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Abstract⎯Previously, we proposed algorithms that allow one to find Laurent and regular solutions of linear
differential equations with coefficients in the form of truncated formal power series. The solutions contain
truncated power series as well. In this paper, we propose some automatic means for confirming the impossi-
bility of obtaining a larger number of terms in these solutions without some additional information on a given
equation. The confirmation has the form of a counterexample to the assumption about the possibility of
obtaining some additional terms of the solution.
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1. PRELIMINARIES

1.1. Equations and Truncated Series

Suppose that K is an algebraically closed field of
characteristic zero. In this paper, we use the common
notation for a ring of polynomials in x over : .
A ring of formal power series in x over K is denoted by

, while a field of formal Laurent series is
denoted by . For a nonzero element a(x) =

 of field , its valuation  is
defined by equality , with

. Suppose that ; t-truncation
 is obtained by discarding all terms of  the

degrees of which exceed t. Number  is called the trun-

cation degree. By , where , we mean a cer-
tain (unspecified) series with a valuation greater than
or equal to t. This designation is generally used either
when the series is not known or when a particular type
of the series is not of interest to us; it is only important
that its valuation is not less than t.

In this paper, differential equations are written

using operation  rather than the common dif-

ferentiation operation  (the transition from one

form to another is straightforward).
We consider the equations in a truncated form.

A truncated differential equation is written as follows:

(1)

 and , , where

 denotes an unspecified part of the series. 
We do not know the complete form of the consid-

ered equation

(2)

where  and  =

, . It is assumed that the leading
coefficient  is not zero and the valuation of at
least one of the series  is zero.

1.2. Laurent and Regular Solutions
A solution of differential equation (2) that is a for-

mal Laurent series is called a Laurent solution.
A regular solution has the form
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where  and . Each such
solution is written as

(3)

where  and , .

2. PROBLEM STATEMENT
Truncated (or shortened) series in the role of coef-

ficients of equations of various types are of both theo-
retical and practical interest; these series become the
subject of various studies (see, for example, [1, 2]). In
[3–7], we considered linear ordinary differential
equations with coefficients in the form of truncated
power series. We discussed the question of what can be
learned from the equations represented in this way
about their Laurent and regular solutions. We were
interested in finding the maximum possible number of
coefficients that are invariant to various possible pro-
longations of a given truncated equation. The prolon-
gation of a truncated series is a series (possibly, also
truncated) the initial terms of which coincide with
known initial terms of the original truncated series. In
turn, the prolongation of a truncated equation is an
equation the coefficients of which are prolongations of
coefficients of the original equation.

For example, let us consider the equation

(4)

Using the algorithm from [3, 4], we find that any
equation of form (2), i.e., an equation with completely
specified coefficients that is a prolongation of (4), has
Laurent solutions with valuations –2 and 0. Moreover,
for any prolongation of the equation, any Laurent
solution with valuation –2 is a prolongation of the
truncated series

(5)

for some , where . Also, for any
prolongation of (4), any of its Laurent solutions with
zero valuation is a prolongation of the truncated series

(6)

for some , where . Expressions (5) and
(6) are called truncated Laurent solutions of equation
(4). The algorithm from [3, 4] allows one to construct
truncated Laurent solutions of the maximum possible
truncation degree. In the case of (4), for solutions with
valuation –2, the maximum possible truncation
degree is 0; for solutions with zero valuation, the
degree is 2. Hereinafter, by truncated solutions, we
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mean solutions with the maximum possible truncation
degree.

For example, two different prolongations of equa-
tion (4) are

(7)

and

(8)

(hereinafter, additional terms of prolongations are
highlighted in bold). Truncated Laurent solutions of
equation (7) are

Truncated Laurent solutions of equation (8) are

It can be seen that (5) and (6) are truncated solu-
tions of equation (4) with the maximum possible trun-
cation degree: solutions of (7) and (8) show that the
coefficients of the additional terms of the solutions
depend on the additional terms in the coefficients of
the prolongations of the original equation.

