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1. INTRODUCTION

The roots of indicial polynomials of linear ordinary
differential, difference, and, q-difference operators
(equations) provide important information about the
solutions to these operators themselves. This informa-
tion includes the valuation of the Laurent solution,
i.e., the lowest power of x appearing in the series with
a nonzero coefficient, the degree of the polynomial
solution, etc. The set of roots of an appropriately cho-
sen indicial polynomial gives a finite number of candi-
dates for the corresponding role.

We consider the most common cases of such oper-
ators—differential, difference and q-difference ones—
and show that they can be considered from a unified
point of view and propose a unified approach to
obtaining the indicial polynomial. This is achieved by
including in the class of objects under consideration
the so-called induced recurrent operators, the direct
purpose of which is to construct a sequence of coeffi-
cients of series that are solutions or components of
solutions to the original differential, difference or q-
difference equations. It is found that, in addition to
this unified approach to obtaining the indicial polyno-
mial, the use of induced operators opens up the possi-
bility of proving various properties of indicial polyno-
mials.

The paper is organized as follows.
Section 2 provides some background on the litera-

ture discussion of the possibilities of using indicial
polynomials. Section 3 is devoted to induced opera-
tors, and the possibility of their use for obtaining indi-
cial polynomials is also discussed here. The indicial
polynomials themselves obtained by this approach are
described by Theorem 1 in Section 4.

In Section 5, we discuss one of the possible appli-
cations of the approach under consideration to con-
structing indicial polynomials in proofs of their prop-
erties. As an example, a proof of the multiplicative
property of indicial polynomials is given. For the dif-
ferential case, this property was previously established
in [1]. In this paper, Theorem 2 is proved, which cov-
ers three cases: differential, difference, and q-differ-
ence ones.

We use come conventional notation: K[x] is the
ring of polynomials, K[[x]] is the ring of formal power
series, and  is the field or ring of formal Laurent
series of x over the given field (or ring) K. Another
conventional term in the literature is indicial equation,
and this equation itself has the form f(n) = 0, where f is
a polynomial over a ring or field. As applied to f, we
use the term indicial polynomial.

2. ON INDICIAL EQUATIONS 
AT THE POINTS 0 AND ∞

2.1. Point 0
For a linear ordinary differential operator L for

which 0 is a regular singular point, ([2], Chapter IV,
Section 2), the Frobenius method ([2], Chapter IV,
Section 8 and [3], Section 5.3.3) makes it possible to
construct a polynomial f and algorithmically describe
all power series  with nonzero free terms such that,
for any constant λ, it holds that

In particular, this allows us to find all solutions of
the form

(1)

(( ))K x

( )g x

λ λλ( ( )) = ( ) .L x g x f x

λ ( ),x g x
41



42 ABRAMOV, RYABENKO
in which the values of λ satisfy the indicial equation
f(λ) = 0.

For , we call Laurent (including formal
Laurent) solutions that have the form of the series

 ∈ K((x)), , . Here λ is called the
valuation of the Laurent solution. The Laurent solu-
tions are a particular case of solutions (1), and they are
constructed using the same indicial equation f(λ) = 0
as in case (1): if a differential equation has a Laurent
solution with a valuation λ, then λ is a root of the indi-
cial equation. Thus, the set of all integer roots of the
indicial equation includes the set of valuations of all
Laurent solutions to the differential equation.

2.2. Point ∞
In [4], the problem of finding polynomial solutions

to the equation , where L is a linear differen-
tial or difference operator with polynomial coefficients
is considered. That is, L has the form

(2)
or

(3)
where, we have, for a field K of characteristic 0, a0(x),

…, ad(x) ∈ K[x], , D = , and Δy(x) = y(x +

1) – y(x). For solving this problem, we introduce an
integer m and a nonzero polynomial  such that the
application of the operator L to the polynomial s(x) of
degree  gives a polynomial L(s) for which

(4)

Here the coefficient of  is Ic s(x)I(deg s(x)),
where  denotes the coefficient in the polynomial

 of the highest degree of x, i.e., the coefficient of
. Thus, for the polynomial solution  of

degree  to the equation , it holds
that . If  has no nonnegative integer roots,
then  has no polynomial solutions. Other-
wise, the maximum integer root of the polynomial

 can be used as an upper bound on the degree of
the solution . Formulas for calculating the num-
ber m and the polynomial  given the coefficients of
the operator L can be found in [4].

