
67

ISSN 0361-7688, Programming and Computer Software, 2017, Vol. 43, No. 2, pp. 67–74. © Pleiades Publishing, Ltd., 2017.
Original Russian Text © S.A. Abramov, A.A. Ryabenko, D.E. Khmelnov, 2017, published in Programmirovanie, 2017, Vol. 43, No. 2.

Revealing Matrices of Linear Differential Systems
of Arbitrary Order

S. A. Abramov*, A. A. Ryabenko**, and D. E. Khmelnov***

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”
of Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333 Russia

E-mail: *sergeyabramov@mail.ru, **anna.ryabenko@gmail.com, ***dennis_khmelnov@mail.ru
Received September 30, 2016

Abstract—If the leading matrix of a linear differential system is nonsingular, then its determinant is known to
bear useful information about solutions of the system. Of interest is also the frontal matrix. However, each of
these matrices (we call them revealing matrices) may occur singular. In the paper, a brief survey of algorithms
for transforming a system of full rank to a system with a nonsingular revealing matrix of a desired type is given.
The same transformations can be used to check whether the rank of the original system is full. A Maple imple-
mentation of these algorithms (package EGRR) is discussed, and results of comparison of estimates of their
complexity with actual operation times on a number of examples are presented.

DOI: 10.1134/S0361768817020025

1. INTRODUCTION
Systems of linear ordinary differential equations

arise in many fields of mathematics. One of the goals
of computer algebra is the development of new algo-
rithms for searching solutions of systems of differential
equations, as well as algorithms used as auxiliary ones
in such search or as an integral part of known algo-
rithms of such search. The leading and frontal matri-
ces (these concepts are introduced and discussed in
Sections 2.1 and 2.2), if nonsingular, allow one, for
exasmple, to determine possible singular points of sys-
tem solutions, since the set of roots of the determi-
nants of either matrix includes all singular points.
However, the determinant of either of these two matri-
ces (we call them revealing matrices) may turn equal to
zero.

In this paper, we present a brief survey of algo-
rithms for transforming a full-rank system to that with
a nonsingular revealing matrix of the desired type.
Various algorithms are first compared to each other by
analyzing their complexities in terms of the number of
operations in the worst case. Note that the differentia-
tion operation is also taken into account (it is shown in
[1] that algorithms having identical complexities in
terms of the number of arithmetic operations can have
different complexities in terms of the total number of
operations, which includes differentiation).

Implementation of considered algorithms is dis-
cussed, and results of experimental comparison are
presented. It is established that, for each algorithm,
examples can be found for which this algorithm works
faster than others (this does not contradict the conclu-

sions of the complexity analysis, since not all the cases
are the “worst” ones in the sense meant in the com-
plexity analysis; moreover, the complexity in terms of
the number of operations does not take into account
the sizes of the operands, so that comparison of algo-
rithms based on the complexity discussed has prelimi-
nary and tentative character). Based on some criteria,
the user may select one or another algorithm; such a
possibility may be quite useful when a system cannot
be solved in a reasonable time or when it is not clear
how to manage the system at all.

2. PRELIMINARIES
2.1. Systems and Operators

If is a ring (in particular, field), then
denotes the ring of -matrices with entries from R.

 denotes a transposed matrix M, and , 1 ≤ i ≤ m,
denotes the -matrix coinciding with the ith row
of the -matrix M.

Let K be a differential field of characteristic 0 with
the derivative . We consider systems of the form

(1)

where is a vector of unknown
functions of x. As for the matrices

,

we assume that , , with
(the leading matrix of the system) being nonzero.

R Mat ()m R
×m m

TM ,∗iM
×1 m

×m m

∂ = '
−

−∂ + ∂ + + = ,�

1
1 0 0r r

r rA y A y A y

= , , ,1 2()T
my y y … y

, , ,0 1 rA A … A

∈ Mat ()i mA K = , , ,0 1i … r rA

68

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 2 2017

ABRAMOV et al.