The algorithms for constructing truncated Laurent
and regular solutions were described in the papers
mentioned above. It means that these algorithms pro-
vide the exhaustive use of information about a given
equation. The algorithms were implemented in the
Maple computer algebra system [8].

In this paper, we investigate an automatic confir-
mation of this exhaustive use of information, i.e., a
confirmation that it is impossible to add additional
terms to the constructed truncated solutions while
preserving their invariance to all prolongations of a
given equation. For this purpose, it is sufficient to
present a counterexample with two different prolonga-
tions of the given equation that cause the occurrence
of different additional terms in its solutions.

The preliminary results of this work were published
in [9].
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3. SOLUTION METHOD
The procedures are based on finding Laurent and

regular solutions with literals, i.e., symbols used to
represent unspecified coefficients of a series involved
in the equations (see [5]). These symbols denote the
coefficients of the terms the degrees of which exceed
the truncation degree of the series. Finding solutions
with the use of literals means representing the subse-
quent (non-invariant to all possible prolongations)
terms of the series involved in the solution as formulas
that contain literals, i.e., expressing them in terms of
unspecified coefficients. This allows us to clarify the
influence of unspecified coefficients on the subse-
quent terms of the series in the solution.

Solutions of (4) with literals have the following
form:

(9)

where symbols  are literals that correspond to
unspecified coefficients of xj in the power series that is
a coefficient of  in the equation. In the general
case, solution coefficients that are non-invariant pro-
longations of the constructed truncated solutions are
represented as polynomials in literals.

Lemma 1. For any 
( ), there are  for
which  ( ).

Proof. First, by induction on n, we show that, for
any polynomial  ( ),
there are  for which .
For , the statement is obvious because  has
a finite number of roots and field K is infinite. Sup-
pose that  and the statement holds for .
We write  as a polynomial in  and
assume that  is a nonzero coefficient of
this polynomial. By the induction hypothesis, there
are  such that .
Hence,  is a nonzero polynomial in
xn. According to the induction base case (the case of
one variable), a suitable  exists.

Let us now consider nonzero polynomial
 that is equal to a product of

polynomials , i = 1, ...,
m (polynomial  is obtained by simply
replacing variables  with new variables

). Based on what has been proved above,
there are  such that .
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We can leave  unchanged and assume that
. h

From Lemma 1, we obtain the following theorem,
which substantiates the algorithm for confirming the
exhaustive use of information contained in the equa-
tion with truncated coefficients. The algorithm itself
relies on the construction of solutions with literals.

Theorem 1. Suppose that solutions of equation (1)
involve m truncated power series  +

, , where 
are literals (unspecified coefficients of power series-coef-
ficients of the equation). Then, there are α1, ..., αl,

 such that two different prolongations of the
equation that correspond to substitutions  and

 ( ) lead to the occurrence of different
additional terms in the truncated series involved in the
solutions, which confirms the exhaustive use of informa-
tion contained in the truncated coefficients of equation (1).

For the solutions of (4) with literals (9), the first
non-invariant coefficients of the series are given by the
following expressions:

(10)

(11)

In this case, the solutions involve two truncated series,
and we need to find different values of all literals ,

, and  such that the values of each expression
(10) and (11) do not coincide for these different values
of the literals. According to Theorem 1, these values
exist. In particular, , , and  = –1
correspond to equation (7), while , ,
and  correspond to equation (8). It should be
noted that the choice of , , 
and , ,  also provides dif-
ferent prolongations of (4) that, however, have the
same solution prolongations with valuation –2,

because expression (10) has the same value of  for

these two different pairs of literal values. For these two
different pairs of values, expression (11) has different
values; hence, the prolongations of the solution for
zero valuation are different. Nevertheless, these pairs
of different values do not constitute a counterexample,
because it is necessary that all series involved in the
solutions have different prolongations; otherwise, the
exhaustive use of information contained in the equa-
tion remains unconfirmed.
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4. THE CASE OF VARIATION IN THE DEGREE 
OF  IN SOLUTIONS

The algorithms for finding truncated solutions
considered in [3–7] construct only those truncated
solutions for which the degree of occurrence of  is
invariant. For example, any prolongation with com-
pletely specified coefficients of the equation

(12)

has regular solutions with valuations –2 and 0. How-
ever, for some prolongations of (12), all regular solu-
tions are Laurent ones, whereas for its other prolonga-
tions, regular solutions with valuation –2 have form
(3) with m = 1 and ; i.e., they are not Laurent
solutions.