In [5], the same approach is used for finding the
polynomial solutions to a difference equation with the
only distinction that the difference operator L is spec-
ified as a polynomial of the shift operator σ: σy(x) =

. That is, L has the form

(5)

where . It is possible to pass
from (5) to (3) and then construct . In [5], an algo-
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rithm for constructing  given the coefficients
, ...,  is described, which allows us to reduce

the calculations that occur when passing from (5) to (3).
In Chapter 2, Section 6 in [6], the differential and dif-

ference cases of the equation, as well as the q-difference
case are considered in the problem of constructing poly-
nomial solutions: , where L has the form

(6)

The operator Q is defined by , where q
is a nonzero element in K such that  for any
integer n or  and the element q of K is tran-
scendental over the field .

In [6], for these three cases, the number m occur-
ring in (4), is denoted by ω and is called the increment
of the operator L, and  is called the indicial poly-
nomial of L. In Section 7.11 of the same book, for the
case of differential equations it is noted that the same
polynomial I(n) can be used in the consideration of
solutions in , i.e., of solutions y(x) = cμxμ +

, where  (  is called
the valuation of the series in x–1). If the equation

 has a solution with , then μ is
a root of I(n), which is denoted by  in connection
with this problem. For the increment, we use the nota-
tion .

3. INDUCED OPERATORS
3.1. Compatible Bases

For finding polynomial solutions to , it is
proposed in [7] to use a polynomial basis compatible
with the operator . A sequence  of poly-
nomials in K[x] such that  and  for

 is said to be a basis in the space K[x] com-
patible with the operator  if there exist

 such that, for any n = 0, 1, …, it holds that

LPn = , where αi(n) ∈ K for n = 0, 1, ...,
,  and Pn = 0 for n < 0.

The set of formal sums , where
 for , is a ring, which we denote by
. Let  be a basis compatible with L. For

, it holds that L(s) = 0 if and only if

 = 0 for all n ≥ 0 under the condi-
tion cn = 0 for n < 0. It was proved in [7] that a basis
compatible with L for the differential and q-difference
operator is , and for the difference operator it is

. Formulas for constructing  given the
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POLYNOMIAL RELATIONS FOR BOUNDS 43
coefficients of L for these three cases are presented.
Thus, the problem of constructing polynomial solu-

tions  (and solutions in the form of a formal

series ) to the equation L(y) = 0 is reduced to

calculating the sequence  satisfying the recur-
rence

(7)

where , , . In the calculation of
cn, it is assumed that cn = 0 for n < 0, and in the con-
struction of polynomial solutions, it is also assumed
that cn = 0 for all sufficiently large n. The equation
bt(n – t) = 0 is indicial in the problem of constructing
polynomial solutions (the set of its integer roots con-
tains all degrees of the polynomial solutions to L(y) =
0). Here the role of the indicial polynomial is played
by bt(n – t).

3.2. Inducibility with Respect to a Basis

In [8], recurrence (7) is called induced with respect
to the basis  for L(y) = 0. The induced operator for L
is the operator

(8)

corresponding to (7), where E is the shift operator:
, . The nonzero coefficients

 and  are called the leading and trailing coef-
ficients of the operator  and of the relation  =
0, while l and t are called the leading and trailing
orders, respectively.

It was shown in [8] the set of all operators compat-
ible with , which is denoted by , is a -algebra,
and the inducibility transformation, which assigns to

 its induced operator , is an isomorphism;
i.e., for any two operators L1, L2 ∈  and any a, b ∈
K, it holds that

This implies that, if  is a basis compatible with the
operator ξ: K[x] → K[x] and compatible with the oper-
ator x (i.e., with the operator of multiplication by the
independent variable x), then  is compatible with any

 and the transition to the induced operator
is specified by two rules for  and x.