The entries of matrices are called coefficients of
system (1).

System (1) be written as , where operator L
has the form

(2)

and r is the order of the operator L (notation
).

For , (2) is a scalar operator in the form of a
polynomial of ∂. Such operators are added and sub-
tracted as ordinary polynomials; in the multiplication,
the commutative rule (or, which is the
same,) is used. The product is actually
a composition of the operators. To denote the ring of
these scalar operators, the standard notation of
the ring of polynomials of ∂ over K is used. The con-
cept of order is naturally extended to the case of scalar
operators, i.e., elements of ring .

Operator (2) can be represented by a single opera-
tor matrix belonging to :

(3)

, , with .
The order of the ith row of matrix (operator) (3) is the
greatest order of the scalar operators composing this
row; i.e.,

We say that the rows of operator (3) with numbers
, s ≤ m, are linearly independent over if,

from the fact that the linear combination of the rows
with the left multipliers is equal to
zero, i.e., = 0, it follows that

 = 0.
The system can be defined in an operator form by

using one of the two operator representations. In what
follows, we select the form of the representation based
on convenience considerations.

The matrix is the leading matrix of the system
 and of the operator L irrespective of the form

of the representation of the system and operator.
If all rows of operator (3) are linearly independent

over , then we say that the equations of the cor-
responding system are independent over . In this
case, the operator , as well as the sys-
tem , has the full rank. We will also call them
the operator and system of full rank. It is these opera-
tors and systems that are considered in this paper.

iA

=() 0L y

−
−∂ + ∂ + + ,�

1
1 0

r r
r rA A A

= ordr L

= 1m

∂ = ∂ + 'a a a
∂ = ∂ + ∂()a a a

∂[]K

∂[]K

∂Mat ([])m K

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,
11 1

1

m

m mm

L … L
… … …

L … L

[]∈ ∂ijL K , = , ,1i j … m , =max ordi j ijL r

,,
=

= .∗
1

ord max ord
m

i ji
j

L L

, ,1 si … i ∂[]K

, , ∈ ∂1 []sf … f K

, ,+ +∗ ∗11 ssi if L … f L
= =1 sf … f

rA
=() 0L y

[]∂K

[]∂K

[]∈ ∂Mat ()mL K

=() 0L y

2.2. Dimension of the Solution Space
Let the field of constants =

 of the field K is algebraically closed.
Let Λ denote a fixed universal Picard—Vessiot exten-
sion for K (see [2, Sect. 3.2]). This is some differential
extension Λ of a field K such that =

 and any differential system ,
, has a space of solutions (in) of

dimension m over the field of constants. For an arbi-
trary operator L of form (3), will denote a linear
space of solutions of L (i.e., solutions of the system

) over that belong to . The
dimension of this space is denoted as .

Suppose that is not algebraically closed.
For any differential field K of characteristic 0, there
exists a differential extension that has algebraically
closed field of constants: this is, for example, the alge-
braic closure with the derivative obtained as a natu-
ral extension of the derivative in the field K. In this
case, (see [2, Exercises 1.5, 2:
(c), (d); 3, Sect. 3]). Then, is a linear over
space of solutions of L the components of which
belong to the universal differential extension of the
field .

Let an operator L of full rank have form (2). If
, then we define as the greatest integer

k, , such that is a nonzero row. Thus,
.

The matrix such that =
, , is referred to as the frontal

matrix of the operator L.
The group of unimodular operators from

 will be denoted as .
Under differentiation of a row of operator (3)

(or, which is the same, application of ∂ to this row), we
mean the replacement of by the row

, where is a composition (product
in) of the scalar operators ∂ and .

The theorem below, which was proved in [1], fol-
lows from the assertions proved in [4, 5] (part (iii) of
this theorem can also be proved by using results of [6,
Theorem III]).

