
Journal of Mathematical Sciences, Vol. 185, No. 3, September, 2012

ON SINGULAR POINTS OF SOLUTIONS OF LINEAR DIFFERENTIAL
SYSTEMS WITH POLYNOMIAL COEFFICIENTS

S. A. Abramov and D. E. Khmelnov UDC 512.628.2

Abstract. We consider systems of linear ordinary differential equations containing m unknown functions
of a single variable x. The coefficients of the systems are polynomials over a field k of characteristic 0. Each
of the systems consists of m equations independent over k[x, d/dx]. The equations are of arbitrary orders.
We propose a computer algebra algorithm that, given a system S of this form, constructs a polynomial
d(x) ∈ k[x] \ {0} such that if S possesses a solution in k̄((x − α))m for some α ∈ k̄ and a component of
this solution has a nonzero polar part, then d(α) = 0. In the case where k ⊆ C and S possesses an analytic
solution having a singularity of an arbitrary type (not necessarily a pole) at α, the equality d(α) = 0 is
also satisfied.

1. Introduction

Linear differential equations with variable coefficients and systems of such equations appear in many
areas of mathematics. Solving systems leads, however, to specific difficulties which do not appear in the
scalar case. Consider the equation

Pr(x)y(r) + Pr−1(x)y(r−1) + · · · + P0(x)y = 0. (1)

First, suppose that this is a scalar equation. In this case, the coefficients P0(x), P1(x), . . . , Pr(x) are
polynomials over a field k of zero characteristic, and Pr(x) is not identically zero. It is well known that
if a solution of (1) has a singularity at some point α (e.g., this solution is a formal Laurent series in
x − α with a nonzero polar part), then Pr(α) = 0. The nonzero polynomial Pr(x) vanishes only for
a finite set of values of x, and all these values can be examined step-by-step. If (1) is instead a system,
y = (y1, y2, . . . , ym)T is a column vector of unknown functions of x, and

P0(x), P1(x), . . . , Pr(x) (2)

are square (m×m)-matrices with entries in k[x], then the role that is played by the roots of the polynomial
coefficient of y(r)(x) in the scalar case can now be played by the roots of the determinants of the leading
matrix Pr(x), provided that this determinant is not identically zero. However, if it is identically zero,
then the situation becomes difficult. This situation will be studied in this paper.

Under the condition that the system’s equations are independent over k[x, d/dx], we solve the problem
of the construction of a revealing polynomial for a given system S of the form (1), i.e., of such a polynomial
d(x) that if, for example, for some α ∈ k̄ the system S has the solution y(x) ∈ k̄((x−α))m and some of the
components of the solution has a nonzero polar part (in this case we may say that α is the pole of y(x)),
then d(α) = 0; that polynomial may also have roots that do not correspond to any such α; therefore,
such a polynomial might be called an embracing one. If we discard the condition that the equations of
the original system are independent over k[x, d/dx], then we may face the situation where the set of the
singular points of solutions of a given system is infinite. Let, e.g., the system be(

1 −1
0 0

)
y′′ +

(
0 0
1 −1

)
y′ = 0,

y = (y1, y2)T, and k be an arbitrary field of characteristic zero. Then any point is singular for some
solution such that y1 = y2 (while the equations of the system are independent over k).

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 17, No. 1, pp. 3–21, 2011/12.

1072–3374/12/1853–0347 c© 2012 Springer Science+Business Media, Inc. 347

We start with the algorithm EGδ of performing revealing transformation of a given system S with
respect to the leading matrix (Sec. 2.1). The algorithm finds a system S′ of the same form (and for the
same unknown functions) such that the determinant of its leading matrix is in k[x] \ {0}, and the set of
the solutions of the system S′ contains the set of solutions of the system S as a subset. The algorithm
Singsys, based on the algorithm EGδ, constructs a revealing polynomial for a given system S. We propose
randomized versions of these two algorithms (Sec. 2.4); it turns out that the randomization allows one to
decrease the degree of the revealing polynomial in many cases.

The operation of differential shift that we introduce in Sec. 2.1 allows one to use the ideas of the
algorithms EG and EG′ [1–4] in the algorithm EGδ. The problem of constructing the revealing polynomial
is not solved directly by means of the algorithms EG and EG′, since they are designed for the recurrence
systems (see Sec. 3.1). The situation with the algorithm from [10] is similar. The algorithm from [11]
is applicable to the differential systems of the form (1), but in this case it may enable the revealing
transformation of the system with respect to its trailing matrix (the nonzero matrix Pi(x) with the
smallest index).

Note that defining potential singularities of solutions of higher-order linear differential systems does
not seem to have been done elsewhere in the literature, although it could be probably derived from the
papers [9, 12]. Nevertheless, the algorithms EGδ and Singsys are focused directly on constructing the
revealing polynomial and are based on simple calculations. The implementation of the algorithms is
presented in Sec. 2.2.

If r = 1 in (1), then it is possible to present an algorithm that is an alternative to the algorithm EGδ.
Theoretically, the system (1) with an arbitrary value of r may be transformed to a first-order system. In
Sec. 2.3, we show that for large values of r the algorithm EGδ has less complexity than the algorithm
based on the transformation to a first-order system.