The induced recurrences can be used for con-

structing solutions of the form y(x) = , ν ∈
, cν ≠ 0 if it turns out possible to extend the polyno-

mial basis to negative . In the differential and q-dif-
ference cases, the two-sided sequence of rational
functions  is suitable for this purpose. It was


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shown in [9, 10] that in the difference case the
sequence  in falling powers may be used:

The space of all series in  over K, i.e.,
the series , , and cn = 0 for all negative
n that are sufficiently large in absolute value, will be
denoted by . For the elements of this space, we
introduce the concepts of valuation val+ and the lead-
ing coefficient lc+ similarly to the case of Laurent
power series, i.e., to the case Pn = xn, n ∈ . A solution
in the form of a series from  will be called a
Laurent solution.

Suppose that, for the equation  with poly-
nomial coefficients and a two-sided basis  compati-
ble with it, the induced operator is (8). The equation

 = 0, where bl(n) is the leading coefficient of
the induced operator and  is its leading order, is said
to be the indicial equation (and  is called the
indicial polynomial) in the problem of constructing
solutions in . The set of all integer roots of the
indicial equation contains all valuations of such solu-
tions.

Similarly, the set of all series , 
such that cn = 0 for all sufficiently large n is denoted by

. For the elements of this set, the concepts of
valuation val– and leading coefficient lc– are intro-
duced. The equation  is called the indicial
equation (and  the indicial polynomial) in the
problem of constructing solutions in .

Example 1. For the ring of differential operators in
 and the basis , the transformation to

the induced operator is specified by the rules

For , we obtain using

these rules  = (–E–2 + 1)(n + 1)E(n + 1)E – 2E–1(n +
1)E + 12 = –(n – 1)ncn + (n + 1)(n + 2)cn + 2 – 2ncn +
12cn = (n + 1)(n + 2)cn + 2 – (n + 4)(n – 3)cn.

Example 2. For the ring of q-difference operators in
 and the basis , the transformation to

the induced operator is carried out using the rules
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For , we obtain  = (q2n –
q14) + q2nE–3.

Example 3. For the difference operators in 
and the basis , the transformation to the
induced operator is carried out using the rules

For instance, for , we obtain

 = (n + 6)(n + 1)E + (n + 5).

4. INDUCED RECURRENCES AND INDICIAL 
POLYNOMIALS

Below, we consider the equation , where
, ξ ∈ , and the two-sided basis

compatible with ξ basis  consisting of
rational functions. That is, the conditions formulated
in [7–9] are satisfied:

  and  for ;
  for ;

  and  for ;

  for ;
 there exist  such that, for any , it

holds that

where  for , , –A1 + 1, …, B1,
  0.

where  for , , –A2 + 1, …, B2,
  0.

Examples 1–3 show two-sided bases compatible
with .

Theorem 1. Let  be a two-sided basis
compatible with  and . Then, there exist

(i)  and  such that, for an arbi-
trary , val+s(x) = ν, tc+s(x) = cν, and it
holds that

(9)

where the ellipsis denotes a series in  with a valu-
ation val+ greater than ;

(ii)  and  such that, for any u(x) ∈
, val–u(x) = μ, tc–u(x) = dμ, and it holds that

(10)
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where the ellipsis denotes a series in  with a val-
uation val– less than .

Proof. Let the induced operator  for L with
respect to the compatible basis  have form (8). The
application of L to the two-sided series s(x) =

 gives the series . The
two-sided sequence  is obtained by applying the
operator  to the sequence :

Thus, we have

Let  and . Since  for
, we have  = 0 for all  and

 = . That is, assertion (i) of the the-
orem at ,  =  is proved.

In the case , ,

since  for ,  = 0 for all 
and  = . This proves assertion (ii)
of the theorem for ,  = .

The search for Laurent solutions with respect to the
basis compatible with  is also valid in the case of an
operator with coefficients in the form of series:

. In the general case, the induced opera-
tor  has an infinite order and has the form

For such an operator, there exist  and
 as in Theorem 1 (i).

Multiplication by  is an operator compatible
with : . Therefore, for a  compatible
with  (e.g., ), one can search Laurent
solutions in  for the equation , where

. In this case, the induced operator 
generally has the form

and there exist  and  as in Theo-
rem 1 (ii).