Theorem 1. Let be of full rank.
Then,

(i) if L' is the result of differentiation of one of the rows
of L, then + 1;

(ii) if the frontal matrix for is
nonsingular, then

()Const K
∈ ∂ ={ | 0}c cK

Λ()Const
()Const K ∂ =y Ay

∈ ∂Mat ([])mA K Λm

LV

=() 0L y Λ()Const Λm

dim LV
()Const K

K

=() ()Const ConstK K

LV ()Const K

K

≤ ≤1 i m α ()i L
≤ ≤1 k r ,∗()k iA

,α = ∗() ordi iL L
∈ Mat ()mF K ,∗iF

α ,∗()()
i L iA = , ,1i … m

∂Mat ([])m K ϒm

,∗iL

,, ,1()i i mL … L
,∂ , , ∂1()i i mL … L ∂ ijL

∂[]K ijL

∈ ∂Mat ([])mL K

='dim dimL LV V
∈ ∂Mat ([])mL K

=

= α∑
1

dim ();
m

L i

i

V L

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 2 2017

REVEALING MATRICES 69

(iii) .
In what follows, we assume that the field K is con-

structive; in particular, there exists a procedure for
testing whether a given element of the field is equal to
zero.

2.3. The EG-algorithm (EG-eliminations)

For a given full-rank operator , the
EG algorithm ([4, 7–9]) constructs some embracing
operator matrix such that

• ,
• has a nonsingular leading matrix,
• for , so that
If operator L is not of full rank, then the algorithm

advises of this.
The algorithm constructs on the place of the

operator L; i.e., L is modified step-by-step converting
gradually to .

Test if the rows of the leading matrix of the operator
L are linearly dependent over K. If they are not, then
L is not modified and the algorithm stops. Otherwise,
perform a series of steps consisting of two stages.

Reduction stage:
Calculate coefficients of the leading

matrix row dependence. Take some i, 1 ≤ i ≤ m for
which .

Replace row in (3) by

(4)

The ith row of the leading matrix of the operator L
becomes equal to zero.

Differential shift stage:

Apply to the ith row (the value of i was
selected on the reduction stage) to get .

If, at some moment, there appears a zero row in L
or the number of “reduction + differential shift” steps
is equal to , then the original operator L is not
of full rank. In all other cases, we obtain an operator
with a nonsingular leading matrix, and the application
of the algorithm will require not more than
“reduction + differential shift” steps.

The above estimate of the number of steps is justi-
fied by the fact the reduction stage on each “reduction
+ differential shift” step does not change the solution
space and, according to assertion (i) of Theorem 1, the
“differential shift” step increases the dimension of the
solution space due to differentiations. At the same
time, the dimension of the solution space on any step
cannot exceed mr. Thus, the total number of steps of
the EG algorithm cannot exceed . Each reduction

∈ ϒ ⇔ = 0m LL V

∈ ∂Mat ([])mL K

∈ ∂
�

Mat ([])mL K

=
�

ord ordL L
�

L

=
�

L QL ∈ Mat ()mQ K ⊆ �

L LV V

�

L

�

L

, , ∈1 mp … p K

≠ 0ip

,∗iL

,
=

.∗∑
1

m

k k

k

p L

−α∂ ir

α =i r

+ 1mr

mr

mr

and differential shift step is equivalent to the multipli-
cation of the original operator by some operator from
the left; therefore, the resulting operator has the form

, where . (If necessary, construc-
tion of matrix Q can be included in the EG algorithm.)

Complexities of the EG algorithm and some other
algorithms to be discussed in Sections 2.4 and 2.5 were
studied in [1]. Complexity here is meant to be the
number of operations in the field K for fixed m and r
in the worst case. The operations taken into account
are both arithmetic field operations and the differenti-
ation operation. Complexity of the EG algo-
rithm is shown to be

(5)

where ω is the exponent of the matrix multiplication,
.

2.4. The RR-algorithm

This algorithm relies on the FF algorithm [10].
A simplified version of the FF algorithm is called
RowReduction [11]; for brevity, we will use abbrevia-
tion RR for it in what follows.