In Appendix (Sec. 3), we consider some problems related to the algorithms EGδ and Singsys.
The algorithm EGδ is a differential version of the algorithm EG′. It should be noted that the notion

“a differential version of the algorithm EG′” is used in [8] for an algorithm solving another problem, which
is different from the problem of performing a revealing transformation of a differential system. We discuss
it in Sec. 3.2 (the new name EGσ is introduced in Sec. 3.1 for the algorithm EG′). As an illustration
of the application of the algorithms EGδ and Singsys, the problem of searching for the rational function
solutions of the differential systems is considered in Sec. 3.3.

If an inhomogeneous system with the right-hand side belonging to k[x]m is given, then by adding
a component ym+1 to y(x) with value 1, y′m+1 = 0, one can transform the given system into a homogeneous
system S1 with m + 1 equations and m + 1 unknown functions. For our purposes it is sufficient to find
a revealing polynomial for S1. Let the homogeneous system S2 be obtained by dropping the right-hand
sides of the equations of the original system. If the equations of S2 are independent over k[x, d/dx],
then the equations of S1 are independent as well. For these reasons, we restrict our consideration to
homogeneous systems.

A brief description of the results of the paper has been presented in [6].

2. Algorithms EGδ and Singsys

As it was stated above, we suppose that the equations of the original differential system are indepen-
dent over k[x, d/dx].

2.1. Alternating “Reduction + Differential Shift” Steps. Let r and m be arbitrary nonnegative
integer numbers. A system and the corresponding matrices P0(x), P1(x), . . . , Pr(x) are as in, respectively,
(1) and (2). The matrix

P (x) =
(
Pr(x) |Pr−1(x) | . . . |P0(x)

)
(3)

is called the explicit matrix of the system, with Pr(x) called the leading part of the explicit matrix.
Let the ith row of Ps(x), 0 ≤ s ≤ r, be nonzero, while the ith rows of Ps−1(x), Ps−2(x), . . . , P0(x) are

zero. Let in addition the tth element, 1 ≤ t < m, be the last nonzero element of the ith row of Ps(x).

348

Then (r− s) ·m + t is the width of the ith row of P (x), and the last nonzero element of the ith row is the
trailing element of that row.

Let the ith row of P be nonzero and the ith row of Pr(x) be zero. Let c(x) be the trailing element
of the ith row of P (x). Divide the differential equation corresponding to the ith row of P (x) by c(x),
differentiate the received equation, and clear denominators in it. Then replace the ith row of P (x) by the
row that corresponds to the latter differential equation. This operation is the differential shift of the ith
row of P (x).

If the ith rows of Pr(x), Pr−1(x), . . . , Pu+1(x), 0 ≤ u < r, are zero while the ith row of Pu(x) is
nonzero, then the ith row of Pu+1(x) will be nonzero after the differential shift of the ith row of P (x).
This fact and the following lemma motivate the term “differential shift.”

Lemma 1. Let the ith row of Pr(x) be zero. Then the differential shift of the ith row of P (x) decreases
the width of this row.

Proof. The ith row of P (x) is nonzero, since we assume that the rows of the matrix P (x) are independent
over k[x, d/dx]. Therefore, there exists s such that 0 ≤ s ≤ m and the ith row of Ps(x) is nonzero, while
the ith rows of Ps−1(x), Ps−2(x), . . . , P0(x) are zero. Let the ith row of Ps(x) be

(. . . , b(x), c(x)︸ ︷︷ ︸
t elements

, 0, . . . , 0),

t > 0, c(x) ∈ k[x] \ {0}. Then after the differential shift this row will be(
. . . , h(x)

(
b(x)/c(x)

)′
︸ ︷︷ ︸

t − 1 elements

, 0, 0, . . . , 0
)
,

where h(x) is a polynomial factor provided by the clearing denominators. The ith rows of Ps−1(x),
Ps−2(x), . . . , P0(x) are still zero.

The scheme of the proposed algorithm EGδ is the following. We use any available method to check
whether the rows of the leading part of the explicit matrix are linearly dependent over k(x), and if they
are, to find the coefficients v1(x), . . . , vm(x) ∈ k[x] of a dependence. We select a row with the greatest
width from the rows of the explicit matrix that correspond to nonzero coefficients (let it be the ith row).
We then replace the ith row of the explicit matrix by the linear combination of all its rows with the
coefficients v1(x), . . . , vm(x). As a result, the ith row of the leading matrix becomes zero. This stage
is called a reduction. It is essential that no single row has increased its width due to the reduction.
Then we apply the differential shift to the ith row and continue this process until the leading part of the
explicit matrix is nonsingular. (We never get the zero row since the equations of the original system are
independent over k[x, d/dx].)

Theorem 1. The algorithm EGδ terminates.

Proof. As we have mentioned, no single row increases its width due to the reduction. By Lemma 1,
the differential shift decreases the width of the corresponding row. Thus, the sum of all the widths is
decreased by a “reduction + differential shift” step.

We supplement the above by saying that searching for a linear dependence
(
v1(x), . . . , vm(x)

)
is

equivalent to solving a homogeneous system of linear algebraic equations with polynomial coefficients.
This problem is efficiently solved by many different computer linear algebra algorithms, in particular, with
modular algorithms that resist intermediate coefficient growth well. If we obtain s linearly independent
solutions of the linear algebraic system, then it is possible to use all of them for reductions, which
yields s zero rows in the leading matrix. To do that, we first represent the s dependencies as rows of
an (s × m)-matrix V and use the first row of V to zero the ith row of the leading part, and perform
the differential shift of the ith row in the explicit matrix. We then transform V by eliminating the ith
element in its rows 2 through s, using the ith element of the first row as pivot. After this elimination, each

349

remaining row of V contains the coefficients of a linear dependence of the rows 1, . . . , i − 1, i + 1, . . . , m
of the leading matrix. So we may perform s “reduction + differential shift” steps. The order in which we
use the rows V is, in fact, arbitrary, whence different heuristic strategies can be used to choose.

