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1. INTRODUCTION
Algorithms related to q-difference equations are of

interest in many fields of mathematics [1], especially
in combinatorics and the partition theory [2, 3]. In
what follows, we consider systems of linear q-differ-
ence equations with coefficients from , where

, K is a field of characteristic 0, q is transcen-
dental over K, x denotes , and k is a variable taking
values in . The system under consideration has the
form

(1)
where

• , ..., Ar(x) are  matrices with
entries from  (this is denoted as , , …,

); matrices  and  are
assumed to be nonzero;

• , ...,  is the
right-hand side of the system; and

• , ..., ym(x))T is the column
vector of the unknowns.

The number r is the order of the system. The homo-
geneous system corresponding to (1) is given by

(2)
Systems (1) and (2) can be written in the operator form
as  and , where

(3)

 is the operator of q-shift: . Matrices
 and  are called leading and trailing matrices

of systems (1), (2), and operator (3).
One of the generally accepted computer algebraic

approaches to searching solutions of linear systems of
equations is the cyclic vector method. This method
transforms the system to a scalar equation that is equiv-
alent, in some sense, to the original system. One of the
difficulties associated with this transformation is the
overgrowth of coefficients, due to which the method
works only for small-order systems. The last circum-
stance stimulates development of direct (without con-
structing a scalar equation) methods and algorithms.

In this paper, we consider direct algorithms for
searching solutions to systems of form (1), the compo-
nents of which  belong either to the
field  of formal Laurent series (in particular, the
ring  of formal power series) over , or to the
ring  of polynomials over , or to the field of
rational functions  over . The equations of the
corresponding homogeneous system (2), as well as
those of the original system, are assumed independent
over  (such systems are referred to as sys-
tems of full rank).

A solution y(x) = , ..., 
 of the system is called a Laurent solution, and
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a solution , ...,  is
called a rational solution. If , then this
solution is called a polynomial solution (which is a par-
ticular case of the rational solution).

Remark 1. We could confine our consideration to
the case of a homogeneous system, since a nonhomo-
geneous system with a polynomial right-hand side can
easily be reduced to a homogeneous system by apply-
ing the expedient described, in particular, in [4]: given
a nonhomogeneous system, one can construct an
equivalent homogeneous system by adding one addi-
tional equation in a constant function and using com-
ponents of the right-hand side of the original system as
coefficients of this new function.

Search for Laurent solutions to differential systems
was considered in [5, 6]; for difference systems, tropi-
cal calculations were used in [7]. Search for rational
solutions of both scalar linear difference equations and
systems of equations, together with relevant issues,
was discussed, for example, in [8–17].

For the q-difference case, there exist algorithms
(see, for example, [18–20]) for searching all rational
solutions of scalar linear equations, as well as of nor-
mal linear systems of the first order, i.e., systems of the
form

(4)

where  is a nonsingular matrix in .
Search for rational solutions of linear q-difference
equations and systems is of interest by itself and as a
part of various computer algebra algorithms (see, e.g.,
Section 6 of this paper).

Singularity of the leading or trailing matrices cre-
ates difficulties in searching solutions of the system (if
we rewrite system (4) as  = 0, where 
is the identity  matrix, then the trailing matrix of
this system is ). The same refers to the case of
singular leading or trailing matrices of the so-called
induced recurrence (difference) system: if the formal
Laurent series , , satisfies the original
q-difference system, then the sequence  of
m-dimensional vectors satisfies this induced recur-
rence system. In Section 2, we present an algorithm of
EG-eliminations, which transforms an original q-dif-
ference or induced recurrence system to that with a
nonsingular trailing or leading matrices. Such a trans-
formation of an induced recurrence system and subse-
quent finding of the determinant of the leading matrix
allows one to easily find a lower bound of valuations of
formal Laurent solutions of the original system.
An upper bound for the degree of polynomial solu-
tions is calculated by using the nonzero determinant of
the trailing matrix of the induced recurrence system
(see Section 2.2).

