
OreTools: a computer algebra library for

univariate Ore polynomial rings

S. A. Abramov∗

Dorodnicyn Computing Centre

Russian Academy of Science

Moscow, Russia

abramov@ccas.ru

H. Q. Le†

Symbolic Computation Group

University of Waterloo

Waterloo, Canada

hqle@scg.math.uwaterloo.ca

Ziming Li‡

Symbolic Computation Group

University of Waterloo

Waterloo, Canada

z6li@scg.uwaterloo.ca

Abstract

This document presents the OreTools package which provides tools
for performing basic arithmetic in Ore algebra. These tools can be
used as a basis for various well-known algorithms in Ore algebra, in
particular in differential and difference algebras.

1 Introduction

Pseudo–linear algebra is the study of the common properties and the com-
mon mathematical abstraction of linear functional equations such as dif-
ferential and difference equations. The objects of the study of pseudo–
linear algebra are skew polynomials [12] which represent single equations
and pseudo-linear operators which represent systems.

∗Partially supported by the French-Russian Lyapunov Institute under grant 98-03.
†Partially supported by Natural Sciences and Engineering Research Council of Canada

Grant No. CRD215442-98.
‡Partially supported by Natural Sciences and Engineering Research Council of Canada

Grant No. CRD215442-98.

1

Various algebraic algorithms have been generalized to arbitrary pseudo–
linear equations: algorithms to uncouple systems of linear functional equa-
tions [7, 5], to construct the minimal annihilator [2], to solve the accurate
integration problem [1], and to find a d’Alembertian solution of linear func-
tional equations [3], to name a few.

The focus of this document is on the description of the OreTools pack-
age. It is organized in the following manner. In Section 2, we give an
overview of pseudo–linear algebra (or Ore algebra). Section 5 describes the
OreTools package where we discuss the proposed functionalities, and the
implementation details of the package. The section concludes with an ex-
ample which shows how to use the package to solve the accurate integration
problem. In Section 6, we show that the co-existence of the two packages
Ore_algebra and OreTools is necessary.

2 Univariate Ore polynomials, Ore operators, and

Ore equations

The objects in the study of Ore algebra are Ore polynomials, Ore operators,
and Ore equations. In this section we give an overview of these objects.
See [12, 9, 6] for a detailed discussion on them.

2.1 Univariate Ore polynomials

Let k be a field of characteristic 0, and σ : k → k be an automorphism of k.

Definition 2.1 A derivation w.r.t. σ is any map δ : k → k satisfying

δ (a + b) = δ a + δ b and δ (ab) = σ(a) δ b + δa b, for any a, b ∈ k. (1)

Lemma 2.1 Let δ be a derivation of k w.r.t. σ.

(i) If σ 6= 1k then there is an element α ∈ k such that δ = α(σ−1k) = δα.

(ii) If δ 6= 0 then there is an element β ∈ k such that σ = β δ + 1k.

Definition 2.2 A univariate Ore polynomial ring over k, given by σ and δ
and denoted by k[x;σ, δ], is the ring (k[x],+, ·) of polynomials in x over k
with the usual polynomial addition, and the multiplication given by

x a = σ(a)x + δa, for any a ∈ k. (2)

2

Elements of the ring k[x;σ, δ] are called Ore polynomials. It can be
shown (see, for instance, [12, 6]) that k[x;σ, δ] possesses the right and left
division algorithms.

Example 2.1 The differential polynomial ring is k[D; 1k, δ] where δ is the
derivation w.r.t. the identity. For k ≡ C(n), the shift polynomial ring is
k[E;σ, 0] where σ is the automorphism of k over C that takes n to n + 1.
For k ≡ C(q)(t), the q-shift polynomial ring is k[Q;σ, 0] where σ is the
automorphism of k over C(q) that takes t to qt. The usual polynomial ring
over k is k[x; 1k, 0] ≡ k[x].

2.2 Ore operators and Ore equations

Definition 2.3 Let V be a vector space over k. A map θ : V → V is
k-pseudo-linear w.r.t. σ and δ if

θ(u+v) = θ(u)+θ(v), θ(au) = σ(a) θu+δa u for any a ∈ k, u, v ∈ K. (3)

Let K be a σ, δ-compatible extension field of k, i.e., σ and δ can be
extended to an automorphism of K, and a derivation of K w.r.t. σ, respec-
tively.

Lemma 2.2 For any c ∈ K, the map θc : K → K given by

θca = c σ(a) + δa (4)

is K-pseudo-linear w.r.t. σ and δ. Conversely, for any K-pseudo-linear map
θ : K → K there is an element c ∈ K such that θ = θc as given in (4).

