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Abstract

We present an algorithm for finding all solutions y(z) of a linear homogeneous
g-difference equation such that y(qz)/y(z) is a rational function of ¢ and z. The al-
gorithm can also be used to construct g-hypergeometric series solutions of ¢-difference
equations.

Résumé

Nous présentons un algorithme qui trouve toutes les solutions y(z) des équations
linéaires homogenes aux g¢-différences, telles que y(gx)/y(x) est une fonction ra-
tionnelle de g et de x. On peut utiliser cet algorithme aussi pour construire les solu-
tions des équations aux g-différences ayant la forme d’une série ¢-hypergéométrique.



1 Introduction

Let Q be the rational number field, ¢ transcendental over Q, K a computable exten-
sion of Q(q), and x transcendental over K. Denote by () the unique automorphism of
K (x) which fixes K and satisfies Qz = gzx. Then K(z) together with () is an inversive
difference field.

Let M be a difference extension ring of K (x). An element a € M is g-polynomial
if a € K[z|, and g-rational if a € K(x). An element a € M \ {0} is a g-hypergeometric
term if Qa = ra for some r € K(x). All these concepts are relative to the field K.

We are interested in ¢-hypergeometric solutions y of Ly = 0 where

P
L= Z piQi
i=0

is a linear g-difference operator of order p with coefficients p; € K(x), with p,, py # 0.
By clearing denominators in Ly = 0 we can restrict our attention to operators L with
pi € K|x]. An algorithm for this problem is presented in Section 4. It is a g-analogue
of the algorithm for finding hypergeometric solutions of difference equations described
in [6]. In preparation, we show how to find ¢g-polynomial solutions of Ly = 0 in Section
2, and give a normal form for g-rational functions in Section 3. Finally, in Section
5, we describe solution of various related problems such as solving nonhomogeneous
equations, finding solutions in the form of g-hypergeometric series, and deriving ¢-
hypergeometric identities.

We use N to denote the set of nonnegative integers. By (a;q), we denote the
expression (1 —a)(l —aq)---(1 —aq™™1).

In our examples we use two algebraic settings which are special cases of the general
framework described above. In one we work with sequences of elements of K, identi-
fying sequences which agree from some point on. More precisely, we take M = K~/.J
where KV is the ring of sequences over K, and J is the ideal of sequences with
finitely many nonzero terms. In particular, all equalities among sequences (of the
form a, = b,) are meant to hold for all but finitely many n € N. Further we
take z = (¢")%°, + J and define @ as the unique automorphism of M satisfying
Q(a+J) = Ea+ J for all @ € KY. Here E denotes the shift operator acting on
KN by Fa, = a,,,. Obviously K can be embedded in M as the subring of constant
sequences. To simplify notation, we will henceforth identify a + J € K~/J with its
representative @ € K. Note that in this context a sequence a,, is g-polynomial if
a, = p(q") for some p € Klz|, g-rational if a,, = r(¢") for some r € K(z), and a
g-hypergeometric term if a, 1 = r(¢")a, for some r € K(z).

In another setting we take M = K][[z]] (or M = K((z))), the ring of formal
power series (resp. the field of formal Laurent series) over K. Again, K, K[x], and



K(z) are embedded in M in a natural way. We distinguish between series that
are g-hypergeometric terms, and series whose coefficients form a g¢-hypergeometric
sequence. More precisely, a series f(z) = Z;’io a;a? is a g-hypergeometric term if
f(gz) = r(x)f(x) for some r(z) € K(x), and a g-hypergeometric series if ajq =
r(¢’)a; for some r(z) € K(x) and for all large enough j € N.

Several times we will need to find the largest n € N (if any) such that ¢" is a
root of a given polynomial with coefficients in K. Therefore we assume that K is a
q-suitable field, meaning that there exists an algorithm which given p € K|z finds
all n € N such that p(¢™) = 0. For instance, if K = k(q) where ¢ is transcendental
over k we can proceed as follows: Let p(x) = Z?:o c;z' where ¢; € klg]. Compute
s = min{i; ¢; # 0} and ¢ = max{j; ¢’ |cs}. Then p(¢") = 0 only if n < ¢, and the
set of all such n can be found by testing the valuesn =t,t —1,...,0.