If it happens that the ith rows of the matrices Pr(x), Pr−1(x), . . . , Pu+1(x), 0 ≤ u < r, are zero after
the reduction, while the ith row of the matrix Pu(x) is zero and u < r−1, then the equation corresponding
to the ith row may be differentiated r− u− 1 times without the division by its trailing element, and only
the last ((r − u)th) differentiation need to be done with the preliminary division and the subsequent
clearing of denominators (the consideration was advised to the authors by M. Barkatou).

It is not excluded that the width of the explicit matrix row that is substituted by the linear combi-
nation of the other rows decreases after the reduction. In this case, it is not needed to divide the row by
the trailing element before the differentiation.

The algorithm Singsys (Singularities of solutions of linear ordinary differential systems) consists in
applying the algorithm EGδ to a given system, subsequent computing the determinant of the leading
matrix of the transformed system, and freeing the resulting polynomial from squares.

Example 1. Let us consider the system S(
2x2(x + 2)(x + 1) −x(x + 2)(x + 1)

2x2(x + 2) −x(x + 2)

)
y′′ +

(
2x(x + 1)(x − 4) −x2

2x(x − 4) −x(x + 4)

)
y′

+
(−2(x + 1)(x − 4) −2

−2x + 8 2

)
y = 0, (4)

with the explicit matrix(
2x2(x + 2)(x + 1) −x(x + 2)(x + 1) 2x(x + 1)(x − 4) −x2 −2(x + 1)(x − 4) −2

2x2(x + 2) −x(x + 2) 2x(x − 4) −x(x + 4) −2x + 8 2

)
. (5)

The rows of the leading part of the matrix (5) are dependent with coefficients v1 = −1, v2 = x + 1. The
rows of the explicit matrix have the same width. We replace the second row:(

2x2(x + 2)(x + 1) −x(x + 2)(x + 1) 2x(x + 1)(x − 4) −x2 −2(x + 1)(x − 4) −2
0 0 0 −x(x + 2)2 0 2x + 4

)
.

The differential shift of the second row yields(
2x2(x + 2)(x + 1) −x(x + 2)(x + 1) 2x(x + 1)(x − 4) −x2 −2(x + 1)(x − 4) −2

0 −x(x + 2) 0 −2x 0 0

)
. (6)

The matrix (6) is the explicit matrix of the system S′

(
2x2(x + 2)(x + 1) −x(x + 2)(x + 1)

0 −x(x + 2)

)
y′′ +

(
2x(x + 1)(x − 4) −x2

0 −2x

)
y′

+
(−2(x + 1)(x − 4) −2

0 0

)
y = 0 (7)

whose leading matrix is nonsingular. The system is the result of the application of EGδ to the system (4).
The determinant of the leading part of the explicit matrix of the system S′ is equal to −2x3(x+2)2(x+1).
The polynomial

d(x) = x(x + 2)(x + 1) (8)

is the result of the algorithm Singsys.
The constructed polynomial d(x) is a revealing polynomial for the original system (4), and the solution

of the system may have singularities only at the points −2, −1, 0.

The system S′ that is constructed by Singsys may have more solutions than S. If, e.g., k = C and
the leading matrix of a system is nonsingular, then the dimension of the space of holomorphic solutions

350

at any domain that does not contain the roots of the determinants of the leading matrix is equal to rm.
But if the leading matrix is singular, then this dimension may be less than rm. For example, the system(

1 0
0 0

)
y′ +

(
0 −1
0 1

)
y = 0 (9)

has the one-dimensional solution space y = (c, 0)T. (Applying EGδ to this system produces the system S′
of the form (

1 0
0 1

)
y′ +

(
0 −1
0 0

)
y = 0,

having two-dimensional solution space y = (c1x + c2, c1)T.) Note that the equations of the system (9) as
well as the rows of its explicit matrix are independent over k[x, d/dx].

In the above, we assumed that the equations of the original system are independent over k[x, d/dx]
(in this case the solution space of the system has a finite dimension, not exceeding rm). If we discard the
assumption, then the algorithm EGδ allows one to determine whether a dependence exists.

Theorem 2. Let the equations of a system be dependent over k[x, d/dx]. Then a zero row will be obtained
in the explicit matrix at some step of the execution of the algorithm EGδ.

Proof. We will show that if the rows of the leading matrix of the system are independent over k[x], then
the equations of the system are independent over k[x, d/dx]. Let the equations be dependent with the
operator coefficients L1, L2, . . . , Lm ∈ k[x, d/dx], and

ordLi = li, Li = ai,li(x)
dli

dxli
+ ai,li−1(x)

dli−1

dxli−1
+ · · · + ai,0(x),

i = 1, 2, . . . , m. Let l = max{l1, l2, . . . , lm} and

bi(x) =

{
0 if li �= l,

ai,li(x) if li = l.

It is easy to see that the linear combination of the rows of the leading matrix taken with the coefficients
b1(x), b2(x), . . . , bm(x) is equal to zero. We mention additionally that if the equations of the system are
initially dependent over k[x, d/dx], then the equations that correspond to the rows of the explicit matrix
are dependent over k[x, d/dx] after each step of EGδ. Then it follows that for the case of dependent
equations the use of EGδ will lead to the appearance of a zero row in the explicit matrix at some step.