Given an operator of full rank, the
RR algorithm constructs an operator
such that

• ;

• the frontal matrix of the operator is nonsingular;

• for some and, hence, .
Let us briefly describe this algorithm focusing on

the construction of . The operator is constructed
on the place of the operator L; i.e., L is modified step-
by-step converting gradually to .

Test if the rows of the frontal matrix of the operator
L are linearly dependent over K. If they are not, then

 and the algorithm stops. Otherwise, let
 be dependence coefficients. From the

rows (3) the coefficients of which in the linear combi-
nation are not equal to zero, take the row that has the
greatest order (if there are several rows that have this
order, take an arbitrary one out of them). Let it be the
ith row . The row of the operator L is replaced by

(6)

After a finite number of steps, we obtain an operator
with a nonsingular frontal matrix.

If, at some moment of the algorithm execution,
there appears a zero row in L, then the rank of L is not
full.

QL ∈ ∂Mat ([])mQ K

,EG()T m r

ω+, = Θ + ,1 3 2
EG() ()T m r m r m r

< ω ≤2 3

∈ ∂Mat ([])mL K

∈ ∂
�

Mat ([])mL K

≤
�

ord ordL L
�

L

=
�

L UL ∈ ϒmU = �

L LV V

�

L
�

L

�

L

=
�

L L
, , ∈1 mp … p K

,∗iL ,∗iL

α −α
,

=

∂ .∗∑
1

i j

m

j j

j

p L

70

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 2 2017

ABRAMOV et al.

The termination of the algorithm is guaranteed by
the fact that the sum of orders of rows of the operator
L decreases on each step.

It is shown in [1, Prop. 2] that

(7)
It should be noted that the greatest exponent of r in (5)
is less than that in (7). On the other hand, ,
whereas, for , it may happen that .

2.5. The ΔEG and ΔRR algorithms
Let the ith row of the frontal matrix of the operator

 have the form

, . Then, the number k is referred to as
the pin-index of the ith row of L. If the ith row of the
operator L is zero, then its pin-index is considered to
be equal to . We, however, consider the case where
L has full rank.

If the rows of L have pair-wise different pin-indi-
ces, then the frontal matrix is nonsingular: up to the
order of the rows, this is a triangular matrix with non-
zero diagonal elements. Let rows and

 have identical pin-indices k, and let =
d1, , and . Consider such
that the row

(8)
either has a pin-index greater than k or the order less
than . The row in the operator L, i.e., , is
replaced by row (8). If L is of full rank, then, after sev-
eral steps of the above-described form, the frontal
matrix becomes triangular. One can use this1 instead
of searching linear dependence of rows of the frontal
matrix (for EG, the leading and frontal matrices coincide
at the corresponding moments and in (8)).

This brings us at the new variants of the EG and RR
algorithms, which will be further referred to as ΔEG and
ΔRR, respectively. It has been shown in [1, Prop. 3]
that

(9)
and

(10)
A similar approach (however, without estimates (9)
and (10)) is discussed in [10, Sect. 9.1].

1 For the difference case, this has already been used in [12] in the
first version of the EG algorithm. In the discussion on the differ-
ential case, A. Storjohann draws attention of the first author to the
fact that the complexity of this approach is less than that associ-
ated with the solution of linear algebraic systems (see also [13]).

ω+, = Θ + .1 3 3
RR() ()T m r m r m r

= �

L LV V
�

L < �dim dimL LV V

∈ ∂Mat ([])mL K

−

, , , , , ,
���

1

(0 0)
k

… a … b

≤ ≤1 k m ≠ 0a

−∞

,= ∗1 ir L

,= ∗2 jr L ,∗ord iL

, =∗ 2ord jL d ≤1 2d d ∈v K

−− ∂v 2 1
2 1

d dr r

2d 2r ,∗jL

− =2 1 0d d

Δ , = Θ 3 2
EG() ()T m r m r

Δ , = Θ .3 3
RR() ()T m r m r

2.6. The Case Where the Derivatives of Rows Are Stored
All results of differentiation of rows can be stored.

For this case, some upper estimates of the total num-
ber of differentiations were obtained in [1].