According to [6, Remark 5], when computing trun-
cated solutions, a finite set of polynomials in literals is
formed. Each polynomial P from this set has coeffi-
cients in the form of linear combinations over K of
arbitrary constants , which are introduced
when constructing truncated solutions. For instance,
for equation (12), we obtain

According to the algorithm for constructing regular
solutions from [6], the values of the literals for which
these polynomials identically vanish define equation
prolongations such that the degree of occurrence of
lnx in regular solutions for these prolongations is lower
than that for the prolongations for which some  do
not identically vanish.

Automatic provision of these prolongations also
confirms the exhaustive use of information about a
given truncated equation. It should be noted that not
every truncated equation has prolongations that differ
in the degree of occurrence of lnx in regular solutions.
Counterexamples for equation (12) and their trun-
cated solutions are considered in Section 5.3 (see
Example 6).

5. IMPLEMENTATION AND EXAMPLES
Below, we describe the implemented procedures for

finding counterexample prolongations. The exhaustive
use of information about an equation with truncated
power series coefficients in truncated solutions is con-
firmed using the ExhaustiveUseConfirmation
procedure implemented in the Maple computer alge-
bra system [8]. We also implemented auxiliary procedures
DifferentProlongationExtras, Construct-
Prolongation, and DifferentLnDegreeEx-
tras, which are also considered in this section. The
procedures are built into the TruncatedSeries
package [10–12], which was used to implement our
algorithms from [3–7].
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5.1. Laurent Solutions
Example 1. Let us consider the following equation

with coefficients in the form of truncated series and
construct its Laurent solution using the Truncated-
Series package.
> eq := (-1+x+x^2+O(x^3))*theta(y(x),x,2)+

(-2+O(x^3))*theta(y(x),x,1)+

(x+6*x^2+O(x^4))*y(x);

> sol := TruncatedSeries:- 
LaurentSolution(eq,y(x));

The execution of the ExhaustiveUseConfirmation
procedure (the option ‘laurent’ is used to specify
that the result for Laurent solutions is required) con-
firms the exhaustive use of information about the
equation by presenting two different equation prolon-
gations that lead to two different solution prolonga-
tions. The procedure prints text comments with details
about these two different prolongations (“Equation
prolongation #1” and “Equation prolongation #2”)
and about their solutions (“The equation solution”).
It is shown that the presented equation prolongations
have different additional terms (“Additional term(s) in
the equation prolongation”) and that the solutions of
both the prolongations are different solution prolon-
gations of the given equation with different additional
terms in these solutions (“Additional term(s) in the
equation solution”).
> TruncatedSeries:-

ExhaustiveUseConfirmation(sol,eq,y(x), 
 ‘laurent’);

Equation prolongation #1

Additional term(s) in the equation prolongation:

The equation solution:

− + + + θ2 3:= ( 1 ( )) ( ( ), ,2)eq x x O x y x x
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Additional term(s) in the equation solution:

Equation prolongation #2

Additional term(s) in the equation prolongation:

The equation solution:

Additional term(s) in the equation solution:

Example 2. Let us consider another prolongation of
this equation with other additional terms (the auxiliary
procedure ConstructProlongation is used) and
construct its Laurent solutions.
> eq1 := TruncatedSeries:-

ConstructProlongation(

theta(y(x),x,1)*x^3,eq,y(x));

> TruncatedSeries:-
LaurentSolution(eq1,y(x));
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The solution coincides with the solution of equation
eq. This implies that, to confirm the exhaustive use of
information about the equation, it is not sufficient to
simply construct solutions of two different random
prolongations. The information provided by addi-
tional terms in a random prolongation does not neces-
sarily cause the occurrence of any additional terms in
solutions of the equation; hence, this prolongation
cannot be used as a counterexample.

