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Abstract

We present an algorithm for finding all solutions y(x) of a linear homogeneous
q-difference equation such that y(qx)/y(x) is a rational function of q and x. The al-
gorithm can also be used to construct q-hypergeometric series solutions of q-difference
equations.

Résumé

Nous présentons un algorithme qui trouve toutes les solutions y(x) des équations
linéaires homogènes aux q-différences, telles que y(qx)/y(x) est une fonction ra-
tionnelle de q et de x. On peut utiliser cet algorithme aussi pour construire les solu-
tions des équations aux q-différences ayant la forme d’une série q-hypergéométrique.



1 Introduction

Let Q be the rational number field, q transcendental over Q, K a computable exten-
sion of Q(q), and x transcendental over K. Denote by Q the unique automorphism of
K(x) which fixes K and satisfies Qx = qx. Then K(x) together with Q is an inversive
difference field.

Let M be a difference extension ring of K(x). An element a ∈ M is q-polynomial
if a ∈ K[x], and q-rational if a ∈ K(x). An element a ∈ M \{0} is a q-hypergeometric
term if Qa = ra for some r ∈ K(x). All these concepts are relative to the field K.

We are interested in q-hypergeometric solutions y of Ly = 0 where

L =

ρ∑
i=0

piQ
i

is a linear q-difference operator of order ρ with coefficients pi ∈ K(x), with pρ, p0 ̸= 0.
By clearing denominators in Ly = 0 we can restrict our attention to operators L with
pi ∈ K[x]. An algorithm for this problem is presented in Section 4. It is a q-analogue
of the algorithm for finding hypergeometric solutions of difference equations described
in [6]. In preparation, we show how to find q-polynomial solutions of Ly = 0 in Section
2, and give a normal form for q-rational functions in Section 3. Finally, in Section
5, we describe solution of various related problems such as solving nonhomogeneous
equations, finding solutions in the form of q-hypergeometric series, and deriving q-
hypergeometric identities.

We use N to denote the set of nonnegative integers. By (a; q)n we denote the
expression (1− a)(1− aq) · · · (1− aqn−1).

In our examples we use two algebraic settings which are special cases of the general
framework described above. In one we work with sequences of elements of K, identi-
fying sequences which agree from some point on. More precisely, we take M = KN/J
where KN is the ring of sequences over K, and J is the ideal of sequences with
finitely many nonzero terms. In particular, all equalities among sequences (of the
form an = bn) are meant to hold for all but finitely many n ∈ N. Further we
take x = (qn)∞n=0 + J and define Q as the unique automorphism of M satisfying
Q(a + J) = Ea + J for all a ∈ KN. Here E denotes the shift operator acting on
KN by Ean = an+1. Obviously K can be embedded in M as the subring of constant
sequences. To simplify notation, we will henceforth identify a + J ∈ KN/J with its
representative a ∈ KN. Note that in this context a sequence an is q-polynomial if
an = p(qn) for some p ∈ K[x], q-rational if an = r(qn) for some r ∈ K(x), and a
q-hypergeometric term if an+1 = r(qn)an for some r ∈ K(x).

In another setting we take M = K[[x]] (or M = K((x))), the ring of formal
power series (resp. the field of formal Laurent series) over K. Again, K, K[x], and



K(x) are embedded in M in a natural way. We distinguish between series that
are q-hypergeometric terms, and series whose coefficients form a q-hypergeometric
sequence. More precisely, a series f(x) =

∑∞
j=0 αjx

j is a q-hypergeometric term if
f(qx) = r(x)f(x) for some r(x) ∈ K(x), and a q-hypergeometric series if αj+1 =
r(qj)αj for some r(x) ∈ K(x) and for all large enough j ∈ N.

Several times we will need to find the largest n ∈ N (if any) such that qn is a
root of a given polynomial with coefficients in K. Therefore we assume that K is a
q-suitable field, meaning that there exists an algorithm which given p ∈ K[x] finds
all n ∈ N such that p(qn) = 0. For instance, if K = k(q) where q is transcendental
over k we can proceed as follows: Let p(x) =

∑d
i=0 cix

i where ci ∈ k[q]. Compute
s = min{i; ci ̸= 0} and t = max{j; qj | cs}. Then p(qn) = 0 only if n ≤ t, and the
set of all such n can be found by testing the values n = t, t− 1, . . . , 0.

2 q–polynomial solutions

First we show how to find solutions y ∈ K[x] of Ly = 0. Let pi =
∑d

k=0 cikx
k where

cik ∈ k[q] and not all cid are zero. Assume that y =
∑N

j=0 αjx
j where αN ̸= 0.