By the pseudo linearity of θ, θa = θ(a 1) = σ(a) θ1+δa. Hence, the converse
of Lemma 2.2 is proven by setting θ = θc, where c = θ1. It follows that it
is sufficient to specify σ, δ, and θ1 in order to define an Ore polynomial ring
(k[x],+, ·) and the k-pseudo-linear map θ w.r.t. σ and δ.

Note that any k-pseudo-linear map θ : V → V induces an action
∗θ k[x;σ, δ] × V → V given by

(

n
∑

i=0

ai xi

)

∗θ u =
n
∑

i=0

ai θ
iu, u ∈ V, ai ∈ k.

Hence, we can consider the ring of Ore operators of the form p(x)∗θ, p(x) ∈
k[x;σ, δ]. This ring, denoted by k[θ], have elements which are linear over
the constants of k.

Definition 2.4 An Ore equation is of the form L(y) = 0 where L ∈ k[θ].

3

2.3 Basic Arithmetics

Let k[x;σ, δ] be an Ore polynomial ring, A,B ∈ k[x;σ, δ] \ {0}. By applying
the right division algorithm, we obtain the relation

A = Q1 B + R1, Q1, R1 ∈ k[x;σ, δ], deg R1 < deg B.

R1, Q1 are called the right-remainder and the right-quotient of A by B,
respectively. Similarly, by applying the left division algorithm, we obtain
the relation

A = B Q2 + R2, Q2, R2 ∈ k[x;σ, δ], deg R2 < deg B.

R2, Q2 are called the left-remainder and the left-quotient of A by B, respec-
tively.

For given A,B ∈ k[x;σ, δ], one can now find the Greatest Common Right
Divisors (GCRD) and the Least Common Left Multiple (LCLM) by using
the extended right algorithms.

It follows from Example 2.1 that the usual polynomial ring k[x] is a
special case of Ore polynomial rings. Various efficient techniques in the
commutative k[x] have been generalized to the non-commutative k[x;σ, δ].
They include In the next section, we describe . . .

3 Improvements on LCM, GCD computation

4 Adjoints and their applications

Definition 4.1 [4] Let k[x;σ, δ] be a skew-polynomial ring. The adjoint of
k[x;σ, δ] is defined by the ring k[x;σ∗, δ∗] where σ∗, δ∗ are defined as follows:

(A) If σ = 1 then σ∗ = σ = 1, δ∗ = −δ.

(B) If σ 6= 1, then δ = α(σ − 1), α ∈ k (see Lemma 2.1). Set σ∗ = σ−1,
δ∗ = α(σ∗ − 1) = α(σ−1 − 1).

Let L = an xn + · · · + a1 x + a0 ∈ k[x;σ, δ]. The adjoint operator L∗ is then
defined by

L∗ = xn an + · · · + x a1 + a0 ∈ k[x;σ∗, δ∗].

Note that the product xi ai must be computed in the ring k[x;σ∗, δ∗]. It is
easy to show that (σ∗)∗ = σ, (δ∗)∗ = δ. One can also verify that that the
adjoint is a linear bijective map and that (M ◦ N)∗ = N∗ ◦ M∗.

4

Lemma 4.1 [4] Let θ be a pseudo–linear map w.r.t. σ, δ. From Lemma 2.2,

θ = θc = c σ + δ.

Set
θ∗ = c σ∗ + δ∗.

Then θ∗ is a pseudo–linear map w.r.t. σ∗, δ∗. ✷

Define the operator ∇ as in [4]:

∇ =

{

δ if σ = 1,
σ − 1 if σ 6= 1.

An element f ∈ k is an integrating factor for L ∈ k[∇] if f L = ∇ ◦ M, for
some M ∈ k[∇], ord M = ordL − 1.

Lemma 4.2 [1] f ∈ k is an integrating factor for L iff L∗(f) = 0. ✷

As a consequence, a solution of the adjoint equation L∗y = 0 allows one to
obtain an integrating factor f for the original operator L. Since ∇g = 0 iff g
is a constant (Proposition 1, [1]), this allows one to reduce the order of the
given equation Ly = 0 (though we get an inhomogeneous equation instead
of a homogeneous equation).

Note: In case (B), k[x;σ, δ] and the adjoint ring k[x;σ∗, δ∗] are not
necessarily the same ring, and in order to work with adjoint equations, one
needs to provide σ−1.

5 The OreTools Package

5.1 Functionalities

The OreTools package is designed to perform the basic arithmetic in Ore
algebra. The proposed functionalities can be classified into the following
groups:

1. Define an Ore algebra: an Ore algebra is defined via the command
SetOreRing. The differential and shift algebras are pre-defined. To
define other algebras, one needs to provide procedures to compute σ, δ,
θ1, (see 2.1) and σ−1 (see 4).