The search of rational solutions is implemented in
two stages: (1) search of the so-called universal

= ,1 2( ) ( ( ) ( )y x y x y x ∈K( )) ( )T m
my x x
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denominator and (2) search of the corresponding
numerators of the solution components. The numera-
tors are found as components of polynomial solutions
of the system obtained from the original one by means
of a special substitution involving the universal
denominator. Construction of the universal denomi-
nator on the initial stage makes use of the leading and
trailing matrices of the original q-difference system
after application of the EG-eliminations. This stage
allows one to obtain all factors of the universal denom-
inator different from the factor xk. After this, an appro-
priate exponent k can be found by treating the rational
solution as a formal Laurent solution and determining
a lower bound of valuations of such solutions. This is
discussed in Section 5.

The very first algorithm and an example of con-
structing polynomial solutions of q-difference systems
of an arbitrary order were presented in [21, Section 3.6].
As for universal denominators, it should be noted that,
strictly speaking, only first-order systems are consid-
ered in paper [19]. However, this paper also formulates
general principles allowing one to find rational solu-
tions of higher-order systems. For instance, it is noted
in [19] that, to construct a part of a universal denomi-
nator that contains only factors different from x, one
can take advantage of a slightly modified version (with
the substitution ) of the algorithm
designed for the difference case. An algorithm for dif-
ference systems of an arbitrary order was proposed, for
example, in [22]. The idea to consider rational solu-
tions as Laurent solutions to deal with xk in the
denominator was also proposed in [19]. In the current
paper, we follow this plan to obtain an algorithm for
searching rational solutions to systems of form (1)
(assuming that the system has full rank). For searching
polynomial solutions, we use the algorithm from [23],
which is also based on EG-eliminations (see Section 4).

Thus, the discussed algorithms for constructing
rational solutions of linear -difference systems system-
atically rely on EG-eliminations. Similar algorithms we
suggested earlier for linear differential and difference
systems of an arbitrary order [21, 22]. (For first-order
linear difference systems   with a
nonsingular matrix , an algorithm was proposed
in [9] that relied on super-irreducibility rather than on
EG-eliminations.) J. Middeke [24] showed that
bounds for the exponent k in factors of the form xk and
for the exponents of polynomial solutions can be
found also with the help of the Popov normal form
(see [25, 26]). Note that no comparison of various
approaches was carried out in [24].

In Section 6, we consider search of hypergeometric
solutions, i.e., solutions each component  of
which is a finite sum of hypergeometric terms, i.e.,
terms  such that  for some rational
function . For scalar linear q-difference equations,
the problem was first considered in [27], where algo-

+ → ix i xq
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rithm qHyper was suggested, which is a q-version of
the algorithm by M. Petkovsek for the difference case
[28]. (For the difference case, there are also algorithms
described in [29, 30].) The proposed algorithm relies
on the scalar algorithm, EG-eliminations, and resolv-
ing sequences of scalar operators proposed in [31].
The resolving sequences reduce the search of solutions
of a system to the search of solutions of several scalar
equations. Results of experiments described in [31]
show that they are more efficient in terms of the time
spent than the cyclic vector we mentioned earlier.

In Section 7, we discuss implementations of the
proposed algorithms in Maple [32]. It is worth noting
that detailed versions of the EG-eliminations designed
for the differential and difference cases were proposed
earlier, whereas the case of the q-difference system was
noted without going into detail in [33, 34] as that
where the EG-eliminations could be applied. (The
above-mentioned example of constructing a polyno-
mial solution to a q-difference system was obtained by
applying EG-eliminations to the recurrent induced
system.) In this paper, we fill this gap. Note that the
results reported in this paper were announced in the
extended abstracts [35, 36].

2. PRELIMINARIES
2.1. Embracing Systems

For any full-rank system  of form (1), one can
construct an l-embracing system 

(5)

the leading matrix of which is invertible in 
and the set of solutions contains all solutions of system
S. Similarly, one can construct a t-embracing system 

(6)

whose trailing matrix is invertible in  and
the set of solutions contains all solutions of system S.
In addition, if entries of matrices in (1), (2) and entries
of the right-hand side of system (1) belong to ,
then this property holds for systems (5), (6). The case
where matrices ,  are zero (either one of
them or both) is not excluded.