2 g—polynomial solutions

First we show how to find solutions y € K[z] of Ly = 0. Let p; = Zi:o cixr® where
ci € kl[g] and not all ¢;y are zero. Assume that y = Z;V:o a;jz? where ay # 0.
Substituting these expressions into Ly = 0 and replacing k£ by [ = j + k yields

ij
g Cig—ja;q7x =0

1:7l7j
which implies that

min{l,N} p

> D e’ =0, for0<I<N+d. (1)
j=max{l—d,0} =0

In particular, for [ = N + d,
P

> g™ =0, (2)
1=0

and for [ =0,
P
Qg Z cio = 0. (3)
i=0

From (2) it follows that ¢” is a root of the polynomial P(z) = Y7 ciqx’. Let Ny be
the largest n € N such that P(¢™) = 0 (see the last paragraph of Introduction). All
g-polynomial solutions y of Ly = 0 can now be found by the method of undetermined
coefficients. Ultimately, the problem is reduced to a system of linear algebraic equa-
tions over K with Ny + 1 unknowns. — A more efficient method leading to a system

with at most min{2d, Ny + 1} unknowns is described in [2].



3 A normal form for g-rational functions

Theorem 1 Let r € K(x) \ {0}. Then there are z € K and monic polynomials
a,b,c € K[z| such that

b(z) c(x)
ged(a(x),b(¢"z)) =1 for all n € N, (5)
ged(a(x), ex)) = 1, (6)
ged(b(x), c(gx)) = 1, (7)
c(0) # 0. (8)

Proof: Write r(z) = % where f, g are relatively prime polynomials. We start by

finding the set S of all n € N such that f(x) and g(¢"x) have a nonconstant common
factor. To this end consider the polynomial R(h) = Resultant,(f(x), g(hz)). By the
well-known properties of polynomial resultants, S = {n € N; R(q") = 0}.

Assume that & = {ny,ng,...,ny} where t > 0 and n; < ny < -+ < ng. In
addition, let n;y; = +00. Define polynomials f; and g¢; inductively by setting

fo(z) = f(z), golz) = g(z),
and for i =1,2,...,¢,
si(x) = ged(fizi(x), gim1(q"x)),
);

file) = fioi(x)/si(z
9i(x) = gi1(w)/si(q ).

Now take
z = a/B,

a(z) = filz)/a,
bx) = gi(x)/B

o) = [[I]sta7).

i=1 j=1

where v and (8 denote the leading coefficients of f;(x) and g,(z), respectively. Before
proving (4) — (8) we state a lemma.

Lemma 1 Letn € N. If0 <[ <14, j <t andn < ngq, then ged(fi(x),g;(¢"x)) = 1.



Proof: Assume first that n ¢ S. Then R(¢") # 0, hence ged(f(x), g(q" ))
Since fi(x)| f(z) and g;(x) | g(z) it follows that ged(f;(z), g;(¢"z)) = 1, too

To prove the lemma for n € § we use induction on .

[ = 0: In this case there is nothing to prove since there is no n € S such that
n <ni.

[ > 0: Assume that the lemma holds for all n < n;. It remains to show that it also
holds for n = n;. Since f;(z) | fi(z) and g;(x) | gi(x) it follows that ged(fi(x), g;(¢™x))
divides ged(fi(x), gi(q™x)) = ged(fi1(x)/si(x), gi—1(¢™x)/si(x)). By the definition
of s;(z), the latter ged is 1, completing the proof. O

Now we proceed to verify properties (4) — (8).

(4):

RIGETON (O] | s R
e~ i LG

i=1 j=1 Z

R 1) Ht nzx _f@)
I si@) Esz —niz)  g(z) (2).

(5): Let ¢t = j =1 =t in Lemma 1. Then ged(fi(z), g:(¢"z)) = 1 for all n <
nir1 = +oo. In other words, ged(a(x),b(¢"x)) =1 for all n € N.

(6): If a(z) and c¢(x) have a non-constant common factor then so do fi(z) and
si(q77x), for some i and j such that 1 <i <t and 1 <j < mn;. Since g;_1(¢" 7z) =
gi(q" 7 z)s;(q 7 x), it follows that g;_1(¢" 7 x) contains this factor as well. Asn; —j <
n;, this contradicts Lemma 1. Hence a(x) and c(x) are relatively prime.