Example 1 To define the shift algebra:

> A := OreTools[SetOreRing](n,’shift’);

5

A := OreRing(n, shift)

To define the q-shift algebra:

> B := SetOreRing(n,’qshift’, ’sigma’ = proc(p,x) eval(p,x=q*x) end,

> ’sigma_inverse’ = proc(p,x) eval(p,x=q^(-1)*x) end,

> ’delta’ = proc(p,x) 0 end, ’theta1’ = 1);

B := OreRing(n, qshift)

2. Access “properties” of a given algebra: various routines are pro-
vided to allow access to the properties of a given algebra. They are

GetAlgebraName returns the name of the algebra, e.g., shift, dif-
ferential;

GetVariable returns the name of the independent variable that
an Ore polynomial ring acts on;

GetSigma, GetSigmaInverse, Getdelta, GetTheta1 return σ, σ−1, δ,
and θ1, respectively.

Example 2 Continue with the shift algebra A as defined in Example
1:

> GetAlgebraname(A);

shift

> GetVariable(A);

n

> GetSigma(A)(s(n),n);

s(n + 1)

> GetSigmaInverse(A)(s(n),n);

s(n - 1)

6

> Getdelta(A)(s(n),n);

0

> GetTheta1(A);

1

3. Basic arithmetic: The basic arithmetic supported includes:

(a) Linear operations

Add: addition of two Ore polynomials;

Minus: subtraction of two Ore polynomials;

ScalarMultiply: multiplication of an Ore polynomial by a
scalar on the left;

(b) operations for normalization

Content, Primitive: computation of the content and prim-
itive part of an Ore polynomial, resp..

NormalizeOrePoly: conversion of an Ore polynomial to its
monic associate.

The above five operations do not require any information from a
given Ore algebra.

(c) Multiplication

Multiply: multiplication of two polynomials in a given alge-
bra;

(d) Divisions

RightRemainder, RightQuotient, RightQuotientRemainder:
computation of the right quotient and remainder of two poly-
nomials;

LeftQuotientRemainder: computation of the left quotient
and remainder of two polynomials;

RightPseudoRemiander,RightPseudoQuotient: computation
of the right pseudo-remainder and pseudo-quotient of two
polynomials;

(e) Euclidean algorithms

7

RightEuclidean, FractionFreeRightEuclidean: compu-
tation of the right remainder sequence (resp. subresultant
sequence of the first kind);

(f) GCRD and LCLM

ExtendedGCRD, HalfExtendedGCRD: extended and half-extended
right Euclidean algorithm;

GCRD, LCLM: computation of GCRD and LCLM of several
Ore polynomials (cofactors can be obtained by an additional
input ’cofactors’=true

The subresultant algorithm in [10] is used in the function FractionFreeRightEuclidean.
An improved version of the modular algorithm in [11] is used in the
function GCRD when the coefficients of input polynomials are univariate
rational functions. An improved version of the algorithm for comput-
ing LCLM in DEtools is used in the function LCLM. These techniques
make a number of functions in OreTools more efficient. See the ex-
perimental results in Appendix B.

Example 3 Continue with the shift algebra A as defined in Example
1:

> Ore1 := OrePoly(-n/(n-1),-(-5*n+n^2+3)/(n-1),n-3);

Ore1 := OrePoly

(

− n

n − 1
,−−5n + n2 + 3

n − 1
, n − 3

)

> Ore2 := OrePoly(-n,3*n-n^2-1,(n-1)^2);

Ore2 := OrePoly
(

−n, 3n − n2 − 1, (n − 1)2
)

> Ore3 := OrePoly(-n,n-n^2,n^2);

Ore3 := OrePoly
(

−n, n − n2, n2
)

> Add(Ore1,Ore2);

OrePoly

(

− n2

n − 1
,−−n − 3n2 + 2 + n3

n − 1
,−n − 2 + n2

)

8

> ScalarMultiply(sqrt(2),Ore1);

OrePoly

(

−
√

2n

n − 1
,−

√
2
(

−5n + n2 + 3
)

n − 1
,
√

2 (n − 3)

)

> Multiply(Ore1,Ore2,A);

OrePoly
(

n2

n−1 , −7 n2+2 n3−n+3
n−1 , −8 n3+11 n2+6 n+n4−9

n−1 ,

−−8 n3+2 n4+n2+7 n−3
n−1 , (n − 3) (n + 1)2

)