The embracing systems can be constructed by
means of the EG-eliminations ([21, 33, 37]).

Remark 2. If  and  are l- and t-embracing sys-
tems, respectively, constructed by EG-eliminations
for system (1), then the l- and t-embracing systems
constructed by EG-eliminations for system (2) coin-
cide with the homogeneous systems corresponding to

 and .
The EG-elimination algorithm consists in the suc-

cessive repetition of two—reduction and shift—stages,
which continues until the rows of the leading (trailing)

S
S
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matrix remain linear dependent over . On the
reduction stage, coefficients  of the depen-
dence are found; then, the equation corresponding to
one of the dependent rows is replaced with the linear
combination of the other equations, and the row of the
leading (trailing) matrix is set zero. On the shift stage,
operator  (or, respectively, ) is applied to the new
equation. The termination of the algorithm operation
is guaranteed owing to using a certain simple rule
when selecting equations to be replaced. The rule is as
follows. Suppose that system S has form (1) and let the
ith rows of matrices  be zero and that of
matrix  be nonzero. The number k is called the lower
order of the ith equation of system S. Accordingly, if
the ith rows of matrices  are zero and
the ith row of matrix  is nonzero, l is referred to as
the upper order of the th equation of system S. In the
course of obtaining the system with a nonsingular
leading matrix by means of the EG-eliminations,
among the equations corresponding to the nonzero ,
we select that with the least lower order (if there are
several such equations, we take any of them). When
obtaining the system with a nonsingular trailing
matrix, the equation with the greatest upper order is
selected.

This algorithm can also be applied to difference
(recurrence) Section 2.2 systems. In this case, opera-
tors ,  are replaced with σ, : ,

 . The importance of this feature is
discussed in Subsection 2.2. For such systems, we are
first of all interested in sequential solutions, i.e., solu-
tions in the form of sequences. Apart of constructing
the l- or t-embracing systems, the EG-elimination
algorithm can additionally construct a finite set of linear
constraints, each of which involves a finite number of
elements of a sequential solution and is a linear combi-
nation of these elements with constant coefficients. Any
sequential solution of the original difference system sat-
isfies the constructed linear constraints and, if the solu-
tion of the l- or t-embracing system satisfies all con-
structed linear constraints, is also a solution of the
original difference system (i.e., it is not a “redundant”
sequential solution of the corresponding embracing
system).

Remark 3. One of the variants of this algorithm
does not require special selection of the equation to be
replaced. On the shift stage,  is replaced with 
(in the difference case, σ is replaced with ). Each
shift stage increases the dimension of the space of the
solutions that have components in some special exten-
sion of the field  by one. This dimension cannot be
greater than rm, which guarantees termination of the
algorithm. The change of the dimension of the spaces
of solutions the components of which belong to the so-
called adequate extensions is discussed in [38].

K( )x
, ,1 mp … p

σq
−σ 1
q

−, ,0 1kA … A
kA

− +, , ,1 1r r lA A … A
lA

i

ip

σq
−σ 1
q

−σ 1 σ = +( ) ( 1)f x f x
−σ =1 ( )f x −( 1)f x

σq σ − 1q

σ − 1

K



PROGRAMMING AND COMPUTER SOFTWARE  Vol. 44  No. 2  2018

LAURENT, RATIONAL, AND HYPERGEOMETRIC SOLUTIONS 123

Remark 4. In certain cases, for example, when con-
structing a resolving sequence of operators for system
S, it is required to construct an lt-embracing system,
i.e., an embracing system with nonsingular leading
and trailing matrices. This can be done as follows:
construct a t-embracing system  by means of EG-
eliminations, and, then, construct an l-embracing sys-
tems for  by means of the EG-eliminations that use
operator  on the shift stage (see Remark 3).