Example 3. Let us consider the following equation
and construct its Laurent solutions.
> eq := (x + O(x^2))*theta(y(x), x, 1) +

O(x^2)*y(x);

> sol := TruncatedSeries:- 
LaurentSolution(eq,y(x));

Instead of using the ExhaustiveUseConfirmation
procedure, the exhaustive use of information about
the equation can be confirmed step by step using two
auxiliary procedures. This method is more preferable
than the use of the text comments printed by the
ExhaustiveUseConfirmation procedure in the
cases where, e.g., the details of the counterexample are
required in some subsequent algorithmic processing.

At the first step, the DifferentProlongation-
Extras procedure (again, the ‘laurent’ option is
used to specify that the result for Laurent solutions is
required) provides two different variations of addi-
tional terms to construct two different prolongations
of the equation:
> dp := TruncatedSeries:-

DifferentProlongationExtras
(eq,y(x),‘laurent’);

At the second step, the ConstructProlongation
procedure is executed twice to construct these two dif-
ferent prolongations of the equation:
> eq1 := TruncatedSeries:-

ConstructProlongation
(dp [1],eq,y(x));

> eq2 := TruncatedSeries:- 
ConstructProlongation

(dp[2],eq,y(x));

Finally, at the third step, Laurent solutions are con-
structed for each prolongation:
> sol1 := TruncatedSeries:-

LaurentSolution(eq1,y(x));

+ θ +2 2:= ( ( )) ( ( ), ,1) ( ) ( )eq x O x y x x O x y x

[ ]+1:= _ ( ) .sol c O x

− + +2 3 2 3:= [ ( )( ( )), ( )( ( ))].dp y x x O x y x x O x

+ θ + − +2 2 31 := ( ( )) ( ( ), ,1) ( )( ( ))eq x O x y x x y x x O x

+ θ + +2 2 32 := ( ( )) ( ( ), ,1) ( )( ( )).eq x O x y x x y x x O x

+ + 2
1 11 := [_ _ ( )]sol c x c O x
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> sol2 := TruncatedSeries:-
LaurentSolution(eq2,y(x));

The different prolongations of the equation lead to two
different prolongations of the solution.

5.2. Regular Solutions
Example 4. Let us consider the following equation

and construct its regular solutions.
> eq := (-1+x+x̂ 2+O(x̂ 3))*theta(y(x), x, 2)+

(-2 + x^2 + O(x^3))*theta(y(x),x,1) +
O(x^4)*y(x)

> sol := TruncatedSeries:-
RegularSolution(eq,y(x));

We carry out the step-by-step confirmation of the
exhaustive use of information about this equation as in
Example 3.

The execution of the DifferentProlongation-
Extras procedure (in this case, the 'regular'
option is used to specify that the result for regular solu-
tions is required) provides two different variations of
additional terms to construct two different prolonga-
tions of the equation:
> dp := TruncatedSeries:-

DifferentProlongationExtras(
eq,y(x), ‘regular’);

The ConstructProlongation procedure is used
to construct these two prolongations:
> eq1 := TruncatedSeries:-

ConstructProlongation
(dp [1],eq,y(x));
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> eq2 := TruncatedSeries:-

ConstructProlongation
(dp[2],eq,y(x));

Then, regular solutions of each prolongation are
constructed:
> sol1 := TruncatedSeries:-

RegularSolution(eq1,y(x));

> sol2 := TruncatedSeries:-

RegularSolution(eq2,y(x));

The different prolongations of the equation lead to two
different prolongations of the solution.

