throughout the inner loop of algorithm 2. In addition, the rows j to s

of U are in Ker(M

t

l

)

Z

throughout that loop.

Proof. rk(U) = s at step (5) and it does not hange when U is multiplied on the left by

the row transformation E at step (14), so it remains s throughout the inner loop. When

j = 1, the rows of U are in Ker(M

t

l

)

Z

by de�nition, so suppose now that the rows j to s of

U are in Ker(M

t

l

)

Z

for a given j < s at step (7). Let M

0

be M after step (11), Z

0

be Z after

step (12) and U

0

= EU be U after step (14). Sine M

l

and M

0

l

di�er only at row i

0

, and the

i

0

th

entries of [U

0

℄

j+1

; : : : ; [U

0

℄

s

are 0, those rows are in Ker(M

0

l

). In addition, the entries of

[U ℄

j

; : : : ; [U ℄

s

whose indies are in Z are zero and Z

0

� Z [ fi

0

g, so [U

0

℄

j+1

; : : : ; [U

0

℄

s

are in

Ker(M

0

l

)

Z

0

and the lemma follows by indution. 2

As a onsequene of lemma 4, the element v of step (7) in algorithm 2 is always in

Ker(M

l

)

Z

, so lemmas 2 and 3 as well as theorem 1 remain valid for algorithm 2.

We note that there is also a �leading� variant of algorithm 1 that works with M

h

rather

than M

t

: one uses Ker(M

t

h

)

Z

in steps (4) and (5), then piks an entry of v orresponding

to a row of M of minimal valuation rather than maximal degree in step (7), whih beomes

(7) Choose i

0

2 I suh that 8i 2 I; �

i

0

(M) � �

i

(M)

where �

i

(M) denotes the minimum valuation in X of all the elements of the i

th

row of M .

Finally, X

�1

is replaed by X in the de�nition of A in step (8), whih beomes

(8) A 1

n

with i

0

th

row replaed by Xv

t

.

Lemmas 2 and 3 are easily seen to remain valid with the above modi�ations, as well

as theorem 1, exept that we now have rk

R

(M

0

h

) = rk

R[X;X

�1

;�℄

(M) instead of M

0

l

, whih

is the essential reason for using the leading rather than the trailing version at times (as in

setion 4.3 below). Of ourse, the above modi�ations an be applied to algorithm 2 as well.

While we have mentionned only ranks and kernels in the disussion so far, our algorithm,

like any RRT, an be used to �nd linear dependenies between vetors with entries in

R[X;X

�1

;�℄, as well as to solve inhomogeneous systems of the form MZ = b, sine this an

be redued to �nding the kernel of the augmented matrix [M j b℄.

3 Complexity and experimental results

Let M =

P

h

k=l

M

j

X

k

be a matrix with entries in R[X;X

�1

;�℄ and d = h �min(0; l) + 1.

The number of loops of algorithm 1 at most nd by Lemma 2, so we only need to ount

the ost of eah loop. Using formula (1) for updating M at step (9), we must ompute d

produts of the form v

t

M

k

, eah osting nmmultipliations of R. Counting an appliation of

�

�1

to be one operation in R, left-multiplying eah v

t

M

k

by X

�1

also osts nm operations,

so step (9) has an arithmeti omplexity of O(nmd). Computing Ker(M

t

l

)

Z

an be done

in O(n

2

m) operations in R when R is a ommutative integral domain. When R is an

e�etive left Ore domain, ounting the omputation of a nonzero ommon left multiple to

be one operation in R, then nonommutative elimination also has an arithmeti omplexity of

RR n° 4420



10 Abramov & Bronstein

O(n

2

m), so the worst-ase arithmeti omplexity of algorithm 1 is O(n

2

md

2

+n

3

md). When

n = m = d = O(�), the omplexity of omputing rk(M) is then O(�

5

). In the ommutative

univariate ase, this is the same than the omplexity of Chinese remaindering, although we

expet row�redution to perform somewhat better beause proving the rank with Chinese

remaindering always requires nd modular images, while the bound of Lemma 2 is generally

pessimisti. Computing the rank with the weak Popov form of [14℄ has a omplexity of

O(nmd

2

rk(M)), whih is better than row�redution when rk(M) << �, but is the same

when rk(M) = O(�).