> LeftQuotientRemainder(Ore1,Ore2,A);
[

OrePoly

(

n − 5

(n − 3)2

)

,OrePoly

(

−4
n

(n − 1) (n − 3)2
,
n3 − 7n2 + 15n − 8

(n − 1) (n − 2)2

)]

> RightQuotientRemainder(Ore1,Ore2,A);

[

OrePoly

(

n − 3

(n − 1)2

)

,OrePoly

(

−2
n

(n − 1)2
, 2

n

(n − 1)2

)]

> GCRD(Ore1,Ore2,Ore3, A);

OrePoly (−1, 1)

> GCRD(Ore1, Ore2, Ore3, ’cofactors’ = true, A);

[OrePoly(−1, 1), [OrePoly

(

n

n − 1
, n − 3

)

,OrePoly
(

n, (n − 1)2
)

,OrePoly
(

n, n2
)

]]

>LCLM(OrePoly(1,1),OrePoly(n,1), OrePoly(0,n), cofactors = true, A);

[OrePoly

(

0,
n2 + 2n + 1

n
,
3n + n2 + 1

n
, 1

)

,

[OrePoly

(

0,
n2 + 2n + 1

n
, 1

)

,OrePoly

(

0,
n + 1

n
, 1

)

,OrePoly

(

n2 + 2n + 1

n2
,
3n + n2 + 1

n(n + 1)
,

1

n +

> ExtendedGCRD(Ore1,Ore2,A);
[

OrePoly
(

−2 n

(n−1)2
, 2 n

(n−1)2

)

,OrePoly (1) ,OrePoly
(

− n−3
(n−1)2

)

,

OrePoly
(

−1/2 (n − 1)2 ,−1/2 (n−1)2n2

n+1

)

,OrePoly
(

−1/2 + 1/2n, 1/2 (n−1)2(n−2)
n+1

)]

9

Note that similar to the function skew_gcdex of the Ore_algebra

package, for two given Ore polynomials p and q, the function ExtendedGCRD

returns a list [g, a, b, u, v] such that u p + v q = 0 and a p + b q = g.
Hence, g is a GCRD of p and q, while u p and v q are LCLM’s of p and
q.

4. Application of L and L∗ to an element of k:

The two routines ApplyOrePoly and ApplyAdjointOrePoly yield the
application of L and L∗ to an element of k, respectively.

Example 4

Define the difference algebra:

> A := SetOreRing(n,’difference’,

> ’sigma’ = proc(p,x) eval(p,x=x+1) end,

> ’sigma_inverse’ = proc(p,x) eval(p,x=x-1) end,

> ’delta’ = proc(p,x) eval(p,x=x+1) - p end,

> ’theta1’ = 0);

A := OreRing(n, difference)

> L := OrePoly(n^2/(n-1),n,1/n^2);

OrePoly

(

n2

n − 1
, n,

1

n2

)

Apply the operator L to s(n) :

> ApplyOrePoly(L,s(n),A);

n2

n − 1
s(n) + n (s (n + 1) − s (n)) +

1

n2
(s (n + 2) − 2 s (n + 1) + s (n))

The following example is from Example 2a [1]. The operator L is the
minimal annihilator for J1.

> SetOreRing(x,’differential’);

A := OreRing(n, differential)

10

> L := OrePoly(x^2-1,x,x^2);

OrePoly
(

x2 − 1, x, x2
)

Compute the application of the adjoint of L to a function f(x) :

> ApplyAdjointOrePoly(L,f(x),A);

x2f (x) + 3x
d

dx
f (x) + x2 d2

dx2
f (x)

Another example (Example 3 [1]).

> A := SetOreRing(n,’shift’);

A := OreRing(n, shift)

> L := OrePoly(1,-2,-2,1);

L := OrePoly (1,−2,−2, 1)

> ApplyAdjointOrePoly(L,s(n),A);

s (n) − 2 s (n − 1) − 2 s (n − 2) + s (n − 3)

The above result shows that L∗ = E−3 − 2E−2 − 2E−1 + 1 where E
denotes the shift operator w.r.t. n. Note that L and L∗ are not in the
same ring.

5. Conversion between different representations: The routine FromOrePolyToLinearEquation
allows the conversion from an OrePoly structure to the correspond-
ing linear functional equation, while FromLinearEquationToOrePoly

allows the reversed direction (currently it only handles the shift and
differential algebras (Maple does not have support for other algebras
yet)).