2.2. Induced Recurrence Systems

If a formal Laurent series , , satis-
fies the original q-difference system (1), then the
sequence  of m-dimensional vectors satisfies the
induced recurrence system

(7)

where  is a sequence of the coefficients of the
expansion of the right-hand side  of the original q-
difference system into a series. The induced system
can be obtained from the original one in the following
three stages:

(i) rewrite the original system in the operator–
matrix form , where ;

(ii) in the matrix M, make the substitution

where σ is the shift operator, , for any two-
sided sequence ;

(iii) rewrite the system obtained in form (7).
In what follows, considering elements of the ring

 and field , we will need the concept of
series valuation: for a nonzero formal power or Lauren
series , its valuation  is the integer

with  for the zero series . The valua-
tion of a vector whose entries are series is the minimal
valuation of the entries of this vector.

Accordingly, the degree of the vector whose entries
are polynomials is the maximal degree of its entries.
The degree of the zero polynomial, as well as the degree
of the zero vector of polynomials, is equal to .

If the induced system (7) has a nonsingular leading
matrix , i.e.,  is a nonzero polynomial of

, then the valuation of all possible Laurent solutions
of the original q-difference system can be lower esti-
mated; if  is a nonzero polynomial of , then
the degrees of all possible polynomial solutions of the
original q-difference system can be upper estimated.
In some cases, we can immediately find out that Lau-

S

S
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rent solutions or, respectively, polynomial solutions
are lacking

The following theorem is a combined variant of
Theorem 1 and 2 from [19].

Theorem 1. Let the recurrent system (7) satisfiy the
condition that, if a formal Laurent series ,

 (in particular, a polynomial over ), satisfies
the original q-difference system (1), then the sequence

 of m-dimensional vectors satisfies (7). Let
 and  (thus, ,

 are polynomials in ). In this case,
(i) if the right-hand side  is Laurent and, addi-

tionally,

•  is a nonzero polynomial in ,
•  is a set (possibly, empty) of all integer roots of

the equation ,
• the number  does not exceed the valuation of the

right-hand side of the original -difference system
(  when the right-hand side  is a zero column
vector),

then the valuation of any Laurent solution of system
(1) cannot be less than

(8)
(ii) if the right-hand side  is polynomial and,

additionally,

•  is a nonzero polynomial in ,
•  is a set (possibly, empty) of all integer roots of

the equation ,
• the number γ is not less than the degree of the right-

hand side of the original q-difference system (
when the right-hand side  is a zero column vector),

then the degree of any polynomial solution of system (1)
does not exceed

(9)
If the leading or, respectively, trailing matrix of the

induced system is singular, then we can first apply the
required version of the EG-eliminations and, then, by
means of Theorem 1, find the desired estimates of val-
uations and degrees and construct Laurent and poly-
nomial solutions. This is discussed in Sections 3 and 4.

3. LAURENT SOLUTIONS
To search for Laurent solutions when the leading

matrix of the induced system is singular, we construct
an l-embracing recurrence system by means of EG-
eliminations. In so doing, a finite set of linear con-
straints arises.

The expansion of a Laurent solution in a series is
presented by initial terms, the number of which is
selected such that, first, the subsequent terms can be

∑
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calculated without regard to the linear constraints and,
second, the determinant of the leading matrix of the
l-embracing recurrence system does not vanish in the
course of this calculation. Having found the lower
bound of solution valuations by means of formula (8),
we can write down the system of linear algebraic equa-
tions for these terms and to solve it. The subsequent
terms can be obtained by means of the l-embracing
recurrence system found.

The problem of convergence of the series is not dis-
cussed.

4. POLYNOMIAL SOLUTIONS
The upper bound for degrees of all polynomial

solutions of system (1)can be obtained by formula (9).
If the trailing matrix of the induced system (7) used in
these calculations is singular, then EG-eliminations
are first applied to construct a t-embracing system of
the same form (7), and the calculations by formula (9)
are carried out for this system

After the upper bound  of the degrees has been
determined, to find the polynomial solutions them-
selves, one can apply not only the method of undeter-
mined coefficients but also a more efficient method of
constructing coefficients of the polynomial solutions
with the help of the induced recurrence system [23].