(7): If b(z) and ¢(qx) have a non-constant common factor then so do g;(z) and
si(q77x), for some i and j such that 1 <4 <tand 1 < j+1 < n,. Since f;_1(¢77x) =
filg™7x)s;(¢7x), it follows that f;_;(x) and g;(¢’z) contain this factor as well. As
J < mn;, this contradicts Lemma 1. Hence b(x) and c(qz) are relatively prime.

(8): It is easy to see that s;(x) divides both f(z) and g(¢™z). Hence s;(0) = 0
would imply that f(0) = ¢g(0) = 0, contrary to the assumption that f and g are
relatively prime. It follows that s;(0) # 0 for all 4, and consequently ¢(0) # 0. O

Theorem 2 Let a, b, ¢, A, B, C € K[x] be polynomials such that ¢(0) # 0 and
ged(a(a), of)) = ged(b(x), e(qr)) = ged(A(x), Blq"x)) = 1, for all n € N. If

bz) c(x) _ B(x) Clz)’ )
then c(x) divides C(x).



Proof: Let

(r) = ged(e(z),C(x)),
() = c(x)/g(),
(r) = C(x)/g(x).

Then ged(d(x), D(z)) = ged(a(z),d(z)) = ged(b(z),d(¢gr)) = 1 and d(0) #
0. Clear denominators in (9) and cancel g(z)g(gr) on both sides. The result
A(x)b(x)d(x)D(qx) = a(z)B(x)D(z)d(qx) shows that

g
d
D

2
<

8

N
—
oy
S
—
&

d(z) | B(x)B(qx)---B(¢" 'z)d(q"z),
d(z) | Alqg'z)A(q*z)--- A(q "x)d(q "x),

for all n € N. It is easy to see that since d(0) # 0 and ¢ is not a root of unity, d(z)
and d(q"x) are relatively prime for all large enough n. It follows that d(x) divides
both B(z)B(qz)--- B(¢" 'z) and A(q~'z)A(¢ %) - - - A(¢g~"z) for all large enough n.
But these polynomials are relatively prime by assumption, so d(z) is constant. Hence

c(x) | C(x). O

Corollary 1 The factorization of r(x) described in Theorem 1 is unique.

Proof: If
a(w)clgr) _, Alx) Cla)
b(x) c(x) B(z) C(x)
are two such factorizations then c(x)|C(x) and C(z)|c(x), by Theorem 2. Since

these polynomials are monic, ¢ = C. It follows that z = Z and aB = Ab. Hence a | A
and A|a,soa=Aand b= B. O

Corollary 2 Among all factorizations of r(x) satisfying (4) and (5) of Theorem 1,
the one satisfying (4) — (8) has c(x) of least degree.



4 g—hypergeometric solutions

After this preparation we turn to the algorithm for finding g-hypergeometric solutions
y of Ly = 0. Let Qy = ry where r € K(z), then Q'y = H;Br(qjx)y. We look for
r(z) in the normal form described in Theorem 1. After inserting (4) into Ly = 0,
clearing denominators and cancelling y we obtain

p

> 2 filz)elg'e) =0 (10)

=0

where .
filw) = pile) [T a(g’e) [T ola’ ).

Since all terms in (10) except for i = 0 are divisible by a(z) it follows that a(x)
divides po(x) ]p;(l) b(¢’z)c(x). Because of (5) and (6), a(x) divides po(z). Similarly,
all terms in (10) except for i = p are divisible by b(¢”~'x), therefore b(¢"'z) divides
2Pp,(x) ij.;é a(¢’z)c(q’z). Because of (5) and (7), b(¢?~*x) divides p,(x). Thus we
have a finite choice for a(x) and b(z).