Example 5

Define the differential algebra:

> A := SetOreRing(n,’differential’);

A := OreRing(x, differential)

11

> L := OrePoly(1,-x,x^2+C*x);

L := OrePoly
(

1,−x, x2 + Cx
)

> eq := FromOrePolyToLinearEquation(L,f,A);

deq := f (x) − x
d

dx
f (x) +

(

x2 + Cx
) d2

dx2
f (x)

> FromLinearEquationToOrePoly(eq,f,A);

OrePoly
(

1,−x, x2 + Cx
)

Note that one can use the function AddConversionRule to add rules
for the conversion from a linear equation to an OrePoly structure.
Suppose that we would like to convert a linear difference equation to
an OrePoly structure:

Define the difference algebra

> A := SetOreRing(n,’difference’,

> ’sigma’ = proc(p,x) eval(p,x=x+1) end,

> ’sigma_inverse’ = proc(p,x) eval(p,x=x-1) end,

> ’delta’ = proc(p,x) eval(p,x=x+1) - p end,

> ’theta1’ = 0);

A := OreRing(n, difference)

Consider the following difference operator:

> L := OrePoly(n^4,n^4-n^3,n-1);

L := OrePoly(n4, n4 − n3, n − 1)

Convert L to a linear difference equation:

> eq := FromOrePolyToLinearEquation(L,s,A);

n4s (n)+
(

n4 − n3
)

(s (n + 1) − s (n))+(n − 1) (s (n + 2) − 2 s (n + 1) + s (n))

Now convert eq to the corresponding OrePoly structure:

> FromLinearEquationToOrePoly(eq,s,A);

12

Error, (in FromLinearEquationToOrePoly) unable to handle the
difference case

Now we define the rule for the difference case:

difference case := proc(eq, func, A)

local var, Del, oper, i;

var := OreTools:-GetVariable(A);

oper := subs(LREtools[’Delta’][var]=’Del’, LREtools[’REtodelta’](eq,func(var),{}));
’OrePoly’(seq(coeff(oper,’Del’,i),i=0..degree(oper,’Del’)))

end proc:

Add this rule into OreTools, and try FromOrePolyToLinearEquation

again:

> AddConversionRule(’difference’,difference_case);

> FromLinearEquationToOrePoly(eq,s,A);

OrePoly
(

n4, n4 − n3, n − 1
)

Caveat: The routine difference_case as defined above works correctly
only when the coefficients are polynomials. For a version (which is a bit
longer) that also works correctly for the rational function coefficients, please
check the test convertors2.tst in the directory ~maple/repository/scg/lib/OreTools/tst.

5.2 Implementation Details

5.2.1 Object Representation

1. Ore polynomials. An Ore polynomial is represented by an OrePoly
structure. It consists of the keyword OrePoly with a sequence of coef-
ficients starting with the one of degree zero. For example, in the differ-
ential case with the differential operator D, OrePoly(2/x, x, x + 1, 1)
represents the operator 2/x + xD + (x + 1)D2 + D3.

2. Ore algebra. Modules are used to model Ore algebra “objects”, each
of which satisfies the following interface:

> ‘type/OreRing‘ := ’‘module‘(

> sigma::procedure, inverse_sigma::procedure,

13

> delta::{procedure,algebraic}, theta1::algebraic,

> var::name, case::name

>)’:

For instance,

> A := SetOreRing(n,’shift’):

> type(attributes(A),OreRing);

true

A note to internal developers: the code is structured to make the
expansion of the list of pre-defined algebras quite simple. Since it is
sufficient to define an algebra by providing σ, σ−1, δ, θ1, all one needs
to do is to create a module with this needed information, and then
use the local function AddAlgebra. For instance, if one inserts the
following piece of code

qShiftAlgebra := module()

description ”q-shift algebra”;

export Sigma, InverseSigma, delta, Theta1;

Theta1 := 1;

Sigma := (p,var) → eval(p,var=q*var);

InverseSigma := (p,var) → eval(p,var=(1/q)*var);

delta := (p,var) → 0;

end module;

AddAlgebra(’qshift’,qShiftAlgebra);

into the module DefineRing, one just adds the q-shift algebra (named
’qshift’) into the list of pre-defined algebra. After the code is inserted:

> A := SetOreRing(n,’qshift’);

A := OreRing(n, qshift)

> GetSigma(A)(s(n),n);

s(q n)

14

> L := OrePoly(-q*(1-q*x),1);

> ApplyAdjointOrePoly(L,s(n),A);

s(n/q) − q(1 − q x)s(n)

5.2.2 Implicit Structure

An Ore polynomial ring is defined via SetOreRing. This function returns
an implicit structure OreRing with two arguments: the first is the name of
the independent variable, and the second one the name of the ring. This
implicit structure has an attribute which is a module storing the information
to define a Ore polynomial ring. For instance,
> A := SetOreRing(x,’differential’):

> attributes(A);

module() export case, var, sigma, inverse sigma, delta, theta1; end

module

We believe that it is an advantage to use the module-based approach to
represent/model objects rather than the table-based approach which has
been pretty much the traditional way to represent objects in Maple.