Given the similarities in arithmeti omplexity with the above two methods, algorithm 1

has been implemented on top of the �

it

library [7℄ by G. Chatley (hatley�iitk.a.in) and

extensive benhmarks arried out. For polynomials over �nite �elds (where the arithmeti

and binary omplexity are the same) the results, shown in �gure 1 below, on�rm the above

analysis, namely that when n;m; d and rk(M) all have the same orders, algorithm 1 lies

between weak Popov forms and Chinese remaindering, the timings being proportional with

small onstant ratios (less than 2). In the ase of full rank matries, algorithm 1 and Chinese
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30000

35000

40000

45000

50000
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m
se

cs

n = m = d

Algorithm 1
Chinese remaindering

Weak Popov form

Figure 1: Results for square matries of rank n� 1 over F [x℄, F a �nite �eld.

remaindering outperformed the weak Popov form by an order of magnitude, sine the rank
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Linear algebra for skew-polynomial matries 11

an be proven full after a �small� number of loops (see theorem 2 below). So the fastest

overall approah in pratie is either to do a random evaluation hek and proeed with

weak Popov form if the rank is not full, or to apply row�redution diretly in all ases. Also

as expeted, the above three methods all outperform fration�free elimination by one order

of magnitude, as illustrated by �gure 2 below, where the timings for two�step fration�free

elimination on the same examples have been added.

0

200000

400000

600000

800000

1e+06

1.2e+06

5 10 15 20 25 30 35 40 45 50

m
se

cs

n = m = d

Algorithm 1
Chinese remainding

2-step Bareiss
Weak Popov form

Figure 2: Comparison of two�step fration�free elimination to the urves of �gure 1.

Unlike the weak Popov form, row�redution does not require the oe�ients to be from

a �eld. However, as for the weak Popov form, it su�ers from growth of the oe�ients in

R, so its pratial usefulness is either for oe�ients in �nite �elds, where suh growth does

not our, or for matries of skew-polynomials, for whih the other fast methods are not

appliable.
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12 Abramov & Bronstein

4 Appliations

4.1 Matries over Weyl algebras

Corollary 1 means that our algorithms are appliable so far to nested skew Laurent polyno-

mials. Suh rings are however isomorphi to loalisations of the Weyl algebras, so we an

apply our algorithms to perform linear algebra on matries over Weyl algebras. Let C be

a ommutative �eld and A

m

(C) be the Weyl algebra C[x

1

; : : : ; x

m

; �

1

; : : : ; �

m

℄ where the

produt is given by the ommutation rules

�

i

�

j

= �

j

�

i

; x

i

x

j

= x

j

x

i

; and �

i

x

j

� x

j

�

i

= Æ

ij

;

where Æ

ij

is 1 if i = j and 0 if i 6= j. Let C[n

1

; : : : ; n

m

℄ be the usual polynomial ring in m

variables, and R

m

(C) be the nested skew Laurent polynomial ring

R

m

(C) = C[n

1

; : : : ; n

m

℄[X

1

; X

�1

1

;�

1

℄ � � � [X

m

; X

�1

m

;�

m

℄

where �

i

is the automorphism of R

m

(C) overC de�ned by �

i

(n

j

) = n

j

+Æ

ij

and �

i

(X

j

) = X

j

.

Then, the map

�

m

: C[x

1

; x

�1

1

; : : : ; x

m

; x

�1

m

; �

1

; : : : ; �

m

℄! R

m

(C)

given by

�

m

(x

i

) = X

�1

i

�

m

(x

�1

i

) = X

i

and �

m

(�

i

) = (n

i

+ 1)X

i

(3)

extends to a C-algebra isomorphism between those two left Ore domains. Therefore, ranks

and kernels of matries with entries in A

m

(C) an be omputed by applying �

m

, using

algorithm 1 or 2 on their images, and applying �

�1

m

to the basis of the kernels (although this

gives generators in the loalisation, they an be multiplied by suitable powers of the x

i

's to

obtain generators in A

m

(C)). As mentioned earlier, this means that we an also �nd linear

dependenes over A

m

(C) and solve linear systems with oe�ients in A

m

(C).