Example 5. Let us consider another equation and
construct its regular solutions.
>eq := (1+x^2+O(x^3))*theta(y(x),x,3)+

(4-x+1/2*x̂ 2+O(x̂ 3))*
theta(y(x),x,2)+(4-2*x+x̂ 2+O(x̂ 3))
*theta(y(x),x,1)+O(x^3)*y(x);

> sol := TruncatedSeries:-

RegularSolution(eq,y(x));
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2 := ( 1 ( )) ( ( ), ,2)

( 2 ( )) ( ( ), ,1)

( ( )) ( ).

eq x x x O x y x x

x x O x y x x

x O x y x

− + + + +

 + − + 
 

− + 


21 1 1
22

4
51

1

4
51

2

_ 4_ 2_1 := _ ( )
3

_ln( ) _ ( ) ,
24

__ ( )
24

c c c xsol c O x
xx

x cx c O x

x cc O x

− + + − +

 + + + 
 

+ + 


21 1 1
22

4
51

1

4
51

2

_ 4_ 2_2 := _ ( )
3

_ln( ) _ ( ) ,
24

__ ( ) .
24

c c c xsol c O x
xx

x cx c O x

x cc O x

+ + θ
 + − + + θ 
 

+ − + + θ +

2 3

2
3

2 3 3

:= ( 1 ( )) ( ( ), ,3)

4 ( ) ( ( ), ,2)
2

( 2 4 ( )) ( ( ), ,1) ( ) ( )

eq x O x y x x

xx O x y x x

x x O x y x x O x y x

 +
 + + +



1 2

1
32

21_ _
_16 2:= _ ( )

c c
csol c O x
xx

   + + + + +  
  

2 31 1
22

_ _ln( ) _ ( ) ln( ) ( ) ,
22

c cx c O x x O x
x

48  No. 2  2022



122 ABRAMOV et al.
The execution of the Exhaustive-
UseConfirmation procedure (again, the ‘regu-
lar’ option is used to obtain the result for regular
solutions) confirms the exhaustive use of information
about this equation. The procedure prints the text
comments as in Example 1.
> TruncatedSeries:-

ExhaustiveUseConfirmation(sol,eq,y(x), 
‘regular’);

Equation prolongation #1

Additional term(s) in the equation prolongation:

The equation solution:

Additional term(s) in the equation solution:
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Equation prolongation #2

Additional term(s) in the equation prolongation:
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5.3. Variation in the Degree of Occurrence
of  in the Solution

Example 6. Let us construct regular solutions of the
following equation.
> eq := (-1+x+O(x^2))*theta(y(x), x, 2)+

(-2 + x̂ 2 + O(x̂ 3))*theta(y(x),x,1)+

O(x^4)*y(x)

> sol := TruncatedSeries:-

RegularSolution(eq,y(x));

It can be seen that, in this case, the truncated regular
solutions are constructed as Laurent solutions with zero
valuation. Let us compute the prolongations that have
regular solutions with different degrees of occurrence of
lnx by using the DifferentLnDegreeExtras pro-
cedure.
> dp := TruncatedSeries:-

DifferentLnDegreeExtras(eq,y(x));

The ConstructProlongation procedure is used to
construct these two different prolongations:
> eq1 := TruncatedSeries:-

ConstructProlongation
(dp [1],eq,y(x));

> eq2 := TruncatedSeries:-

ConstructProlongation
(dp [2],eq,y(x));

Then, regular solutions of each prolongation are
constructed:
> sol1 := TruncatedSeries:-

 − + + + 
 

3
4 22 2_ _( ) ln( ) ( ),

75 2
x c c xO x x O x


− + 



3
43_ ( ) .

75
x c O x

ln x

− + + θ2:= ( 1 ( )) ( ( ), ,2)eq x O x y x x

+ − + + θ +2 3 4( 2 ( )) ( ( ), ,1) ( ) ( )x O x y x x O x y x

+ 4
1:= [_ ( )].sol c O x

( )θ +


2 33:= ( ( ), ,2) ( ) ,
2

dp y x x x O x


θ + 



2 3( ( ), ,2)(2 ( ))y x x x O x

( )− + + + θ2 331 := 1 ( ) ( ( ), ,2)
2

eq x x O x y x x
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RegularSolution(eq1,y(x));

> sol2 := TruncatedSeries:-

RegularSolution(eq2,y(x));

For the first prolongation of the equation, all solutions
are Laurent ones; in addition to Laurent solutions with
zero valuation, Laurent solutions with valuation –2
are constructed. For the second prolongation, the
solutions with valuation –2 are regular ones and
involve .
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