The recurrence system allows one to calculate the
coefficients either in the forward direction, from the
lower-order coefficients to the leading ones, or in the
backward direction, from the leading coefficients to
the lower-order ones. In the calculation of a next coef-
ficient in the case of the forward direction, the leading
matrix plays the key role; in the backward direction,
the key role is played by the trailing matrix. Since, in
the general case, a t-embracing system is used for
searching the bound of the degree of the polynomial
solution, it is reasonable to use the same t-embracing
system for searching the polynomial solution as well in
view of the fact that it is convenient to use a nonsingu-
lar matrix for calculating the coefficients

Let us rewrite the constructed t-embracing system (7)
in the form

(10)

Taking into account that  for , we succes-
sively find

To this end, for a fixed n, we consider (10) as a system
of linear algebraic equations in . For 

, solutions of such systems include a set of
constants that will change when n changes, if the
matrix on the left hand side of the current system (10)
is singular. On the one hand, the system is to be con-
sistent, and this may yield relations (linear algebraic
equations) for earlier introduced variables. On the
other hand, new constants appear. The number of such

ρ
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constants is equal to the difference of  and the rank of
matrix on the left-hand side. To the linear algebraic
equations obtained, we add, first, the equations

(11)

in the constants and, second, the linear constraints, in
which unknowns  for  and  are replaced by

zeros. The resulting set of expressions  +  +
... + a0 is the set of all polynomial solutions of the orig-
inal system (the constants are linear terms in

).
Remark 5. If, for example, owing to the approach

mentioned in Remark1, the algorithm is applied to a
homogeneous system, then  on the left-hand
side of (10). In this case, like in the algorithms from
[9, 11], there is no need to search successively all
degrees of the coefficients, which is an important
advantage in the case of sparse solutions. For this pur-
pose, the number of zero coefficients of the solution in
succession is counted, and, if this number exceeds the
degree of the left-hand side of system (10), the calcu-
lations continue starting from  corresponding to the
next integer root of the determinant of the trailing
matrix .

5. RATIONAL SOLUTIONS
When constructing rational solutions, we first

determine  ( ) and  such
that any rational solution  of the system can be
written as

(12)

where  is a polynomial vector. Then, substitution (12)
replacing  with  is made, and, after simplifica-
tion, polynomial solutions of the new system are
sought (how to search them, was discussed in Section 4).
The difference between x and irreducible factors of the
polynomial  is as follows: if the polynomial

 is irreducible and , then  is
an irreducible polynomial that is coprime with  for
any . Note that different  result in different irre-
ducible polynomials. However, this is not true for the
polynomial x that is not coprime with qx. This imposes
a special status on the irreducible polynomial x, as
opposed to, for example, the difference case, where
any irreducible  (including the case of ) is
coprime with .

As has already been noted, each rational solution
may be viewed as a Laurent solution. Therefore, The-
orem 1 (ii) allows one to determine the exponent k in
the factor xk. As for the polynomial , in accor-
dance with the scheme outlined in Section 1, we find
it by the “difference” algorithm replacing shifts 

m
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with the corresponding q-shifts  and excluding from
the consideration the factors x. Below, we give some
definitions and, then, present the algorithm.

For a rational function , the notation 
will denote its denominator, i.e., a polynomial with the

leading coefficient equal to 1 such that  

for some polynomial  coprime with .
If  is a polynomial (in particular, a zero polyno-
mial), then . If  is a vector the com-
ponents of which are rational functions F1(x), ...,

, then  is the least common multiple
(l cm) of the polynomials , ..., .

Given , we write  if
these polynomials are coprime and , if
they have a common divisor of positive degree.

Any polynomial  can be repre-
sented in the form , where  and
the polynomial  is not divisible by x; i.e., .
In this case,  is said to be a base of , and  is
denoted as . If  = 0, we can
consider the q-dispersion set of polynomials  and

,

, (13)

and their q-dispersion,

(14)

Like in the difference case, q-dispersion is either a
nonnegative integer or , with the latter taking place if
and only if  for all nonnegative integers h.