Proposition 1 [1, Proposition 6]. The numbers of
differentiations without repetitions (when the result of
each differentiation is stored) performed by the RR
and ΔRR algorithms are and in the
worst case, respectively; as a result, the numbers of
differentiations of elements of field K are and

, respectively.

However, the estimates and for
the number of differentiations do not allow us to
reduce the exponent for r in (7) and (10). Based on
Proposition 1, we cannot conclude that storing results
of all differentiations considerably reduces complexi-
ties of the RR and ΔRR algorithms. However, the
space complexity grows considerably when we store all
differentiation results.

Note that we have no arguments in favor of the
conclusion that, for example, the upper estimate

 of the number of differentiations of rows by
the RR algorithm is exact in one or another sense.
An interesting question is whether the estimate
is valid?

It is worth noting that the space complexity (the
use of additional memory in the worst case) grows
considerably when we store all differentiation results.

3. IMPLEMENTATION
The algorithms considered above were imple-

mented in the computer algebra system Maple ([14])
as procedures of the new package EGRR2 for systems
whose coefficients are rational functions of one vari-
able over a field of rational numbers.

The package includes the following procedures:
• EG, implements the EG algorithm,
• RR, implements the RR algorithm,
• TriangleEG, implements the ΔEG algorithm,
• TriangleRR, implements the ΔRR algorithm.

3.1. Input Parameters and Values Returned by the
Procedures

A differential system (1) is specified at the input of
the procedures of package EGRR as an explicit matrix of
system of size . In turn, this
system matrix is specified by means of the standard
object Matrix. The entries of the explicit matrix are

2 The package and a Maple session with examples of use of the
procedures described are available at the address http://www.
ccas.ru/ca/egrr.

2()O mr 2 2()O m r

2 3()O m r
3 3()O m r

2 3()O m r 3 3()O m r

2()O mr

()O mr

−1 0(| | |)r rA A … A × +(1)m m r

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 2 2017

REVEALING MATRICES 71

rational functions of one variable, which are also spec-
ified in a standard way accepted in Maple.

Each procedure of package EGRR has three input
parameters:

• M is an explicit matrix of the original system;
• d is the number of blocks of the explicit matrix,

;
• x is the independent variable of the system.
The values returned are
• res, the system obtained as a result of the trans-

formations performed by the algorithm implemented
in the procedure;

• full_ranktrue if, in the course of the algo-
rithm operation, it was determined that the system has
a full rank and false otherwise.

The application of the package procedures to a sys-
tem of full rank is illustrated in the figure.

3.2. Determination of Dependence of Matrix Rows
The EG and RR algorithms rely on the determina-

tion of linear dependence of matrix rows, which is
solved by procedure NullSpace from the Linear-
Algebra package in Maple.

The idea of searching linear dependences of rows of
the leading matrix without transforming the entire
operator L was put forward in [8], where it was also
noted that these dependences could be sought by pro-
cedures from the LinearAlgebra package, some of
which are very efficient. The use of these procedures

= + 1d r

can save time when employing the version of the EG
algorithm described in Section 2.3 (see the description
of the reduction stage presented there). It was empha-
sized in [8] that the coefficients of a linear dependence
are solutions of some system of linear homogeneous
algebraic equations and all elements of any basis of the
space of solutions to this system can be used (after sim-
ple transformations) on the subsequent reduction
stages in the EG algorithm (a similar possibility for the
RR algorithm was noted in [5]).

4. EXPERIMENTS

4.1. Random Selection of Systems

For each pair m, r, where m = 4, 8, 10 and r = 3, 9,
27, 12 systems have been generated. The coefficients of
all systems were random polynomials (the standard
Maple command randpoly was used to select the coef-
ficients of the polynomials from the interval [–99, 99],
and the degrees of the polynomials did not exceed 8).
We generated sparse systems, with the probability that

an element is nonzero being equal to ,

, or , where is the integer part of

the number. For each variant, four (out of 12) systems
have been generated. In the course of the experiments,
we recorded the execution time, the number of the dif-
ferentiation operations of the system matrix entries,
and the number of arithmetic operations.