For each choice of a(z) and b(x), equation (10) is a g-difference equation for the
unknown polynomial ¢(x). However, z € K is also not known yet. Let u;; denote the
coefficient of z* in f;. Since ¢(0) # 0, we have ay # 0 in (3), hence applying (3) to
(10) we obtain

p .
E uz‘()ZZ =0. (11)
1=0

We may assume that not all u;g are zero, or else we start by first cancelling a power

of z from the coefficients of (10). Thus z is a nonzero root of f(z) = > 7_, upz’, and
is algebraic over K.
If N =degc(x) then by (2),
p . .
> wadq™N =0, (12)
i=0

hence w = z¢" is a nonzero root of g(w) = Y7 uqw'. It follows that ¢V is a root of
p(z) = Resultant,, (f(w), g(wz)), thus to obtain an upper bound on N computation
in algebraic extensions of K is not necessary.

In summary, we find the factors of r(x) as follows:

1. a(x) is a monic factor of py(x),

2. b(x) is a monic factor of p,(¢*~*z),



3. z is aroot of Eqn. (11),

4. ¢(x) is a nonzero g-polynomial solution of (10).
Then r = z(a/b)(Qc/c) and Qy = ry.
Example 1 Let us find a ¢g-hypergeometric solution y of Ly = 0 where

L=21Q - ¢2*Q* — (2 + q)Q + qu(2® + q).
The candidates for a(x) are
1,2 + q,2(2* + q),

and the candidates for b(z) are
1,z

Here we explore only the choice a(z) = x and b(z) = 1. The corresponding equation
(10) is, after cancelling one z,

P e(¢r) — 2ot e(Pr) — 2(0? + )elqr) + q(a® + @)e(x) =0, (13)
whence f(z) = —qz+¢* With unique root z = ¢, and g(w) = ¢*w?® — ¢*w? with unique
nonzero root w = q = z¢"¥ = ¢¥*1. It follows that N = 0 is the only possible degree
for c. Equation (13) is satisﬁed by ¢ = 1. Thus we have found r = z(a/b)(Qc/c) = qxz,
and the corresponding ¢-hypergeometric solution of Ly = 0 satisfies Qy = qry. We

n41
can take, for instance, y, = z(z/q)(x/¢*) - (x/q") = q( )

To find other g-hypergeometric solutions (if any), the remaining combinations for
a(x) and b(z) could be tried; or even better, the order of the equation could be re-
duced using the obtained solution, and the algorithm used recursively on the reduced
equation. Our Mathematica implementation of this algorithm (which we call gHyper)
shows that up to a constant factor, there are in fact no other ¢-hypergeometric solu-
tions:

In[1]:

gHyper[x y[q™3 x] - 9"3 x72 y[q~2 x] -
(x72 +q) ylqgx] +qgx x°2+q) ylx] == 0, ylx]]

Out[1]= {q x}

Note that qHyper returns a list of quotients QQy/y rather than solutions y themselves.
O

Example 2 Consider the equation Ly = 0 where L = Q? — (1 + ¢)Q + q(1 — gx?).
As shown by gHyper,

In[2]:= gHyperlylq 2 x] - (1 + @ ylgqx] +q (1 - q x"2) ylx], y[x]]

Out[2]= {1 - Sqrtlq]l x, 1 + Sqrtlql x}

this equation has two linearly independent g-hypergeometric solutions, (1/q;q), and
(—\/q; q)n- Here K is the splitting field of 1 — ga?. O



5 Some related problems

5.1 Nonhomogeneous equations

Consider the problem of finding ¢-hypergeometric solutions y of the nonhomogeneous
equation Ly = b where b # 0. Let Qy = ry where r € K(x). Then Ly = fy where
f=>"mi H;;B Q’r € K(x). This simple fact has two important consequences:

1. b = fy is ¢-hypergeometric,
2. y =0b/f is a g-rational multiple of b.

Let Qb = sb where s € K(x) is given. We look for y in the form y = fb where
f € K(x) is an unknown g-rational function. Substituting this into Ly = b gives

p

i—1
> opi (H st> Qf =1
j=0

1=0

Now g-rational solutions of this equation can be found using the algorithm given in

[1].
In particular, this gives an algorithm for the problem of indefinite q-hypergeometric

summation: Given a ¢-hypergeometric sequence b,, decide if y, = Z?;ol b; is ¢-

hypergeometric, and if so, express it in closed form. Obviously y,, satisfies y,,+1 —y, =
b,. Since we are interested in g-hypergeometric solutions, we can rewrite this as
Qy — y = b and use the technique described above.