We add some more words to the proved theorem. The transformations of the explicit matrix that
are performed by the algorithm EGδ correspond to the transformations of the original system S, which
keep the number of equations independent over k[x, d/dx]. If one assumes that the number is equal to
m0 ≤ m, then, using EGδ, one can construct a system S′ of m0 equations independent over k[x, d/dx]
such that its leading matrix of size m0 ×m has the rank m0 over k[x], and each solution of the system S
is a solution of the system S′.

Theoretically, it is possible to declare that the algorithms EGδ and Singsys are applicable to differential
systems with any analytic coefficients. However, in this case one must recognize the equality of the explicit
matrix elements to zero, which cannot be algorithmically done in the general case. In addition, the result
of the Singsys execution may be an analytic function d(x) (we can drop the step of freeing from squares),
and it is not excluded that the equation d(x) = 0 has infinitely many roots.

2.2. Implementation of the Algorithms EGδ and Singsys. Our implementation (see http://www.
ccas.ru/sabramov/singsys/) of the algorithm EGδ in Maple [13] is based on our implementation of the
algorithm EG′ described in [4]. The main difference of the algorithms is the shift step, and the proposed
implementation includes the differential shift of the row as an auxiliary procedure. Some simplifications
are also performed, since the algorithm EGδ is focused only on the revealing transformations of the system
with respect to the leading matrix.

351

The algorithm is implemented as the procedure EG_delta; its input parameters are the system given
as the list of its equations and the list of the corresponding unknown functions. The name of a variable
that will store the obtained system (like the system S′ from Example 1) is an optional parameter.

The algorithm Singsys is implemented as the procedure Singsys based on the use of the procedure
EG_delta. The input parameters of the procedure Singsys are also a system given as the list of its
equations and the list of the corresponding unknown functions.

With these procedures one can find the polynomial whose roots identify the potential singularities
of the solutions of the system (4) from Example 1, and also get the system with a nonsingular leading
matrix, which is the result of the corresponding revealing transformation:
> sys := [2*x^2*(x+2)*(x+1)*diff(y1(x),x$2)-x*(x+2)*(x+1)*diff(y2(x),x$2)+
2*x*(x+1)*(x-4)*diff(y1(x),x)-x^2*diff(y2(x),x)-2*(x+1)*(x-4)*y1(x)-2*y2(x),
2*x^2*(x+2)*diff(y1(x),x$2)-x*(x+2)*diff(y2(x),x$2)+
2*x*(x-4)*diff(y1(x),x)-x*(x+4)*diff(y2(x),x)-(2*x-8)*y1(x)+2*y2(x)]:

> vars := [y1(x), y2(x)]:

> Singsys(sys, vars);

x(x + 2)(x + 1)

> EG_delta(sys, vars);

[
2x2(x + 2)(x + 1)

(
d2

dx2
y1(x)

)
− x(x + 2)(x + 1)

(
d2

dx2
y2(x)

)
+ 2x(x + 1)(x − 4)

(
d

dx
y1(x)

)

−x2

(
d

dx
y2(x)

)
− 2(x + 1)(x − 4)y1(x) − 2y2(x),−x(x + 2)

(
d2

dx2
y2(x)

)
− 2x

(
d

dx
y2(x)

)]

Our experiments show that the algorithm allows one to work with systems with rather large input
parameters. For example, two runs of experiments were executed. Seven sets with 10 differential systems
in each were generated for each of the runs; we took m = 10 and r = 5, 10, 20, 40, 100, 250, 500 corre-
spondingly. The coefficients of all the systems were random polynomials (we used the standard Maple
command randpoly()); the systems were generated in such a way that the number of nonzero coefficients
was 30% in the first run, and 50% in the second run. The results of the experiments are represented in the
table. Each cell contains the total time (in seconds) used for constructing the revealing polynomials for
all systems in the corresponding set of a run (for all the experiments: Maple 13, Windows XP, Pentium
4 1.7 GHz, 1.5 GB RAM).

5 10 20 40 100 250 500
30% 3.189 6.468 13.516 29.642 187.375 3305.172 39183.048
50% 3.578 4.361 11.955 31.875 255.063 5358.843 82052.204

2.3. First-Order Systems. If r = 1 in (1), i.e., the system is of the form

P1(x)y′ + P0(x)y = 0, (10)

and the rank of P1(x) over k[x] is equal to s, 0 < s < m, then after the reduction we can rewrite the
system as a pair of a first-order linear differential system and a linear algebraic system

B1(x)y′ + B0(x)y = 0, R(x)y = 0,

where the matrices B1(x), B0(x) have the size s×m, and the rank of B1(x) is equal to s, while the matrix
R(x) has the size (m− s)×m. The rank of R(x) is equal to m− s, since equations of the original system
are independent over k((x)).

352

We can use a version of the approach described in [14]. If we differentiate the system R(x)y = 0, then
we obtain

R(x)y′ + R′(x)y = 0. (11)

Using (11), we eliminate in B1(x)y′ + B0(x)y = 0 some of y′i for m− s values of the index i. Then, using
equations of the algebraic system R(x)y = 0, we eliminate all yi having the same value of the index i. If
the obtained differential system has the leading matrix of rank less than s, then we repeat these actions
(we transform the differential system to a pair that consists of differential and algebraic systems) and
so on. Finally, we obtain a first-order differential system with a nonsingular leading matrix. It might
be represented by a transformation matrix; the common denominator of the elements of the matrix also
makes a contribution to the revealing polynomial.