+
1

[/2] 1m

+
1

[/3] 1m +
1

[/4] 1m
...[]

Fig. 1.

72

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 2 2017

ABRAMOV et al.

Results of the experiments are presented in Table 1,
which contains information on the maximum time3

and the maximum number of operations performed by
the algorithm.

The results presented demonstrate that the varia-
tion of the maximum number of operations required
for solving one system and the worst (maximum) time
of the algorithm execution for one system behave dif-
ferently when r and m vary: the worst time grows faster
than the maximum number of operations as r and m
grow. Note that the worst time does not always corre-
spond to the maximum number of operations. This is
explained by the fact that the time spent on one oper-
ation is not constant. In particular, the results of the
experiments show that the expenditures on one opera-
tion for the ΔEG and ΔRR algorithms grow faster with
the growth of r and m than those for the EG and RR
algorithm. As a result, for large m and r, the worst time
for ΔEG and ΔRR is considerably greater than that for
EG and RR, in spite of the fact that the maximum
number of operations for ΔEG and ΔRR is less than
that for EG and RR. This is explained by “cumber-
some” form of entries of the explicit matrix in the
course of calculation, which is discussed in more
detail in Section 4.3.

3 In seconds. Computations were carried out in Maple 2016,
Ubuntu 8.04.4 LTS, AMD Athlon(tm) 64 Processor 3700+,
3GB RAM.

4.2. Storing Differentiated Rows

As noted in Section 2.6, the estimates we have
obtained for the number of differentiations without
repetitions do not allow us to make the exponent of r
in the complexity estimates (7) and (10) less than 3, so
that it remains unclear whether this exponent can be
reduced to 2. Our experiments showed that the use of
option remember for the procedure of differential
row shift almost does not improve the operation time
of the RR and ΔRR algorithms and even worsens it
sometimes, whereas the number of differentiations
can be reduced significantly. Table 2 shows results of
operation of the RR and ΔRR algorithms (the compu-
tation time and the number of differentiations) on ran-
domly generated systems with the number of equations

 such that a half of the system equations has
order r = 3, 2, 4, 5, 6, 7, 8, 9, whereas the other half has
order equal to 1 and the application of the algorithm
yields a system of order 1. For such systems, rows are
repeatedly differentiated many times; however, storing
of these differentiations improves the operation time
insignificantly.

4.3. Comparison of EG, RR and ΔEG, ΔRR

Estimates (5), (7), (9), and (10) describe complex-
ity in terms of the number of operations in the field K
and do not take into account the size of the operands.
In this sense, the bit complexity is more informative;

= 6m

Table 1

WT is the worst time of algorithm execution for random systems with fixed r, m; NOWT is the number of operations for systems with the
worst time; MNO is the maximum number of operations for fixed r, m; TMNO is the algorithm execution time for system requiring the
maximum number of operations.

r = 3 r = 9 r = 27

m = 4 m = 8 m = 16 m = 4 m = 8 m = 16 m = 4 m = 8 m = 16

EG WT 0.024 0.294 5.360 0.140 1.733 1.763 0.300 3.590 40.747
NOWT 608 4920 32992 1624 8592 15664 3252 27600 121776
MNO 608 4920 36640 1624 8592 50896 4712 27600 123856
TMNO 0.024 0.294 1.574 0.140 1.733 1.743 0.110 3.590 3.800

RR WT 0.034 0.336 5.386 0.150 1.653 2.140 0.424 5.507 57.41
NOWT 408 4912 21856 1524 7704 40880 3276 25864 102224
MNO 408 4912 27728 1524 7704 40880 3276 25864 102224
TMNO 0.034 0.336 1.790 0.150 1.653 2.140 0.424 5.507 57.41