Substituting these expressions into Ly = 0 and replacing k by l = j + k yields∑
i,l,j

ci,l−jαjq
ijxl = 0

which implies that

min{l,N}∑
j=max{l−d,0}

ρ∑
i=0

ci,l−jαjq
ij = 0, for 0 ≤ l ≤ N + d. (1)

In particular, for l = N + d,
ρ∑

i=0

cidq
iN = 0, (2)

and for l = 0,

α0

ρ∑
i=0

ci0 = 0. (3)

From (2) it follows that qN is a root of the polynomial P (x) =
∑ρ

i=0 cidx
i. Let N0 be

the largest n ∈ N such that P (qn) = 0 (see the last paragraph of Introduction). All
q-polynomial solutions y of Ly = 0 can now be found by the method of undetermined
coefficients. Ultimately, the problem is reduced to a system of linear algebraic equa-
tions over K with N0 + 1 unknowns. – A more efficient method leading to a system
with at most min{2d,N0 + 1} unknowns is described in [2].



3 A normal form for q-rational functions

Theorem 1 Let r ∈ K(x) \ {0}. Then there are z ∈ K and monic polynomials
a, b, c ∈ K[x] such that

r(x) = z
a(x)

b(x)

c(qx)

c(x)
, (4)

gcd(a(x), b(qnx)) = 1 for all n ∈ N, (5)

gcd(a(x), c(x)) = 1, (6)

gcd(b(x), c(qx)) = 1, (7)

c(0) ̸= 0. (8)

Proof: Write r(x) = f(x)
g(x)

where f, g are relatively prime polynomials. We start by

finding the set S of all n ∈ N such that f(x) and g(qnx) have a nonconstant common
factor. To this end consider the polynomial R(h) = Resultantx(f(x), g(hx)). By the
well-known properties of polynomial resultants, S = {n ∈ N; R(qn) = 0}.

Assume that S = {n1, n2, . . . , nt} where t ≥ 0 and n1 < n2 < · · · < nt. In
addition, let nt+1 = +∞. Define polynomials fi and gi inductively by setting

f0(x) = f(x), g0(x) = g(x),

and for i = 1, 2, . . . , t,

si(x) = gcd(fi−1(x), gi−1(q
nix)),

fi(x) = fi−1(x)/si(x),

gi(x) = gi−1(x)/si(q
−nix).

Now take

z = α/β,

a(x) = ft(x)/α,

b(x) = gt(x)/β,

c(x) =
t∏

i=1

ni∏
j=1

si(q
−jx),

where α and β denote the leading coefficients of ft(x) and gt(x), respectively. Before
proving (4) – (8) we state a lemma.

Lemma 1 Let n ∈ N. If 0 ≤ l ≤ i, j ≤ t and n < nl+1, then gcd(fi(x), gj(q
nx)) = 1.



Proof: Assume first that n /∈ S. Then R(qn) ̸= 0, hence gcd(f(x), g(qnx)) = 1.
Since fi(x) | f(x) and gj(x) | g(x) it follows that gcd(fi(x), gj(qnx)) = 1, too.

To prove the lemma for n ∈ S we use induction on l.
l = 0: In this case there is nothing to prove since there is no n ∈ S such that

n < n1.
l > 0: Assume that the lemma holds for all n < nl. It remains to show that it also

holds for n = nl. Since fi(x) | fl(x) and gj(x) | gl(x) it follows that gcd(fi(x), gj(qnlx))
divides gcd(fl(x), gl(q

nlx)) = gcd(fl−1(x)/sl(x), gl−1(q
nlx)/sl(x)). By the definition

of sl(x), the latter gcd is 1, completing the proof. □

Now we proceed to verify properties (4) – (8).
(4):

z
a(x)

b(x)

c(qx)

c(x)
=

ft(x)

gt(x)

t∏
i=1

ni∏
j=1

si(q
1−jx)

si(q−jx)

=
f0(x)∏t
i=1 si(x)

∏t
i=1 si(q

−nix)

g0(x)

t∏
i=1

si(x)

si(q−nix)
=

f(x)

g(x)
= r(x).