As has already been noted, if a polynomial
 is irreducible and , then poly-

nomial , , is also irreducible and, for
different values of h, such polynomials are coprime.
From this and from uniqueness of the factorization of
an arbitrary polynomial into irreducible factors, we
find that, if  = 0, then the set

 is finite. This set can be found either
by calculating all roots of the equation  of the
form , , where ,
or by applying an analogue of the difference algorithm
by Man and Wright [39], i.e., by considering irreduc-
ible multipliers of the polynomials  and  and
using the fact that, if an irreducible  has the form

 + , then  +
 + ...); it is essential that  =
 for any . (In [40], an algorithm is

suggested that is applicable to the case where q is an
algebraic number not equal to the root of one.)
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⊥( ) ( )f x g x

∈K( ) ( )\{0}f x x
= v( ) ( )f x x s x ≥∈ �v 0

( )s x ≠(0) 0s
( )s x ( )f x v

ν( ( ))f x ν = ν( ( )) ( ( ))f x g x
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∈K( ) [ ]p x x ν =( ( )) 0p x
( )hp q x ≥∈ � 0h

ν = ν( ( )) ( ( ))f x g x
,qds( ( ) ( ))f x g x
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− +1

1
l

la x … =( ) (h lh lp q x q x
− −

−
1

1
h l

lq a x deg ( )g x
deg ( )hg q x ≥∈ � 0h

After the k has been found, it is required to con-
struct a polynomial  such that

• ;
• if the original system has a rational solution with

the denominator , then  is divided by the base
of the polynomial .

When k and  are found, we can take

(15)

for substitution (12).
Finding of  is similar to the finding of a univer-

sal denominator in the difference case [22]. In the algo-
rithm, we use notation  for the greatest
common divisor of the polynomials .

Set

where , .
Find . If , then termi-

nate the algorithm execution with the result 
(further, we assume that  and h1 >

, ). Set  and, for all  in the
order of their decreasing starting from , perform the fol-
lowing assignments:

The resulting value  is the polynomial that can be
used in (15).

The following assertion can be proved in the same
way as the similar assertion for the difference case in
[18, 22].

Theorem 2. Let any rational solution of the original
q-difference system (1) be also a solution to systems (5),
(6), with the determinants  and  being
not equal to zero. Then, polynomial  obtained by the
above algorithm satisfies the condition  and,
if the original system has a rational solution with the
denominator , is divided by the base of the polyno-
mial .

The basic idea of the proof is similar to that used in
[12, 14, 22] for the difference case. Valuation of a poly-
nomial  with respect to an irreducible polynomial

 (which is denoted as ) is defined to be
the greatest integer n such that  is divided by p(x)n;

( )U x
ν =( ( )) 0U x

( )u x ( )U x
( )u x

( )U x

⋅ 1
( )

kx
U x

( )U x
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rA x A q x x

−= ,01
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r ra A q x −= ν 1
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> >2 sh … h ≥ 1s =( ) 1U x ih
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−=( ) ( )/ ( ),ihB x B x N q x
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=
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0
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ih
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U x U x N q x
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( )u x

( )f x
( )p x ( )val ( )p x f x
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if  is the zero polynomial, we set .

Valuation of a rational function  is the difference

. Valuation of a vector con-
sisting of polynomials or rational functions is the max-
imal valuation of the components of the vector. Then,
if the assumptions of Theorem 2 are fulfilled, the fol-
lowing inequality holds for any rational solution 
and any irreducible :

(16)

It can be proved that  does not exceed
valuation of the right-hand side of (16).

Note that inequality (16) can underlie other algo-
rithms for finding polynomial  similar to that was
done in [14]. However, the algorithm presented in this
section is considerably simpler and is more convenient
from the point of view of implementation.