ΔEG WT 0.027 0.310 3.503 0.107 1.130 4.650 0.497 4.307 104.534
NOWT 320 2176 13760 1080 6400 27680 3696 29568 90 496
MNO 320 2176 13760 1160 6400 27680 3696 29568 90 496
TMNO 0.027 0.310 3.503 0.087 1.130 4.650 0.497 4.307 104.534

ΔRR WT 0.037 0.540 3.703 0.180 2.017 16.970 0.890 17.510 226.590
NOWT 384 2208 14016 1240 6400 24160 3472 30912 103936
MNO 384 2336 14016 1400 6880 27680 4480 30912 103936
TMNO 0.037 0.410 3.703 0.120 1.287 4.600 0.294 17.510 226.590

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 2 2017

REVEALING MATRICES 73

however, its evaluation is associated with certain diffi-
culties (although there are some studies of bit com-
plexity for similar problems; see, for example, [15]).
Clearly, in the process of operation of the EG, RR,
ΔEG, and algorithms, we encounter “cumber-
some” form of elements of the operator L. The EG
and RR algorithms, as described in Sections 2.3 and
2.4, have certain advantages in this regard: the replace-
ment of row by row (4) or (6) results in the “cum-
bersome” form of elements in only one row. At the
same time, when the revealing matrices are trans-
formed to a triangular form (Section 2.5), the “cum-
bersome” form affects a greater number of elements,
and the operations on elements become more expen-
sive. Therefore, in spite of the attractiveness of esti-
mates (9) and (10), algorithms EG and RR, as a rule,
work faster than ΔEG and ΔRR, which is substanti-
ated by the experiments (see Table 1).

Of course, it should be taken into account that
algorithms ΔEG and ΔRR perform additional work
compared to EG and RR, namely, convert the reveal-
ing matrix to a triangular form. Sometimes, this may
occur preferable. In some cases, the ΔEG and ΔRR
algorithms had advantages in terms of time either. For
example, the advantage of ΔRR over RR can be seen
from Table 2. The advantage of ΔEG over EG mani-
fested itself in the experiments with sparse low-order
systems of many equations. Table 3 shows the opera-
tion times of the algorithms for randomly generated
systems of order with the number of equations

ΔRR

,∗iL

= 1r

mP = 50; the part of the nonzero coefficients is 7–
11%, and the coefficients themselves are polynomials
of the degree 8 or less.

As has already been noted, the unquestionable
advantage of RR and ΔRR is that the resulting system
is equivalent to the original one. In a number of cases,
RR is more efficient in terms of time than EG (Table 3).
However, in some cases, EG and ΔEG are more effi-
cient (Table 1).

The use of standard linear algebra procedures for
reducing the revealing matrix to a triangular form
(similar to that in Section 3.2) in the ΔEG and ΔRR
algorithms will change the order of growth of the com-
plexities of the ΔEG and ΔRR algorithms: instead of

 in (9) and (10), we will get , which deprives the
ΔEG and ΔRR algorithms of their theoretical advan-
tage (see Section 2.5) over the EG and RR algorithms.

5. CONCLUSIONS

As can be seen, the EG and RR algorithms admit
modifications that, based on general considerations
and complexity estimates, may result in more efficient
versions of these algorithms. However, our experi-
ments show that these improvements are not of sys-
tematic character. Moreover, on the whole, this hap-
pens quite rarely. Therefore, the main recommenda-
tion is to use procedures EG and RR (depending on
what revealing matrix—leading or frontal one—is to be
made nonsingular). If the operator or system cannot
be transformed as required in an acceptable time, then
one may try to apply other procedures from the EGRR
package, which, possibly, will yield the desired result.

ACKNOWLEDGMENTS

This work was supported in part by the Russian
Foundation for Basic Research, project no. 16-01-
00174-a.