(5): Let i = j = l = t in Lemma 1. Then gcd(ft(x), gt(q
nx)) = 1 for all n <

nt+1 = +∞. In other words, gcd(a(x), b(qnx)) = 1 for all n ∈ N.
(6): If a(x) and c(x) have a non-constant common factor then so do ft(x) and

si(q
−jx), for some i and j such that 1 ≤ i ≤ t and 1 ≤ j ≤ ni. Since gi−1(q

ni−jx) =
gi(q

ni−jx)si(q
−jx), it follows that gi−1(q

ni−jx) contains this factor as well. As ni−j <
ni, this contradicts Lemma 1. Hence a(x) and c(x) are relatively prime.

(7): If b(x) and c(qx) have a non-constant common factor then so do gt(x) and
si(q

−jx), for some i and j such that 1 ≤ i ≤ t and 1 ≤ j+1 ≤ ni. Since fi−1(q
−jx) =

fi(q
−jx)si(q

−jx), it follows that fi−1(x) and gt(q
jx) contain this factor as well. As

j < ni, this contradicts Lemma 1. Hence b(x) and c(qx) are relatively prime.
(8): It is easy to see that si(x) divides both f(x) and g(qnix). Hence si(0) = 0

would imply that f(0) = g(0) = 0, contrary to the assumption that f and g are
relatively prime. It follows that si(0) ̸= 0 for all i, and consequently c(0) ̸= 0. □

Theorem 2 Let a, b, c, A, B, C ∈ K[x] be polynomials such that c(0) ̸= 0 and
gcd(a(x), c(x)) = gcd(b(x), c(qx)) = gcd(A(x), B(qnx)) = 1, for all n ∈ N. If

a(x)

b(x)

c(qx)

c(x)
=

A(x)

B(x)

C(qx)

C(x)
, (9)

then c(x) divides C(x).



Proof: Let

g(x) = gcd(c(x), C(x)),

d(x) = c(x)/g(x),

D(x) = C(x)/g(x).

Then gcd(d(x), D(x)) = gcd(a(x), d(x)) = gcd(b(x), d(qx)) = 1 and d(0) ̸=
0. Clear denominators in (9) and cancel g(x)g(qx) on both sides. The result
A(x)b(x)d(x)D(qx) = a(x)B(x)D(x)d(qx) shows that

d(x) | B(x)d(qx),

d(qx) | A(x)d(x).

Using these two relations repeatedly we find that

d(x) | B(x)B(qx) · · ·B(qn−1x)d(qnx),

d(x) | A(q−1x)A(q−2x) · · ·A(q−nx)d(q−nx),

for all n ∈ N. It is easy to see that since d(0) ̸= 0 and q is not a root of unity, d(x)
and d(qnx) are relatively prime for all large enough n. It follows that d(x) divides
both B(x)B(qx) · · ·B(qn−1x) and A(q−1x)A(q−2x) · · ·A(q−nx) for all large enough n.
But these polynomials are relatively prime by assumption, so d(x) is constant. Hence
c(x) |C(x). □

Corollary 1 The factorization of r(x) described in Theorem 1 is unique.

Proof: If

z
a(x)

b(x)

c(qx)

c(x)
= Z

A(x)

B(x)

C(qx)

C(x)

are two such factorizations then c(x) |C(x) and C(x) | c(x), by Theorem 2. Since
these polynomials are monic, c = C. It follows that z = Z and aB = Ab. Hence a |A
and A | a, so a = A and b = B. □

Corollary 2 Among all factorizations of r(x) satisfying (4) and (5) of Theorem 1,
the one satisfying (4) – (8) has c(x) of least degree.



4 q–hypergeometric solutions

After this preparation we turn to the algorithm for finding q-hypergeometric solutions
y of Ly = 0. Let Qy = ry where r ∈ K(x), then Qiy =

∏i−1
j=0 r(q

jx)y. We look for
r(x) in the normal form described in Theorem 1. After inserting (4) into Ly = 0,
clearing denominators and cancelling y we obtain

ρ∑
i=0

zifi(x)c(q
ix) = 0 (10)

where

fi(x) = pi(x)
i−1∏
j=0

a(qjx)

ρ−1∏
j=i

b(qjx).

Since all terms in (10) except for i = 0 are divisible by a(x) it follows that a(x)
divides p0(x)

∏ρ−1
j=0 b(q

jx)c(x). Because of (5) and (6), a(x) divides p0(x). Similarly,

all terms in (10) except for i = ρ are divisible by b(qρ−1x), therefore b(qρ−1x) divides
zρpρ(x)

∏ρ−1
j=0 a(q

jx)c(qρx). Because of (5) and (7), b(qρ−1x) divides pρ(x). Thus we
have a finite choice for a(x) and b(x).