The proof given for the case of L with polynomial
coefficients is also valid in these two cases.

Pay attention to the fact that the polynomial 
in (9) (and ) in (10)) is the same for any 
( ) of the form indicated above, and this polyno-
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POLYNOMIAL RELATIONS FOR BOUNDS 45
mial is completely determined by the operator L and
the basis  compatible with ξ.

The following definition essentially generalizes the
definitions given in [2, 4, 6–8].

Definition 1. The polynomial  in (9) is said to
be the indicial polynomial of the operator  for the
problem of finding solutions in . The polyno-
mial  in (10) is called the indicial polynomial for
the operator  for the problem of finding solutions in

.
Example 4. For the differential operator L in

Example 1 in the problem of constructing solutions to
 in , the indicial equation is  =

0. The set {0, 1} of its integer roots contains all valua-
tions val+ of solutions. The coefficients of these solu-

tions are successively calculated using 
beginning from the lower bound of valuations for any
given n; i.e., in this example c0, c1, …, cn are succes-
sively calculated. Let us write out the solution up to x4:

where  are arbitrary constants.
In the problem of constructing solutions in K((x–1)),

the indicial equation is  = 0. The set
 of its integer roots contains all valuations val– of

solutions. The coefficients of these solutions are suc-
cessively calculated using  beginning from
the upper bound of valuations up to any given ; i.e.,
c3, c2, …, cn are successively calculated. Let us write out
the solutions up to x–4 for this equation:

where ,  are arbitrary constants. The equation

L(y) = 0 also has polynomial solutions  – .

Example 5. For the q-difference operator L in
Example 2 in the problem of constructing solutions in

, the indicial equation  = 0 has
a single integer root . Let us write out the initial
terms of the Laurent solution for  up to :

where C is an arbitrary constant.
In the problem of constructing solutions in K((x–1)),

the indicial equation  = 0 has no integer roots.
Therefore, the equation  has no nonzero
solutions in  and has no polynomial solutions.
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Example 6. For the difference operator L in Exam-
ple 3 and the basis  = , the indicial polyno-
mial  has two integer roots .
The initial terms of the solutions in  for

 are

where ,  are arbitrary constants.
In the problem of constructing solutions in

, the indicial polynomial 
has a single root, and it is associated with the solutions

Here the ellipsis denotes the terms of the series begin-

ning with  for . It is easy to verify that all coef-
ficients in these terms are zero: cn = 0, . That is,
the equation  has solutions in the form of the
Laurent polynomial

Remark 1. The indicial equation obtained using the
induced operator in the differential case coincides
with the equation given by the Frobenius method
(Section 2.1), which can be confirmed by the straight-
forward verification. In this sense, the induced opera-
tors help establish a relationship between the indicial
equations for the difference and q-difference cases
with the classical differential case.

5. INDICIAL POLYNOMIALS OF THE 
PRODUCT OF OPERATORS

Theorem 2 (On the multiplicative property of the
indicial polynomial). Let  be a two-sided basis com-
patible with the operator ξ. Furthermore, let L1,

. Then, for , , where *∈ {+, –}, it
holds that

(i) ;

(ii) 

Proof. Let the induced operators for  and  be

The proof of Theorem 1 implies that
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Expand the product on the right-hand side of the
last equality to obtain

This implies (i) and (ii).
It follows from this proof of Theorem 2 that the

indicial polynomial has the multiplicative property
formulated in (ii).

Corollary 1. Let  and  be a
basis compatible with ξ. Then for , we have

(i) ;

(ii) 

Example 7. Let us construct for the differential
operator L defined in Examples 1 and 4 the indicial
polynomials for L5. To this end, there is no need to
perform exponentiation of the operator and construct
the induced operator for L5. Using Corollary 1, we
obtain

Example 8. Let

The indicial equations for L1 are given in Example 5.
According to the rules formulated in Example 2, the
induced operator for L2 is
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Then we obtain

Using Theorem 2, we obtain for the product of
operators  the expression

Example 9. Let

The indicial equations for L1 are given in Example 6.
According to the rules formulated in Example 3, the
induced operator for L2 is

Then we obtain

Using Theorem 2, we obtain for the product of
operators  the expression
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