5.3 An Example

We now show an example of using the OreTools package as a basis for
solving the accurate integration problem. The routine IntegrateSols is a
straightforward translation of the pseudo code as given in [1]:

IntegrateSols := proc(L::OrePoly,x::name,case::symbol)
local A, y, eq, sol, l, Delta, One, r, Ltilde;
userinfo(3,’IntegrateSols’,”Define the algebra”);
A := OreTools:-SetOreRing(x,case);
Delta := GetDelta(A);
userinfo(3,’IntegrateSols’,”Set up the functional equation L*(y)=1”);
eq := OreTools:-ApplyAdjointOrePoly(L,y(x),A) = 1;
userinfo(3,’IntegrateSols’,”Find a rational solution of L*(y)=1”);
sol := RationalSolution(eq, y, x, case);
if nops(sol) = 1 then

userinfo(3,’IntegrateSols’,”No rational solution found”);
NULL

else

15

userinfo(3,’IntegrateSols’,”a rational solution is found”);
l := sol[2];
One := ’OrePoly’(1);
use OreTools in

userinfo(3,’IntegrateSols’,”Compute r = LeftQuotient(1-lL,Delta)”);
r := LeftQuotientRemainder(

Add(One,ScalarMultiply(-l,L),A), Delta, A)[1];
userinfo(3,’IntegrateSols’,”Compute L = L o Delta”);
Ltilde := Add(One,ScalarMultiply(-1,Multiply(r,Delta,A)),A)

end;
userinfo(3,’IntegrateSols’,”Computation successful”);
[Ltilde, r]

end if;
end proc:
In order to have IntegrateSols work in a given algebra, we need to

provide routines to compute the “rational solutions” of L∗y = 1 and to
compute ∆. For the shift and differential cases, finding the “rational solu-
tions” are available via LREtools[ratpolysols] and DEtools[ratsols],
respectively.

RationalSolution := proc(eq, y, x, case)
local sol, inds, basis sol, par sol;
if not member(case,’shift’,’differential’) then

error ”only the shift and differential cases are supported”
end if;
if case = ’differential’ then

sol := DEtools[’ratsols’](eq,y(x));
else

sol := LREtools[’ratpolysols’](eq,y(x),{},’output’=’basis’);
if sol = NULL then return([[]]) end if;
need to massage the output of LREtools[ratpolysols]
inds := [op(indets(sol, C[integer]))];
basis sol := map2(coeff,sol,inds);
par sol := eval(sol,map(x→x=0,inds));
if par sol = 0 then sol := [basis sol]
else sol := [basis sol,par sol] end if;

end if;
sol

16

end proc:

GetDelta := proc(A)
local p, var, sig, del, Del;
var := OreTools:-GetVariable(A);
sig := OreTools:-GetSigma(A);
del := OreTools:-Getdelta(A);
if σ = 1 then ∆ = δ
if σ 6= 1 then ∆ = σ − 1
if sig(p(var),var) = p(var) then

Del := del(p(var),var)
else

Del := sig(p(var),var) - p(var)
end if;
OreTools:-FromLinearEquationToOrePoly(Del,p,A)

end proc:

We now present two examples. One is for the differential case, one for
the shift case. infolevel is used for the first example to show the main
steps of the algorithm.
Differential Case: an example from the help page of DEtools[integrate_sols]
> L := OrePoly(-(z-2)*(z^2-z+1)/z/(z-1)^2, -3/2/z/(z-1), 1);

L := OrePoly

(

−(z − 2)
(

z2 − z + 1
)

z (z − 1)2
,−3/2

1

z (z − 1)
, 1

)

> IntegrateSols(L,z,’differential’);

IntegrateSols: "Define the algebra"

IntegrateSols: "Set up the functional equation L*(y)=1"

IntegrateSols: "Find a rational solution of L*(y)=1"

IntegrateSols: "a rational solution is found"

IntegrateSols: "Compute r = LeftQuotient(1-lL,Delta)"

IntegrateSols: "Compute L~= L o Delta"

IntegrateSols: "Computation successful"

[

OrePoly

(

1,
1

2

1

(z − 1)2
,− z

z − 1

)

,OrePoly

(

−1

2

1

(z − 1)2
,

z

z − 1

)]

Shift Case: Example 3 from [1]

17

> L := OrePoly(1,-2,-2,1);

L := OrePoly (1,−2,−2, 1)