It is well known that any system of the form (1) can be transformed to the form (10) by introducing
some new unknown functions, and the order of matrices P0(x), P1(x) will be equal to mr. However, it
is also well known that for large values of r such a transformation from the system (1) to the first-order
system is not convenient, since it leads to matrices of large size, and work with such matrices is quite
expensive. Suppose that complexity (the number of operations in k[x] in the worst case) of the reduction
of the leading matrix of order m is mω, 2 < ω ≤ 3. The number of steps “reduction + differential shift”
of the algorithm EGδ (Sec. 2.1) does not exceed rm2, and the cost of each step is at most rm + mω.
Thus, the complexity of EGδ does not exceed r2m3 + rmω+2. On the other hand, if we use the described
transformation of the original system to the first-order system, then the total cost of reductions can be
not less than

rm∑
i=1

iω ∼ (rm)ω+1

ω + 1
.

If we suppose that m is fixed and r tends to ∞, then the complexity of EGδ is O(r2), while the complexity
of the algorithm based on the transformation to the first-order system grows as rω+1, ω > 2, or even faster.

The upper bound rm2 for the number of steps of EGδ is most likely too large (our experiments confirm
this). In any case, if each differential shift causes an additional solution of the system to appear, then the
number of steps cannot be bigger than rm.

Some experiments on a comparison of the algorithm Singsys and the algorithm based on the trans-
formation to the first-order system were done. For this, 4 sets with 10 differential systems in each were
generated; we took m = 10 and r = 5, 10, 15, 20 correspondingly. As in the experiment from Sec. 2.2,
the coefficients of all the systems were random polynomials; the systems were generated in such a way
that the number of nonzero coefficients was 50%. The results of the experiments are represented in the
table. Each cell contains the total time (in seconds) used for constructing the revealing polynomials for
all systems in the corresponding set by one of the comparing algorithms.

5 10 15 20
Singsys 6.422 17.375 21.344 29.422
First order 27.267 731.484 3287.844 6383.953

2.4. Randomization. Reductions and differential shifts may lead to some excess factors in the revealing
polynomial, the roots of which are not singularities of original system solutions. Some additional work
allows one to avoid at least a part of them.

We introduce into the algorithms EGδ and Singsys some randomness. Let 0 < p ≤ 1. The differential
shift will be performed as described in Sec. 2.1 with probability p. The corresponding equation will be
differentiated without the preliminary division by the trailing coefficient with probability 1−p. This shift
will be called the p-shift (if p = 1, then p-shift is the differential shift).

353

After each step “reduction + p-shift,” the sum of widths of all rows is decreased by at least p in
average. Since p > 0, the total average time of performing the revealing transformation of the explicit
matrix based on “reduction + p-shift” steps is finite. Thus, we obtain a randomized version of EGδ.

The following scheme can be used for constructing a revealing polynomial. First, we apply the version
of EGδ described in Sec. 2.1. Then we apply the randomized version of EGδ a few times without changing
the value p (and everything that was computed before the first differential shift remains the same). Each
such application can produce a new leading part of the explicit matrix. The greatest common divisor
of the obtained revealing polynomials may have a smaller degree. We terminate the process when the
current application does not change this degree or when the revealing polynomial is of zero degree. This
gives a randomized version of Singsys.

Example 2. Consider the system(
x 0

x(x − 2) 0

)
y′′ +

(
0 0

−x + 1 0

)
y′ +

(
0 x − 2
0 −5x + 6

)
y = 0.

Using EGδ, we obtain(
x(x + 2)(x − 2) −x(x + 2)3(x − 2)

x + 2 0

)
y′′ +

(−x2 − 4 8(x + 2)2

−1 (x + 2)2

)
y′ +

(
0 0
0 0

)
y = 0,

and d1(x) = x(x + 2)(x − 2) is the result of Singsys.
Using the randomized version of EGδ, we obtain other systems as well, in particular,(

x 0
−x −x(x + 2)(x − 1)

)
y′′ +

(
0 0
−1 −2(x + 2)(2x − 1)

)
y′ +

(
0 x − 2
0 −2x − 4

)
y = 0. (12)

The result of the randomized Singsys is equal to d(x) = x(x + 2), this polynomial is equal to the
greatest common divisor of d1(x) and d2(x) = x(x + 2)(x − 1) (the latter polynomial corresponds
to (12)). Further systems that we could get, using the randomized EGδ, have revealing polynomials
d3(x) = x(x + 2)(x − 1)(x2 + 4x − 2) and d4(x) = x(x + 2) and do not lead to decreasing the degree
of the resulting revealing polynomial; note that d4(x) coincides in this case with the final result of the
randomized Singsys.

The randomized versions of the algorithms EGδ and Singsys are included in our implementation,
described in Sec. 2.2. The procedures EG_delta and Singsys accept an optional parameter that deter-
mines if the randomization should be used. The probability of the division in the differential shift in the
randomized version of the algorithm EGδ is taken to be 1/2.

Apply the randomized version to the system from Example 2.

> sys := [x*diff(y1(x),x$2)+(x-2)*y2(x),
(x^2-2*x)*diff(y1(x),x$2)+(1-x)*diff(y1(x),x)+(6-5*x)*y2(x)]:

> Singsys(sys, vars, "random");

x(x + 2)

> Singsys(sys, vars, "random");

x(x + 2)(x − 2)

> Singsys(sys, vars);

x(x + 2)(x − 2)

This shows that the randomization may allow one to obtain a revealing polynomial of smaller degree;
however, it may give the same result as the nonrandomized version.