For each choice of a(x) and b(x), equation (10) is a q-difference equation for the
unknown polynomial c(x). However, z ∈ K is also not known yet. Let uik denote the
coefficient of xk in fi. Since c(0) ̸= 0, we have α0 ̸= 0 in (3), hence applying (3) to
(10) we obtain

ρ∑
i=0

ui0z
i = 0. (11)

We may assume that not all ui0 are zero, or else we start by first cancelling a power
of x from the coefficients of (10). Thus z is a nonzero root of f(z) =

∑ρ
i=0 ui0z

i, and
is algebraic over K.

If N = deg c(x) then by (2),

ρ∑
i=0

uidz
iqiN = 0, (12)

hence w = zqN is a nonzero root of g(w) =
∑ρ

i=0 uidw
i. It follows that qN is a root of

p(x) = Resultantw(f(w), g(wx)), thus to obtain an upper bound on N computation
in algebraic extensions of K is not necessary.

In summary, we find the factors of r(x) as follows:

1. a(x) is a monic factor of p0(x),

2. b(x) is a monic factor of pρ(q
1−ρx),



3. z is a root of Eqn. (11),

4. c(x) is a nonzero q-polynomial solution of (10).

Then r = z(a/b)(Qc/c) and Qy = ry.

Example 1 Let us find a q-hypergeometric solution y of Ly = 0 where

L = xQ3 − q3x2Q2 − (x2 + q)Q+ qx(x2 + q).

The candidates for a(x) are

1, x, x2 + q, x(x2 + q),

and the candidates for b(x) are
1, x.

Here we explore only the choice a(x) = x and b(x) = 1. The corresponding equation
(10) is, after cancelling one x,

z3q3x3c(q3x)− z2q4x3c(q2x)− z(x2 + q)c(qx) + q(x2 + q)c(x) = 0, (13)

whence f(z) = −qz+q2 with unique root z = q, and g(w) = q3w3−q4w2 with unique
nonzero root w = q = zqN = qN+1. It follows that N = 0 is the only possible degree
for c. Equation (13) is satisfied by c = 1. Thus we have found r = z(a/b)(Qc/c) = qx,
and the corresponding q-hypergeometric solution of Ly = 0 satisfies Qy = qxy. We

can take, for instance, yn = x(x/q)(x/q2) · · · (x/qn) = q(
n+1
2 ).

To find other q-hypergeometric solutions (if any), the remaining combinations for
a(x) and b(x) could be tried; or even better, the order of the equation could be re-
duced using the obtained solution, and the algorithm used recursively on the reduced
equation. Our Mathematica implementation of this algorithm (which we call qHyper)
shows that up to a constant factor, there are in fact no other q-hypergeometric solu-
tions:

In[1]:= qHyper[x y[q^3 x] - q^3 x^2 y[q^2 x] -

(x^2 + q) y[q x] + q x (x^2 + q) y[x] == 0, y[x]]

Out[1]= {q x}

Note that qHyper returns a list of quotients Qy/y rather than solutions y themselves.
□

Example 2 Consider the equation Ly = 0 where L = Q2 − (1 + q)Q + q(1 − qx2).
As shown by qHyper,

In[2]:= qHyper[y[q^2 x] - (1 + q) y[q x] + q (1 - q x^2) y[x], y[x]]

Out[2]= {1 - Sqrt[q] x, 1 + Sqrt[q] x}

this equation has two linearly independent q-hypergeometric solutions, (
√
q; q)n and

(−√
q; q)n. Here K is the splitting field of 1− qx2. □



5 Some related problems

5.1 Nonhomogeneous equations

Consider the problem of finding q-hypergeometric solutions y of the nonhomogeneous
equation Ly = b where b ̸= 0. Let Qy = ry where r ∈ K(x). Then Ly = fy where
f =

∑ρ
i=0 pi

∏i−1
j=0 Q

jr ∈ K(x). This simple fact has two important consequences:

1. b = fy is q-hypergeometric,

2. y = b/f is a q-rational multiple of b.

Let Qb = sb where s ∈ K(x) is given. We look for y in the form y = fb where
f ∈ K(x) is an unknown q-rational function. Substituting this into Ly = b gives

ρ∑
i=0

pi

(
i−1∏
j=0

Qjs

)
Qif = 1.

Now q-rational solutions of this equation can be found using the algorithm given in
[1].