Example 3 Let y, = Z;:& b, where b, = ¢"(¢; q)». Then y satisfies the equation
Qy—-y=1 (14)
where s = Qb/b = q(1 — gx). The equation for f is
q(1—qz)Qf — f =1,

with unique g-rational solution f = —1/(qx). Hence y,, = C — (¢; q)»/q where C'is a
constant. Since yy = 0 it follows that C'=1/q and y,, = (1 — (¢;¢)n)/q- O

The same technique for solving nonhomogeneous equations also works when we
look for g-hypergeometric term solutions in M = K|[[z]].

Example 4 Let
Q*y(z) — (1 - q2)Qy(r) + qy(z) = b(x) (15)



where
i

ba) =

i—0 (Q7 q>z ‘
Here b(qz) = (1 — z)b(x), as can be easily verified. Thus s = 1 — x and the equation
for f is
(1-gqu)(1 - 2)Q°f = (1 —qz)(1 - 2)Qf +qf =1
with g-rational solution f = 1/q. Hence y(z) = b(z)/q solves (15). O

5.2 qg-hypergeometric series solutions
Assume that y = 3772 a2’ and Ly = b where b= "% 8;27. As in (1), we obtain

l

)
Z Zciyl,jajq"j =0, forl>0. (16)

j=max{l—d,0} =0

We separate the cases 0 < [ < d and | > d. In the former case, (16) yields initial

conditions
P

!
Zozj Zci7l_jqij =03, for0<1<d, (17)

=0 1=0

<

while in the latter, substitutions m =1 —d, s = j —m, and X = ¢ transform (16)
into the associated q-difference equation

d p
Z Ot Z Cidsq"X"' = Bpia, form >0, (18)
s=0 =0

for the unknown sequence (a,,)>_,. We use the algorithms of Sections 4 and 5.1 to
find all solutions of (18) which are linear combinations of g-hypergeometric terms,
then select the constants in these combinations so that conditions (17) are satisfied
(if possible).

Example 5 Let us find g-hypergeometric series solutions y of
r*Q%y + (1+ q)aQy + (1 —2)Qy —y = 0. (19)
The associated equation (18) in this case is
(X = Damya + (6% (g + 1DX? = ¢X)api + ¢ X ay, = 0 (20)

and gHyper finds two solutions:



In[3]:= gHyper[(q”2 X - 1) y[g"2 X] + (@”2 (1 + @ X2 - q X) ylq X] +
q°2 X"3 y[X] == 0, y[X]]

Out[3]= {-X, -——--—- }

Thus the general solution of (20) is am = Cq¢™ /(¢ q)m + D(—l)mq@) where C
and D are arbitrary constants. Equations (17) imply that D = 0. Hence y(l) =
> . ™™ /(¢: ¢)m is a ¢-hypergeometric series solution of (19).

Note that running qHyper on equation (19) itself we obtain another solution y® =

(~1)7/q%). 0

Example 6 The right-hand side of the equation (15) is both a ¢-hypergeometric
term and a g-hypergeometric series. The associated nonhomogeneous equation

1

(X% = X 4 Dy + Xap = ————
(¢ Oms1

can be solved as described in Section 5.1. Here s = 1/(1 — ¢*X) and the equation for
f

1— X +¢X?
—_— Xf=1
S+ XS
is satisfied by the g-rational function f = 1—¢X. Thus a,, = (1—¢X)/(¢(¢; @)m+1) =
1/(q(q; Q)m), and we find the same solution y(x) = b(x)/q as in Example 4. O

5.3 Deriving ¢-hypergeometric identities

Another important application is definite g-hypergeometric summation. The corre-
sponding algorithm of [7] will produce a g¢-difference equation for the sum, but in
general it will not be of minimal order. Thus it can happen that the equation will be
of order 2 or more while the sum can actually be expressed in closed form. In this
case one can use our algorithm to find the ¢-hypergeometric solutions of the equation,
and then test them to see which linear combination — if any — gives the initial sum.

In analogy with the ordinary hypergeometric case [4], we also expect our algo-
rithm to play an important role in the factorization algorithm for linear g-difference
operators.
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