354

3. Appendix: Combined Work of the Algorithms EGδ and EGσ

3.1. Algorithm EGσ. Further on, we will deal with recurrence systems of the form

Ql(n)z(n + l) + Ql−1(n)z(n + l − 1) + · · · + Qt(n)z(n + t) = 0, (13)

where l ≥ t are arbitrary integers, z(n) =
(
z(n)1, . . . , zm(n)

)T is a column vector of unknown sequences,
and Ql(n), . . . , Qt(n) are square (m × m)-matrices with entries in k[n]. The nonzero matrices Ql(n) and
Qt(n) are called leading and trailing matrices of the system (13). In many cases, it is natural to consider
the system (13) together with a finite set of linear constraints, i.e., linear relations, each of which contains
a finite set of variables zj(i). Let S and S′ be systems of the form (13) and C and C ′ be finite sets of linear
constraints. We then say that the systems (S, C) and (S′, C ′) are equivalent if the space of solutions of S
that satisfy C is the same as the space of solutions of S′ that satisfy C ′. Finitely many linear constraints
are easily taken into account when determining various properties of a system and when computing its
solutions. The algorithms EG [1] and EG′ [2–4] solve the problems of computing a system (S′, C ′) that is
equivalent to (S, ∅) and such that the leading or trailing matrix of S′ is nonsingular (EG′ is an improved
version of EG).

As we have mentioned in Sec. 1, the algorithm EGδ uses the main ideas of EG and EG′.
We propose a consistent new name for these two similar algorithms treating differential and difference

systems. That is why we introduce the new name EGσ for the algorithm EG′. The symbols δ and σ for
the mappings that possess the properties of the differentiation and the shift correspondingly are used,
e.g., in the theory of Ore polynomials.

3.2. Recurrence Systems for Coefficients of Formal Laurent Series Solutions. Linear recurrence
systems can appear when handling differential systems with polynomial coefficients. Such differential
systems induce recurrence systems of the form (13) for the coefficients of their series solutions. The
transformation

x → φ−1,
d

dx
→ (n + 1)φ (14)

can be used to construct the recurrence system (φ is the shift operator: φ(zn) = zn+1). The substitution
x + α for x into the differential system reduces the computation of solutions at the point α to that of
solutions at the point 0. The roots of the determinants of the matrices Ql(n) and Qt(n) (when those
matrices are nonsingular) are always important for determining the structure of the solution space of the
original differential system at 0.

The algorithms EGσ and Singsys often work in combination. It should be noted that if a given
differential system has a nonsingular leading matrix, then there is no guarantee that the leading matrix
of the induced recurrence system is also nonsingular [1, Example 8], and vice versa: for the differential
system (

x 0
0 0

)
y′ +

(
0 x
1 1

)
y = 0

the corresponding induced recurrence system(
n 0
1 1

)
z(n) +

(
0 1
0 0

)
z(n − 1) = 0

has a nonsingular leading matrix. There exist also simple examples where the leading matrices of the
differential and induced recurrence systems are both (non)singular.

Thus, in the case where the leading (trailing) matrix of the induced system is singular, we use EGσ.
The supplementing finite set of linear constraints C helps to exclude some of the roots of the determinant
of the resulting nonsingular matrix, which are not the orders of Laurent series solutions.

Example 3. An induced recurrence system for the differential system(
x x
x x

)
y′ +

(
1 1 + x2

−x 0

)
y = 0 (15)

355

is (
n + 1 n + 1

n n

)
z(n) +

(
0 0
−1 0

)
z(n − 1) +

(
0 1
0 0

)
z(n − 2) = 0.

The revealing transformation of the latter system with respect to the leading matrix leads to(
n + 2 0

n n

)
z(n) +

(
0 n + 1
−1 0

)
z(n − 1) = 0, (16)

accompanied by the linear constraint

z1(0) + z2(0) + z2(−2) = 0. (17)

The determinant of the leading matrix of the system (16) has the roots 0, −2, but the maximal root does
not correspond to any Laurent series solution of the system (15): the relation (17) and the first equation
of the system (16) show that if z(−1) = z(−2) = 0, then z(0) = 0 as well. As for the root −2, the
corresponding Laurent series solutions may be easily constructed. Choose z(−2) so that(

0 0
−2 −2

)
z(−2) = 0

holds. As a basis solution of the algebraic system we may take, e.g., z1(−2) = (1,−1)T. From (16) we
obtain (

1 0
−1 −1

)
z(−1) +

(
0 0
−1 0

)
z(−2) = 0,

leading to z1(−1) = (0,−1)T. For n = 0 the system (16) takes the form(
2 0
0 0

)
z(0) +

(
0 1
−1 0

)
z(−1) = 0,

and jointly with (17) it gives z1(0) = (1/2, 1/2)T. Using (16), we obtain

z(n) =

(
0 −n+1

n+2

1
n

n+1
n+2

)
z(n − 1)

for n ≥ 1.
Thus, the differential system (15) has a one-dimensional space of Laurent series solutions in the point

x = 0, its basis may be given by the series(
1
−1

)
x−2 +

(
0
−1

)
x−1 +

∞∑
n=0

(
z1(n)
z2(n)

)
xn,

where (
z1(0)
z2(0)

)
=

(
1/2
1/2

)

and (
z1(n)
z2(n)

)
=

(
0 −n+1

n+2

1
n

n+1
n+2

) (
z1(n − 1)
z2(n − 1)

)
(18)

when n ≥ 1.