Remark 6. The suggested algorithm for construct-
ing  remains correct after the substitution of

,  for , ,
respectively, since  is divided by

 and  is divided by .
Inequality (16) also holds after the substitution. This
substitution simplifies the algorithm but can increase
the degree of the desired polynomial .

6. HYPERGEOMETRIC SOLUTIONS
6.1. Hypergeometric Terms and Certificates

According to [27, 41], a function  is called a
hypergeometric term over  if the ratio  is a
rational function of x with coefficients from ; this
rational function is referred to as certificate of . Let

 denote the set of all hypergeometric terms and
 denote the set of all finite sums of elements

from ; the latter is a linear space over .

Let  be an algebraic closure of field . For a
scalar q-difference equation of an arbitrary order

, algorithm qHyper was sug-
gested in [27]. It constructs a set of certificates r1(x),
...,  such that the corresponding h1(x), ...,

 are a basis of the space of solutions of
this equation from . Let us represent the cer-
tificate  in the normal form (see [27, Theorem 1]):
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M+ * ( )( )x

( )r x

(17)

where ;  are monic
polynomials (their leading coefficients are ones);

 for ; ; b(x) '

c(qx)d(x); , and ;  ,
. Such a representation of a rational

function is unique.
Then, the corresponding hypergeometric term

, where k is a variable taking values from
, can be written as

where  and  is not a pole of  for .

If  and , where ,  is a rational
function of .

Let , . Then,  and  are
said to be similar if their ratio is a rational function of
x: . Let certificates of , 
have normal forms  and

, respectively. Then, 
and  are similar if and only if

(18)

6.2. Resolving Sequences of Operators
Let us reformulate the definition and proposition

from [31] for the q-difference case.
Let the leading and trailing matrices of system (2)

be nonsingular and  be pairwise different posi-
tive integers not exceeding m. Let scalar operators
L1, ...,  satisfy the following condition: if

 for  for some solution
 of system (2), then,

• for , all components of this solution are
equal to zero,

• for ,

In this case, a finite sequence

(19)

is called a resolving sequence of operators for this system
[31].

A resolving sequence of operators for system (2)
with singular leading or trailing matrix is defined to be
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a resolving sequence of operators of an lt-embracing
system for system (2) (see Remark 4).

Proposition 1. Let  be a nonzero
solution of system (2), where ,  is a
column vector m of rational functions from . Let
also (19) be a resolving sequence of operators for (2).
Then, there exists s, , such that the scalar
equation  has a solution z(x) that is similar
to : , where .

Proof. According to the definition of the resolving
sequence, there is an index j such that , ,

 are zero components of the solution,  =
 is a nonzero component, and, hence,

equation  holds. h

6.3. Construction of Hypergeometric Solutions
for Systems

We propose an algorithm for constructing hypergeo-
metric solutions to the homogeneous system of q-dif-
ference equations (2), i.e., solutions from .
Like the algorithm from [31] for systems of difference
equations, this algorithm uses the algorithm for con-
structing sequences of resolving operators [31], algo-
rithm qHyper, and the algorithm for constructing
rational solutions for systems of q-difference equations
(Section 5).

• Construct a resolving sequence of operators (19)
for (2).

• Set .
• For  construct a set of certificates 

for the equation  by means of algorithm
qHyper. Place into  only those elements  that do not
satisfy condition (18) with any element from . Thus,

 contains certificates of non-similar hypergeometric
terms.

• For each  from  repre-
sented in the normal form , make
the substitution

into the original system (2), where  is the column
vector of new unknowns and  has certificate .
Having divided all equations by , we get the
following system with the coefficients from :

(20)

where, for ,

=( ) ( ) ( )y x h x R x
∈ M* ( )( ) xh x ( )R x

M( )x
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jlh x R x

++ =
11( ( ) ( )) 0
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=
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( )

j

j

h x R x
y x

V x

( )R x
( )jh x ( )jr x

( )/ ( )j jh x V x
M( )x

+ + + = ,1 0( ) ( ) ( ) 0r
rB R q x … B R qx B R x

= , , ,0 1i … r

−= .…

1( ) ( ) ( )i i
i iB z U q x U qx U x A

• By means of the algorithm from Section 5, find
all rational solutions of system (20). Let , ...,

 be a basis of the space of rational
solutions. Then, , ...,

 are linearly independent solutions
of the original system (2). In accordance with Propo-
sition 1, the set of all solutions  ( ,

) is a basis of the space of all hypergeometric
solutions of system (2).