4.2 Deterministi x-adi lifting for solving linear systems

Let F be a ommutative �eld and F [X ℄ a ommutative univariate polynomial ring over F .

Taking � to be identity on F , algorithms 1 and 2 are appliable to matries with entries in

F [X ℄. Let A be a nonsingular n�nmatrix with entries in F [X ℄ and b 2 F [X ℄

n

be given. The

asymptoally fastest way to ompute the unique solution z 2 F (x)

n

of Az = b is by using p-

adi lifting [10℄, where the p-adi expansion of z is omputed for an irreduible p 2 F [X ℄ that

does not divide det(A). Sine the omputations are done in F [X ℄=(p), hoosing p = X � �

for some � 2 F is preferable. When F is large enough, a suitable � an be hosen at

random, but this ould be impossible over small �nite �elds, where a higher-degree p may

be required. Our algorithm an be used as a nonsingular alternative to the singular x-adi

lifting of [15℄ in the following way: let (T;A

0

) be the result of applying algorithm 1 or 2

to A. Then, A

0

= TA and theorem 1 implies that rk

F

(A

0

(0)) = n sine A is nonsingular.

Therefore, A

0

(0) an be inverted in F and nonsingular x-adi lifting an be applied to the

INRIA



Linear algebra for skew-polynomial matries 13

modi�ed system A

0

z = Tb, whose unique solution z is also the unique solution of Az = b.

In pratie, we do not need to ompute expliitly the RRT T , it is su�ient to arry out on

b the elementary row operations being arried out on A throughout the algorithm, whih

yields Tb.

In the ommutative polynomial ase, the number of loops performed by the algorithm

on nonsingular inputs an be given quite preisely (this result was already presented as

Lemma 3.5 of [6℄, where ommutative row�redution was desribed).

Theorem 2 Let R be a ommutative integral domain and M be a nonsingular square matrix

with entries in the ommutative polynomial ring R[X ℄. If X does not divide every entry in

M , then algorithm 1 terminates after exatly N loops, where N � 0 is suh that X

N

j det(M)

and X

N+1

=j det(M).

Proof. Sine X does not divide every entry in M , then M(0) 6= 0, so write M =

P

h

k=0

M

k

X

k

before step (9), and let M

0

be M after that step. Then, M

0

= AM where

A is the matrix omputed at step (8). It follows that EM

0

= VM where E is the identity

matrix with the i

0

th

diagonal element replaed by X and V is the identity matrix with the

i

0

th

row replaed by v

t

. Noting that det(V ) = v

i

0

6= 0 and taking determinants on both

sides, we get

X det(M

0

) = v

i

0

det(M) ;

so a power of X is divided out of det(M) every pass through the loop. Theorem 1 implies

that (TM)(0) is nonsingular, where T is the row tranformation produed by the algorithm,

therefore det(TM) is not divisible by X , whih implies that we go exatly N times through

that loop, where X

N

j det(M) and X

N+1

=j det(M). 2

Sine eah loop in algorithm 1 osts O(n

2

d + n

3

) operations in F (see set. 3) and

nonsingular x-adi lifting has a omplexity of O(n

3

d

1+�

) where 0 < � � 1 depends on

the multipliation algorithm in F [X ℄, we see that our desingularisation proedure does not

hange the omplexity as long as N << nd, whih is generally

1

the ase. We then get the

same arithmeti omplexity than [15℄, but we expet nonsingular x-adi lifting to have less

overhead in pratie than their algorithm.

4.3 Desingularisation of linear reurrene systems

This appliation of our algorithm was desribed in [3℄. Let C be a ommutative �eld, C

Z

be

the ommutative ring of funtions from Z to C and � be the shift automorphism of C

Z

given

by (�f)(n) = f(n + 1) for all f 2 C

Z

. Let R be a subring of C

Z

satisfying the following

properties:

(i) R is an integral domain.

(ii) R is losed under �.