The additional inclusion of linear constraints with noninteger values of the argument n into the set C
enables avoiding some values of λ, which are candidates for the role of an exponent in (19).

In [8, Sec. 6], there is the observation that the transformations performed by EGσ in the recurrence
system correspond to some well-defined transformations in the original differential systems. This yields,
according to the authors of the paper [8], a differential version of EGσ that works without involvement of
the recurrence system.

This approach can be useful if a small number of terms of Laurent series is needed. However, when this
number is large, the induced recurrence system seems a more reasonable and effective tool (in Example 3

356

we obtained the recurrent formula (18), which is convenient for computation). Moreover, the original
version of EGσ gives the supplementing finite set of linear constraints C that allows one to avoid the
consideration of some of the roots of the determinant of the resulting nonsingular leading matrix of the
recurrence system (in Example 3 the set consisted of the only one relation (17) that enabled to avoid the
consideration of the root −2 and, hence, to avoid extra solutions).

The main problem solved in [8] is the construction of regular solutions of the original differential
system, i.e., the solutions of the form

y(x) = xλv(x), (19)
where λ ∈ k̄, v(x) ∈ k̄[[x]]m[log x]. Since the set of constraints C is not considered, the removal of the
resulting extra solutions is proposed to be done with the substitution to the equations of the original
system. But if the recurrence system and the set C are constructed, then, as it seems to us, this removal
is costlier than taking into account the constraints similar to (17). In [8], all the series appearing in
a regular solution are represented in a truncated form, which makes the substitution for removing the
extra solution even more difficult.

The problem of the construction of regular solutions of higher-order differential systems was first
solved completely in [5], where the original version of EGσ was successfully used at an appropriate step
of the algorithm. The implementation of the algorithm from [5] as the procedures RegularSolution
and ExtendRegularSolution is a part of LinearFunctionalSystems package in Maple starting from
release 10.

3.3. Rational Function Solutions. Let the roots of the revealing polynomial d(x) for a given differential
system S be found. For each of the roots we can find (applying EGσ to the corresponding induced
recurrence system) a lower bound for the valuations of Laurent series solutions of S at this point or to
detect that there is no such solution. In the latter case, S has no rational (i.e., rational function) solution.
Otherwise, the lower bounds found allow one to obtain a denominator bound for rational solutions of S,
i.e., a rational function U(x) such that the components of any rational solution

(
y1(x), y2(x), . . . , ym(x)

)T

can be represented in the form yi(x) = pi(x)U(x), where pi(x) ∈ k[x], i = 1, 2, . . . , m. Then one can
substitute ỹ(x)U(x) for y(x) into S and find the polynomial solutions of the obtained system. An upper
bound for degrees of the polynomial solutions can be found by constructing a recurrence system for the
coefficients of such solutions, performing a revealing transformation of the system with respect to its
trailing matrix with EGσ and investigating the integer roots of the determinant of the obtained trailing
matrix (see [1, Secs. 3.3, 3.4]).

Example 4. Let us find rational solutions of the system (4). By constructing induced recurrence systems
at the points −2, −1, and 0 (the roots of the polynomial (8)), performing a revealing transformation of
the system with respect to its leading matrix with EGσ and analyzing the roots of the determinants of
the resulting leading matrices, the denominator bound U(x) = x/(x + 2)2 of rational solutions of the
system (4) is found.

It remains to find polynomial solutions of the differential system that is obtained by the substitution
ỹ(x)x/(x + 2)2 for y(x) into the system (4). After all the calculations, we obtain the space of all rational
solutions of the system (4):

y =
(

x(c1 + 4xc3 + x2c3)
(x + 2)2

,
c2x

(x + 2)

)T

.

The computer algebra system Maple contains the LinearFunctionalSystems package, which pro-
vides the procedures for finding solutions of linear systems of ordinary equations (differential ones as
well) based on the construction of induced recurrence systems and the revealing transformations of these
systems with EGσ. The procedure RationalSolutions from the package finds rational solutions only
for the systems of the form (1) having a nonsingular leading matrix Pr(x), since it uses the procedure
UniversalDenominator of the same package, which can be used to construct denominator bounds only
of such systems. In our new implementation, the procedure UniversalDenominator uses the procedure

357

Singsys described in Sec. 2.2. Denominator bounds are constructed as described in the beginning of that
section. This yields that the procedures UniversalDenominator and RationalSolutions are applicable
to any system of the form (1) with equations independent over k[x, d/dx]. Taking sys and vars from
Sec. 2.2, we get the rational functions from Example 4:

> LinearFunctionalSystems[UniversalDenominator](sys, vars);

x

(x + 2)2

> LinearFunctionalSystems[RationalSolutions](sys, vars);[
(c1 + 4x c3 + x2 c3)x

(x + 2)2
,

x c2

x + 2

]

Our experiments show that it is worth using the randomized version of the algorithm Singsys in the
search for the rational solution of the systems. For example, we executed an experiment, for which 3 sets
with 10 differential systems in each were generated; we took m = 10 and r = 5, 10, 15 correspondingly.
All the systems were constructed to have randomly generated rational solutions. The rational solutions
were found for all systems in each set using the revealing polynomial construction with the randomized
and nonrandomized versions of Singsys. The results of the experiments are represented in the table. Each
cell contains the total time (in seconds) used for searching for the rational solution of all systems in the
corresponding set by one of the approach; additionally the total time used for the auxiliary operation
of the revealing polynomial construction is given in the brackets. Extra costs for the randomization are
usually compensated by the savings at the next steps, which are much costlier, both in terms of the
calculation time and the memory used.