In particular, this gives an algorithm for the problem of indefinite q-hypergeometric
summation: Given a q-hypergeometric sequence bn, decide if yn =

∑n−1
j=0 bj is q-

hypergeometric, and if so, express it in closed form. Obviously yn satisfies yn+1−yn =
bn. Since we are interested in q-hypergeometric solutions, we can rewrite this as
Qy − y = b and use the technique described above.

Example 3 Let yn =
∑n−1

j=0 bn where bn = qn(q; q)n. Then y satisfies the equation

Qy − y = b (14)

where s = Qb/b = q(1− qx). The equation for f is

q(1− qx)Qf − f = 1,

with unique q-rational solution f = −1/(qx). Hence yn = C − (q; q)n/q where C is a
constant. Since y0 = 0 it follows that C = 1/q and yn = (1− (q; q)n)/q. □

The same technique for solving nonhomogeneous equations also works when we
look for q-hypergeometric term solutions in M = K[[x]].

Example 4 Let
Q2y(x)− (1− qx)Qy(x) + qy(x) = b(x) (15)



where

b(x) =
∞∑
i=0

xi

(q; q)i
.

Here b(qx) = (1− x)b(x), as can be easily verified. Thus s = 1− x and the equation
for f is

(1− qx)(1− x)Q2f − (1− qx)(1− x)Qf + qf = 1

with q-rational solution f = 1/q. Hence y(x) = b(x)/q solves (15). □

5.2 q–hypergeometric series solutions

Assume that y =
∑∞

j=0 αjx
j and Ly = b where b =

∑∞
j=0 βjx

j. As in (1), we obtain

l∑
j=max{l−d,0}

ρ∑
i=0

ci,l−jαjq
ij = βl, for l ≥ 0. (16)

We separate the cases 0 ≤ l < d and l ≥ d. In the former case, (16) yields initial
conditions

l∑
j=0

αj

ρ∑
i=0

ci,l−jq
ij = βl, for 0 ≤ l < d, (17)

while in the latter, substitutions m = l − d, s = j −m, and X = qm transform (16)
into the associated q-difference equation

d∑
s=0

αm+s

ρ∑
i=0

ci,d−sq
isX i = βm+d, for m ≥ 0, (18)

for the unknown sequence (αm)
∞
m=0. We use the algorithms of Sections 4 and 5.1 to

find all solutions of (18) which are linear combinations of q-hypergeometric terms,
then select the constants in these combinations so that conditions (17) are satisfied
(if possible).

Example 5 Let us find q-hypergeometric series solutions y of

q2x2Q3y + (1 + q)xQ2y + (1− x)Qy − y = 0. (19)

The associated equation (18) in this case is

(q2X − 1)αm+2 + (q2(q + 1)X2 − qX)αm+1 + q2X3αm = 0 (20)

and qHyper finds two solutions:



In[3]:= qHyper[(q^2 X - 1) y[q^2 X] + (q^2 (1 + q) X^2 - q X) y[q X] +

q^2 X^3 y[X] == 0, y[X]]

2

q X

Out[3]= {-X, -------}

1 - q X

Thus the general solution of (20) is αm = Cqm
2
/(q; q)m + D(−1)mq(

m
2 ) where C

and D are arbitrary constants. Equations (17) imply that D = 0. Hence y(1) =∑∞
m=0 q

m2
xm/(q; q)m is a q-hypergeometric series solution of (19).

Note that running qHyper on equation (19) itself we obtain another solution y(2) =

(−1)n/q(
n
2). □

Example 6 The right-hand side of the equation (15) is both a q-hypergeometric
term and a q-hypergeometric series. The associated nonhomogeneous equation

(qX2 −X + 1)αm+1 +Xαm =
1

q(q; q)m+1

can be solved as described in Section 5.1. Here s = 1/(1− q2X) and the equation for
f

1−X + qX2

1− q2X
Qf +Xf = 1

is satisfied by the q-rational function f = 1−qX. Thus αm = (1−qX)/(q(q; q)m+1) =
1/(q(q; q)m), and we find the same solution y(x) = b(x)/q as in Example 4. □

5.3 Deriving q-hypergeometric identities

Another important application is definite q-hypergeometric summation. The corre-
sponding algorithm of [7] will produce a q-difference equation for the sum, but in
general it will not be of minimal order. Thus it can happen that the equation will be
of order 2 or more while the sum can actually be expressed in closed form. In this
case one can use our algorithm to find the q-hypergeometric solutions of the equation,
and then test them to see which linear combination – if any – gives the initial sum.

In analogy with the ordinary hypergeometric case [4], we also expect our algo-
rithm to play an important role in the factorization algorithm for linear q-difference
operators.
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