7. IMPLEMENTATION
The algorithms presented in the paper were imple-

mented in Maple 2017 (see [32]) as procedures of
package LqRS (Linear q-Recurrence Systems).
The package includes procedures for constructing

• embracing systems for q-difference systems;
• Laurent solutions for (1);
• polynomial solutions for (1);
• universal denominator (in the given case, rational

function of the form ), rational solutions for (1);

• resolving sequences of operators for (2);
• hypergeometric solutions for (2).
When implementing algorithms for nonhomoge-

neous systems, we used the approach described in
Remark 1, and the implementation of the algorithm
for constructing embracing systems for a q-difference
system uses the shift step described in Remark 3 (the
implementation of the algorithm for difference sys-
tems from package Maple LinearFunctional-
Systems applied to solving induced recurrence sys-
tems uses on the shift step the approach based on
selection of a system equation).

The implementation is designed for systems whose
coefficients are rational functions of one variable, for
example, x, over , where  is a field of ratio-
nal numbers, and q is a name.

Each system of form (1) and (2) is specified in the
input parameters of the procedures as a linear q-differ-
ence equation with matrix coefficients or in the tradi-
tional for Maple way, as a set of r equations in r
unknown functions.

Figure 1 shows a homogeneous system with a sin-
gular leading matrix. An l-embracing system for it can
be constructed by means of procedure EG, the first
argument of which is the keyword 'lead', the sec-
ond argument is a system, and the third argument, a
name of a vector of unknowns. The procedure returns
an embracing system and true, which means that the
system has the full rank. The call of the procedure and
the result of its operation are shown in Fig. 2.

By means of procedure LaurentSolution,
Laurent solutions of the system are constructed. If only

,1( )jR x

, ∈M( ) ( )
j

m
j sR x x

,1( ) ( )/ ( )j j jh x R x V x

,( ) ( )/ ( )
jj j s jh x R x V x

,( )j j ih x R ≤ ≤1 j d
≤ ≤1 ji s

( )
kx

U x

= �K ( )q �
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two arguments—the system and the name of the vector
of unknowns—are given, the procedure calculates as
many initial terms of the series as required for deter-
mining the dimension of the solution space.
The names ,  denote arbitrary constants:
>LqRS:-LaurentSolution(S, y(x));

To get more terms, it is required to specify their num-
ber in the third parameter:
>LqRS:-LaurentSolution(S, y(x), 3);

System S in Fig. 1 has no polynomial solutions:
>LqRS:-PolynomialSolution(S, y(x));

The universal denominator is given by:
>LqRS:-UniversalDenominator(S, y(x));

1_c ,…2_c
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⎢ ⎥
⎢ ⎥⎣ ⎦
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1
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q
O x
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−
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⎢ ⎥
⎢ ⎥− + +
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2 41
4

11 1
3 2

( )
.

( )
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x O x

q
_c _c

x O x
q q

⎡ ⎤
⎢ ⎥
⎣ ⎦

0
.

0

+2 .
( 1)

q
x qx

The rational solutions are as follows:
>LqRS:-RationalSolution(S, y(x)); 

The resolving sequence of equations for this system is
shown if Fig. 3. When constructing hypergeometric
solutions, it is required to specify in the third parame-
ter the name of variable k such that :
>LqRS:-HypergeometrisSolution(S, y(x), k);

As an example of a system with polynomial solu-
tions, we consider system  (Fig. 4).
>LqRS:-PolynomialSolution(S1, z(x)); 

The package, its description, and examples of using
its procedures are available at the address http://www.
ccas.ru/ca/lqrs.
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Fig. 1. System of equations S.
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Fig. 2. l-embracing system for S.
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