5 10 15

Nonrandomized
336.531 1128.096 3305.061
(7.547) (14.345) (24.936)

Randomized
292.704 958.890 2887.798
(20.640) (41.859) (184.046)

The algorithm from [7] is also designed to search for rational solutions, but only of systems of the
form y′ = My + N , where M ∈ Matm

(
k(x)

)
, N ∈ k(x)m. If the rational solution of such a system has

a pole in α ∈ k̄, then g(α) = 0, and g(x) is a polynomial that is the common denominator of the elements
of the matrix M and the vector N .

The authors would thank M. Barkatou and E. Pflügel for useful discussions and helpful comments.

This work was supported in part by a grant from RFBR, Project No. 10-01-00249.

REFERENCES

1. S. Abramov, “EG-eliminations,” J. Differ. Equ. Appl., 5, 393–433 (1999).
2. S. Abramov and M. Bronstein, “On solutions of linear functional systems,” in: B. Mourrain, ed.,

Proc. of the 2001 Int. Symp. on Symbolic and Algebraic Computation, London, Ontario, Canada,
July 22–25, 2001, ACM Press, New York (2001), pp. 1–6.

3. S. A. Abramov and M. Bronstein, Linear Algebra for Skew-Polynomial Matrices, Rapport de
Recherche INRIA, RR-4420 (March 2002).

4. S. Abramov, M. Bronstein, and D. Khmelnov, “Regularization of linear recurrence systems,” Trans.
A. M. Liapunov Inst., 4, 158–171 (2003).

358

5. S. Abramov, M. Bronstein, and D. Khmelnov, “On regular and logarithmic solutions of ordinary
linear differential systems,” in: Computer Algebra in Scientific Computing. Ann. Int. Workshop in
Computer Algebra in Scientific Computing. Kalamata, Greece, 12–16 September 2005, Lect. Notes
Comput. Sci., Vol. 3718, Springer, Berlin (2005), pp. 1–12.

6. S. Abramov and D. Khmelnov, “Desingularization of leading matrices of systems of linear ordinary
differential equations with polynomial coefficients,” in: Int. Conf. “Differential Equations and Related
Topics” Dedicated to I. G. Petrovskii, Moscow, MSU, May 30 — June 4, 2011. Book of Abstracts
(2012), p. 5.

7. M. A. Barkatou, “On rational solutions of systems of linear differential equations,” J. Symbol. Com-
put., 28, 547–567 (1999).

8. M. A. Barkatou, C. El Bacha, and T. Cluzeau, “Simple forms of higher-order linear differential
systems and their applications in computing regular solutions,” J. Symbol. Comput., 46, 633–658
(2011).

9. M. A. Barkatou, C. El Bacha, and E. Pflügel, “Simultaneously row- and column-reduced higher-order
linear differential systems,” in: W. Koepf, ed., Symbolic and Algebraic Computation, Int. Symp.,
ISSAC 2010, Munich, Germany, July 25–28, 2010, Proceedings, ACM Press (2010), pp. 45–52. ACM
Press, New York (2010), pp. 45–52.

10. B. Beckermann, H. Cheng, and G. Labahn, “Fraction-free row reduction of matrices of skew poly-
nomials,” in: T. Mora, ed., Proc. of the 2002 Int. Symp. on Symbolic and Algebraic Computation,
ACM Press, New York (2002), pp. 8–15.

11. B. Beckermann, H. Cheng, and G. Labahn, “Fraction-free row reduction of matrices of Ore polyno-
mials,” J. Symbol. Comput., 41, 513–543 (2006).

12. P. Davies, H. Cheng, and G. Labahn, “Computing Popov form of general Ore polynomial matrices,”
in: Milestones in Computer Algebra, MICA 2008. A Conf. in Honour of Keith Geddes’ 60th Birthday.
Stonehaven Bay, Trinidad and Tobago, 1–3 May 2008 (2008), pp. 149–156.

13. Maple online help, http://www.maplesoft.com/support/help/.
14. M. P. Quéré and G. Villard, “An algorithm for the reduction of linear DAE,” Int. Symp. on Sym-

bolic and Algebraic Computation, ISSAC’95. Montreal, Canada, juillet 1995, ACM Press, New York
(1995), pp. 223–231.

S. A. Abramov
Computing Centre of the Russian Academy of Science,
Vavilov str., 40, 119333, GSP-1, Moscow, Russia
E-mail: sergeyabramov@mail.ru

D. E. Khmelnov
Computing Centre of the Russian Academy of Science,
Vavilov str., 40, 119333, GSP-1, Moscow, Russia
E-mail: dennis khmelnov@mail.ru

359

	Abstract
	1. Introduction
	2. Algorithms EG_δ and Singsys
	2.1. Alternating “Reduction + Differential Shift” Steps
	2.2. Implementation of the Algorithms EG_δ and Singsys
	2.3. First-Order Systems
	2.4. Randomization

	3. Appendix: Combined Work of the Algorithms EG_δ and EG_σ
	3.1. Algorithm EG_σ
	3.2. Recurrence Systems for Coefficients of Formal Laurent Series Solutions
	3.3. Rational Function Solutions

	References