1

There are of ourse matries for whih N � nd, but there are as many matries for whih approximately

nd random points must be tried before a nonsingular redution is found.
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14 Abramov & Bronstein

(iii) 8f 2 R n f0g; fn 2 Z s.t. f(n) = 0g is �nite and an be omputed.

The lassial example of suh a ring is the polynomial ring R = C[n℄, but rings suh as

C[q

n

℄ or C[n; q

n

℄ where q 2 C

�

is not a root of unity also have those properties [2℄. Viewing

the elements of R as C-valued sequenes, onsider the system of linear reurrene equations

h

X

k=l

M

k

(n)Z

n+k

= G(n) for all n > � (4)

where the M

k

(n) are p� q matries with entries in R, M

l

(n) and M

h

(n) are not identially

0, G(n) is a vetor with entries in C

Z

, and � is either a �xed integer or �1, in whih ase

the reurrenes are valid for all n 2 Z.

We say thatm 2 Z is a singularity of the system (4) if rk(M

h

(m)) < q. When p = q andm

is not a singularity, then (4) an be used to ompute uniquely Z

m+h

given Z

m+l

; : : : ; Z

m+h�1

,

so we are interested in systems having �nitely many singularities. When p < q, then every

m 2 Z is a singularity, so suppose that p � q. In that ase, our algorithm an be used to

transform the system, when it is possible, into an equivalent one with �nitely many singular-

ities, thereby �desingularizing� it: onsider the skew Laurent polynomial ring R[X;X

�1

;�℄

and the p�q matrixM =

P

h

k=l

M

k

X

k

. Applying the �leading� variant of algorithm 1 or 2 to

M yields a row transformation T and M

0

= TM suh that rk

R

(M

0

h

) = rk

R[X;X

�1

;�℄

(M) = r

and M

0

has exatly r nonzero rows. If r < q, then (4) is underdetermined and annot be

desingularized. If r = q, then M

0

h

has at least one nonzero q� q minor, and the singularities

of (4) must be among its �nite set of zeroes. Furthermore, M

0

yields the system

h

X

k=l

M

0

k

(n)Z

n+k

= G

0

(n) for all n > � (5)

where G

0

(n) is the result of updating G(n) inside the loop of algorithm 1 or 2 via G v

t

G.

If any zero row of M

0

orresponds to a nonzero entry of G

0

(n), then (5) has no solutions.

Otherwise, taking the q nonzero rows ofM

0

and the orresponding entries in G

0

(n) turns (5)

into a square system of full rank. By onstrution, it is lear that any solution of (4) must

be a solution of (5), but the onverse is not neessarily true. To reover the solutions of (4)

from those of (5), we must add the following steps to algorithm 1 or 2: �rst initialize a set

of onstraints B  ;, then inside the loop add to B the linear onstraint

h

X

k=l

[M

k

(m)℄

i

0

Z

m+k

= G

i

0

(m)

for eah m 2 Z suh that v

i0

(m) = 0. At the end, the solutions of (4) are exatly the

solutions of (5) that satisfy all the onstraints in B.

Another question that arises whenever the solutions of (4) are the oe�ients of some sort

of series expansions is whether it has solutions of �nite support. The following orretion to

Theorem 4 of [3℄ gives an upper bound on the support of suh solutions when the system is

not underdetermined.

INRIA



Linear algebra for skew-polynomial matries 15

Theorem 3 Let d 2 Z be suh that G(d) 6= 0 and G(n) = 0 for all n > d (d = �1 if G

is identially 0), and suppose that (4) has a nonzero solution Z suh that Z

N

6= 0 for some

N 2 Z satisfying Z

n

= 0 for all n > N . Then, either N � l+max(�; d) or rk(M

l

(N�l)) < q.