> IntegrateSols(L,n,’shift’);
[

OrePoly

(

−1

2
, 1, 1,−1

2

)

,OrePoly

(

−3

2
,−1

2
,
1

2

)]

6 A comparison

At this point, a natural question to ask is “why do we need the OreTools

package in addition to the existing and well-known package Ore_algebra?”
The answer is quite simple: the skew-polynomial rings in the OreTools

package are defined over a field, instead of over a ring as in the case of the
Ore_algebra package. Consider the following simple example:
> with(Ore_algebra):

> A := shift_algebra([En,n]);

A := Ore algebra

> Ore1 := (3*n+1)*En-1;

Ore1 := (3n + 1)En − 1

> Ore2 := (2*n-2)/(n+2)+En;

Ore2 :=
2n − 2

n + 2
+ En

We would like to compute the right remainder of Ore1 by Ore2, and it is not
possible to use directly any top-level command in Ore_algebra to obtain
the result. Furthermore, all algebras declared in the Ore_algebra package
are a priori with integer coefficients. Any other type of coefficients has to be
explicitly declared. This makes it difficult to perform the basic arithmetics
when the coefficients have parameters or algebraic numbers. See Appendix
A for an example of this type.

Another factor that should be taken into consideration is efficiency. We
believe that the OreTools package outperforms the Ore_algebra package.
See appendix B for the timing comparison of our experiment. We would
like to emphasize that this is by no means an attempt to disparage the
quality of the Ore_algebra package (it is indeed a powerful package). Our
point of view is that each package is designed to be suitable for some certain
operations, and hence can co-exist within the Maple system.

18

References

[1] S.A. Abramov, M.v. Hoeij. Integration of solutions of linear functional
equations. Integral Transformations and Special Functions 8, No. 1-2,
1999, 3–12.

[2] S.A. Abramov, E.V. Zima. Minimal completely factorable annihilators.
In: W. Küchlin (ed.), Proceedings of the 1997 International Symposium
on Symbolic and Algebraic Computation, ACM Press, 290–297.

[3] S.A. Abramov, E.V. Zima. D’Alembertian solutions of inhomogeneous
linear equations (differential, difference, and some other). In: Y.N. Lak-
shman (ed.), Proceedings of the 1996 International Symposium on Sym-
bolic and Algebraic Computation, ACM Press, 232–240.

[4] S.A. Abramov. Ore rings and linear equations, Unpublished.

[5] S.A. Abramov, E.V. Zima, A universal program to uncouple linear
systems. In: Proceedings of CMCP’96 (International Conference on
Computational Modeling and Computing in Physics, Dubna, Russia,
Sept. 16-21, 1996), 1997, pp. 16–26.

[6] M. Bronstein, M. Petkovšek. An introduction to pseudo–linear algebra,
Theoretical Computer Science 157, 1996, 3–33.

[7] M. Bronstein, B. Zürcher. Uncoupling algorithms for pseudo–linear sys-
tems, Submitted to AAECC.

[8] M. Giesbrecht, Y. Zhang. Factoring and decomposing Ore polynomi-
als over Fp(t). To appear in the Proceedings of the 2003 International
Symposium on Symbolic and Algebraic Computation.

[9] N. Jacobson. Pseudo-linear transformations. Annals of Mathematics 38,
484–507.

[10] Z. Li. A subresultant theory for ore polynomials with applications. In:
O. Gloor (ed), Proceedings of the 1998 International Symposium on
Symbolic and Algebraic Computation, ACM Press, 132–139.

[11] Z. Li, I. Nemes. A modular algorithm for computing greatest common
right divisors of Ore polynomials. In: W. Küchlin (ed.), Proceedings of
the 1997 International Symposium on Symbolic and Algebraic Compu-
tation, ACM Press, 282–289.

19

[12] O. Ore. Theory of non-commutative polynomials. Annals of Mathemat-
ics 34, 1933, 480–508.

[13] E. G. C. Poole. Introduction to the theory of linear ordinary differential
equations. Dover Publications Inc., New York, 1936.

[14] J. van der Hoeven. FFT-like multiplication of linear differential opera-
tors. Journal of Symbolic Computation 33, Issue 1, 2002, 123 - 127.

[15] Wedderburn J.H.M. Non-commutative domains of integrity. J. Reine
Angew. Math. 167, 1932, 129–141.