3m ω+1m

Table 2. Comparison of execution times of the algorithms with and without option remember

T is the algorithm execution time; NOD is the number of operations of differentiation.

m = 6 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9

RR T 0.690 1.303 2.597 8.950 37.480 50.950 296.633
NOD 480 1170 2160 3654 5760 8370 11760

RR remember T 0.657 1.257 2.593 8.970 37.213 51.550 309.010
NOD 192 360 576 840 1152 1512 1920

ΔRR T 0.614 1.137 2.330 4.414 8.264 14.810 24.747
NOD 384 1170 2520 4746 7824 12150 17640

ΔRR remember T 0.596 1.067 2.164 4.144 7.583 13.747 23.933
NOD 192 630 1224 1974 2880 3942 5160

Table 3. Algorithm execution times for sparse systems with
 and

r = 1,
m = 50 7% 8% 9% 10% 11%

EG 0.994 36.067 71.540 97.503 177.897
RR 0.010 31.014 22.420 12.717 19.757
ΔEG 0.020 52.880 43.467 56.773 88.563
ΔRR 0.010 54.090 45.410 73.053 190.403

= 1r = 50m

74

PROGRAMMING AND COMPUTER SOFTWARE Vol. 43 No. 2 2017

ABRAMOV et al.

REFERENCES
1. Abramov, S.A., On the differential and full algebraic

complexities of operator matrices transformations,
Proc. of CASC 2016, 2016, pp. 1—14.

2. van der Put, M. and Singer, M.F., Galois Theory of Lin-
ear Differential Equations, Grundlehren der mathema-
tischen Wissenschaften 328, Heidelberg: Springer,
2003.

3. Rosenlicht, M., Integration in finite terms, Am. Math.
Monthly, 1972, vol. 79, no. 9, pp. 963–972.

4. Abramov, S.A. and Barkatou, M.A., On the dimension
of solution spaces of full rank linear differential systems,
Proc. of CASC 2013, 2013, pp. 1–9.

5. Abramov, S. and Barkatou, M., On solution spaces of
products of linear differential or difference operators,
ACM Commun. Comput. Algebra, 2014, vol. 48, no. 4,
pp. 155–165.

6. Miyake, M., Remarks on the formulation of the Cauchy
problem for general system of ordinary differential equa-
tions, Tohoku Math. J., 1980, vol. 32, no. 1, pp. 79–89.

7. Abramov, S. and Bronstein, M., On solutions of linear
functional systems, Proc. of ISSAC 2001, 2001, pp. 1–6.

8. Abramov, S.A. and Bronstein, M., Linear algebra for
skew-polynomial matrices, Rapport de Recherche

INRIA, RR-4420, March 2002. http://www.inria.fr/
RRRT/RR-4420.html.

9. Abramov, S.A. and Khmelnov, D.E., On singular
points of solutions of linear differential systems with
polynomial coefficients, J. Math. Sci., 2012, vol. 185,
no. 3, pp. 347—359.

10. Beckermann, B., Cheng, H., and Labahn, G., Frac-
tion-free row reduction of matrices of Ore polynomials,
J. Symbolic Computation, 2006, vol. 41, no. 5, pp. 513–
543.

11. Barkatou, M.A., El Bacha, C., Labahn, G.,and Pflu-
gel, E., On simultaneous row and column reduction of
higher-order linear differential systems, J. Symbolic
Computation, 2013, vol. 49, pp. 45–64.

12. Abramov, S., EG-eliminations, J. Difference Equations
Appl., 1999, vol. 5, nos. 4–5, pp. 393–433.

13. Mulders, T. and Storjohann, A., On lattice reduction
for polynomial matrices, J. Symbolic Computation,
2003, vol. 35, no. 4, pp. 377–401.

14. Maple online help. http: //www.maplesoft.com/sup-
port/help/

15. Giesbrecht, M. and Sub Kim, M., Computing the Her-
mite form of a matrix of Ore polynomials, J. Algebra,
2013, vol. 376, pp. 341–362.

Translated by A. Pesterev