Proof. Suppose that N > l + max(�; d). Then, N � l > �, so applying (4) to n = N � l

yields

h

X

k=l+1

M

l

(N � l)Z

N+k�l

+M

l

(N � l)Z

N

= G(N � l) :

For k > l, N + k � l > N , so Z

N+k�l

= 0. In addition, N � l > d, so G(N � l) = 0 and we

obtain M

l

(N � l)Z

N

= 0. Sine Z

N

6= 0, we must have rk(M

l

(N � l)) < q. 2

The ondition N � l + max(�; d) yields a �nite number of positive values for N , while

the rank ondition is a problem similar to desingularisation: if p < q, then the system is

underdetermined and no bound an be found. Otherwise, applying the �trailing� variant of

algorithm 1 or 2 to M =

P

h

k=l

M

k

X

k

yields a row transformation T and M

0

= TM suh

that rk

R

(M

0

l

) = rk

R[X;X

�1

;�℄

(M) = r and M

0

has exatly r nonzero rows. If r < q, then (4)

is underdetermined and no bound an be found. If r = q, then M

0

l

has at least one nonzero

q � q minor, and all the values of N � l suh that rk(M

0

l

(N � l)) < q must be among its

�nite set of zeroes. However, when � 6= �1, its value hanges during the algorithm, so the

�rst bound N � l+max(�; d) has to be updated as follows: initialize �

i

 � for 1 � i � p,

then update �

i

0

inside the loop via �

i

0

 1 + max

i2I

(�

i

). At the end of algorithm, return

�

0

= max

i

�

i

. The �nite set of bounds for the solutions of (4) is then given by

N � l +max(�

0

; d) or rk(M

0

l

(N � l)) < q :

Finally, we note that when R is the polynomial ring C[n℄, there are fast modular algorithms

for omputing the kernels required by algorithms 1 and 2 [13, 15℄. Sine those methods have

better omplexity than Gaussian elimination in C[n℄ (see �gure 2), using those methods

inside our algorithm yields a better binary omplexity than the EG�elimination of [1℄, whih

relies on �areful� Gaussian elimination.

4.4 Solving linear funtional systems

This appliation, desribed in [3℄, relies on the following additional property of the isomor-

phism �

1

given by (3) in the univariate ase: for any di�erential operator L 2 A

1

(C) =

C[x; �

x

℄ and any power series y =

P

n�0

y

n

x

n

2 C[[x℄℄, the sequene (�

1

L)(y

0

; y

1

; : : :) is the

oe�ient sequene of L(y) [4℄. Therefore, the formal series solutions of a di�erential system

A(x; �

x

)Y = F (x), where A is a matrix with entries in A

1

(C), an be found by solving the

linear reurrene system MZ = G, where M is the matrix whose entries in C[n℄[X;X

�1

;�℄

are the images of the entries of A by �

1

, and G is the sequene of oe�ients of the for-

mal series expansions of F (x). When the system AZ = F is not underdetermined, then

the reurrene MZ = G an be desingularized by the leading variant of our algorithm (see

set. 4.3), thereby allowing the formal Taylor series solutions to be omputed. Furthermore,
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16 Abramov & Bronstein

the polynomial solutions of AZ = F orrespond exatly to the series solutions with �nite

support of MZ = G, so an upper bound on the degrees of suh solutions an be omputed

by the trailing variant of our algorithm as explained above. The desingularization proedure

also yields a bound on the order of the pole at x = 0 of the rational solutions of AZ = F ,

so performing it at all the singularities of the system allows its rational solutions to be om-

puted. In partiular, di�erential systems of the form Y

0

= A(x)Y + F (x) where A(x) is a

matrix with entries in C(x) are of full rank, so their solutions an be omputed using this

approah.

This approah is not restrited to di�erential systems: hoosing an appropriate persistent

sequene of C[x℄ as expansion basis for the power series, one an �nd isomorphisms with

properties similar to those of �

1

between other operator algebras and R[X;X

�1

;�℄ for some

suitable ommutative integral domain R. This allows our approah to be also applied to

di�erene and q-di�erene systems, as well as mixed di�erential/q-di�erene systems, we

refer to [3℄ for additional details. Note �nally that there are several hoies for the basis of

C[x℄ to use, and that some of them are preferable sine they yield reurrene systems with

� = �1 in (4), thereby avoiding having to update � during the bounding proess. A more

detailed disussion of basis seletion for partiular lasses of equations is presented by [12℄.
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