20

Appendix A

Consider the following two polynomials in shift algebra 1:

> Ore1 := OrePoly(-231420*I*551^(1/2)*(1287+21*I*551^(1/2)+740*n)*

> (42*n+19-2013^(1/2))*(42*n+19+2013^(1/2)),231420*I*551^(1/2)*

> (547+21*I*551^(1/2)+740*n)*(42*n+61-2013^(1/2))*(42*n+61+2013^(1/2))):

> Ore2 := OrePoly(231420*I*551^(1/2)*(1287-21*I*551^(1/2)+740*n)*

> (42*n+19-2013^(1/2))*(42*n+19+2013^(1/2)),-231420*I*551^(1/2)*

> (547-21*I*551^(1/2)+740*n)*(42*n+61-2013^(1/2))*(42*n+61+2013^(1/2))):

One can perform the extended right Euclidean algorithm using OreTools:-ExtendedGCRD:

> SetOreRing(n,’shift’):

> ExtendedGCRD(Ore1,Ore2,A):

To perform the same operation using the Ore_algebra package:

> A := skew_algebra(shift=[E_n,n],alg_relations={i^2+1,a^2-551,b^2-2013},comm={i,a,b

> L1 :=231420*I*551^(1/2)*(547+21*I*551^(1/2)+740*n)*(42*n+61-2013^(1/2))*(42*

> n+61+2013^(1/2))*E_n-231420*I*551^(1/2)*(1287+21*I*551^(1/2)+740*n)*

> (42*n+19-2013^(1/2))*(42*n+19+2013^(1/2)):

> L2 :=-231420*I*551^(1/2)*(547-21*I*551^(1/2)+740*n)*(42*n+61-2013^(1/2))*(42

> *n+61+2013^(1/2))*E_n+231420*I*551^(1/2)*(1287-21*I*551^(1/2)+740*n)*

> (42*n+19-2013^(1/2))*(42*n+19+2013^(1/2)):

> L1:=subs([I=i,551^(1/2)=a,2013^(1/2)=b],L1):

1This example was originally posted by Ha Le on the mapledev mailing list. The

solution obtained by using the Ore algebra package was provided by Frédéric Chyzak.

21

> L2:=subs([I=i,551^(1/2)=a,2013^(1/2)=b],L2):

> skew_gcdex(L1,L2,E_n,A):

Since all algebras declared in the Ore_algebra package are a priori with
integer coefficients, any other type of coefficients has to be explicitly de-
clared. Hence, being able to perform the same operation (the extended
right Euclidean algorithm in this example) requires a non-trivial effort and
knowledge from users.

22

Appendix B

In this experiment, we run OreTools:-ExtendedGCRD and Ore_algebra[skew_gcdex]

on a set of randomly-generated polynomials in shift algebra, and do the
timing comparison. The two polynomials in each call are elements from
Q[n][En] and are of degrees 7 and 8, respectively.

Generate elements in Q[n]
randpol := proc(var::name)

randpoly([var],’terms’=3,’coeffs’=RandomTools[’Generate’](
’rational’(’denominator’=10),’makeproc’));

end proc:

Generate Ore polynomials with coefficients in Q[n]
RandOrePoly := proc(var::name, deg::nonnegint)

local terms, i;
terms := NULL;
for i from 0 to deg do terms := terms, randpol(var); end do;
’OrePoly’(terms)

end proc:

for i to 10 do

Ore := RandOrePoly(n,2);
Ore1 := RandOrePoly(n,5); Ore1 := Multiply(Ore1,Ore,A);
Ore2 := RandOrePoly(n,6); Ore2 := Multiply(Ore2,Ore,A);

end do;

Table 1 shows the time (in seconds) required for each call to OreTools:-ExtendedGCRD
and
Ore_algebra[skew_gcdex]Table 2 shows the time (in seconds) required for
each call to OreTools:-GCRD, OreTools:-ExtendedGCRD and OreTools:-LCLM

with cofactors. Input polynomials are the same as those used for Table 1.
2.

2All the reported timings were obtained on a 400Mhz SUN SPARC SOLARIS with

1Gb RAM.

23

Table 1: Time requirement for 2001 version.

ExtendedGCRD skew_gcdex

1 189.920 889.920
2 202.000 908.820
3 206.110 916.320
4 200.270 906.790
5 194.190 922.660
6 234.420 1405.310
7 218.070 1004.410
8 186.630 673.060
9 219.060 1056.660

10 165.020 660.830

Table 2: Time requirement for 2002 version.

GCRD ExtendedGCRD LCLM

1 4.33 76.93 138.75
2 4.54 65.84 185.18
3 3.83 67.10 58.88
4 4.44 87.65 130.42
5 4.01 68.65 117.29
6 4.37 95.33 128.36
7 3.89 78.44 88.80
8 4.48 89.75 135.76
9 4.16 42.53 40.20

10 4.28 88.34 133.88

24

