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Abstract

The notion of indicial rational function is introduced for ordinary di�erential equations

with polynomial coe�cients and polynomial right-hand sides, and the algorithms for its

construction are proposed.

1 Introduction

It is known that if an analytic solution of a di�erential equation

ad(x)y
(d)(x) + · · ·+ a1(x)y

′(x) + a0(x)y(x) = 0, (1)

where a0(x), a1(x), . . . , ad(x) are polynomials over C, has a singularity (in particular, a pole) in
a point α, then ad(α) = 0 (we assume that ad(x) is a non-zero polynomial). One can compute
a lower bound of the order of the pole using the least integer root of the indicial equation. This
equation is an algebraic equation of degree not exceeding d, and it corresponds to equation (1)
and to the point α [5, 6]. If the indicial equation has no integer root, then equation (1) has
no non-zero solutions that either are regular, or have a pole at α. Assume that every indicial
equation corresponding to the roots of polynomial ad(x) has integer roots. Let α0, α1, . . . , αk
be all complex roots of the polynomial ad(x), and l0, l1, . . . , lk be the least integer roots of the
corresponding indicial equations (they may be arbitrary, not necessarily negative, integers).
Then any solution of (1) that is meromorphic in the whole complex plane C can be represented
as a product of the rational function

V (x) = (x− α0)
l0(x− α1)

l1 . . . (x− αk)lk (2)

by some entire function. In this paper we call V (x) the indicial rational function of equation (1).
The problem of recognizing the existence of an indicial function for (1) and its construction

if it exists can be also considered in the case when a0(x), a1(x), . . . , ad(x) are polynomials over
an arbitrary �eld K of characteristic zero. In this case α0, α1, . . . , αk belong to the splitting
�eld K ′ of the coe�cient ad(x). The substitution

y(x) = u(x)V (x), (3)

where V (x) is the indicial rational function, and u(x) is a new unknown function, reduces the
problem of �nding rational solutions of (1) to �nding polynomial solutions.

∗The work was partially supported by the Russian Foundation for Basis Research, grant no. 07-01-00482-a.
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In Section 3 we extend the notion of the indicial rational function to the case of inhomoge-
neous linear equations with coe�cients and right-hand sides belonging to K[x].

In Proposition 6 of Section 4 we show that an indicial rational function is in a sense the
optimal choice of rational factor for substitution that reduces �nding rational solutions to
�nding polynomial ones (the algorithm for constructing a rational factor of that kind for the
di�erence case was given in [8]; rougher, but also simpler algorithms for the di�erence case were
proposed in [2, 3]).

In [11] it is described how a rational function of the form

Ṽ (x) = (x− α0)
m0(x− α1)

m1 . . . (x− αk)mk , (4)

where m0 ≤ l0, m1 ≤ l1, . . . ,mk ≤ lk, can be constructed without a computation in algebraic
extensions ofK by means of the factorization of ad(x) into factors irreducible overK, and p-adic
decompositions of rational functions. The resulting function has the form 1

v(x)
, where v(x) is a

polynomial. This algorithm does not use the fact, useful for further computation, that some
of irreducible factors of the polynomial ad(x) can be included into rational function Ṽ (x) with
positive degrees. In Section 5 of the present paper we describe in elementary terms the algorithm
for constructing the indicial rational function V (x) based on the complete factorization of ad(x),
which is a slightly modi�ed version of the algorithm from [11].

In [2] an algorithm which, similarly to the algorithm from [11], constructs a rational function
of the form (4) has been proposed. This algorithm is based on a computation of greatest
common divisors and resultants of polynomials over K, without computing roots of ad(x) and
the complete factorization of polynomials. It was noticed in [4] that the algorithm from [2] can
be improved such that its result will be the indicial function (2). The substitution (3) with
the indicial function V (x) reduces �nding rational solutions to �nding polynomial ones, which
have in the general case smaller degrees in comparison with Ṽ (x). In Section 6 of the present
paper we give a detailed description of the improved version of the algorithm from [2].

It is worth to note that algorithms from [11, 2] as well as new algorithms use �nding integer
roots of polynomials in K[x].

In Section 7 we discuss an implementation of algorithms described in Sections 5 and 6 in
the computer algebra system Maple, and also demonstrate results of some experiments.

The article is a kind of a review in a sense, and a part of the text is a summary of the special
course lectured by the �rst author to the students of the faculty of Computational Mathematics
and Cybernetics of Lomonosov Moscow State University. At the same time, Proposition 6, the
sub-partition procedure from Section 6 and the implementation of some algorithms described
in Section 7 are new.

2 Indicial equations

It is convenient to use formal series to introduce the notions of the indicial equation and the
indicial rational function. If K is a �eld then, as usual, K[[x]] denotes the ring of formal power
(Taylor) series over K, i.e., the series of the form

c0 + c1x+ c2x
2 + . . . ,

c0, c1, c2, · · · ∈ K. The quotient �eld of this ring K((x)) is the �eld of (Laurent) series of the
form

cmx
m + cm+1x

n+1 + cm+2x
m+2 + . . . , (5)

cm, cm+1, cm+2, · · · ∈ K. The number m is an arbitrary integer, not necessarily non-negative.
The least m such that the coe�cient at xm in s(x) is non-zero is called the order of the series
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w.r.t. x (or simply order) and is denoted by ν(s); for the zero series we assume ν(0) =∞. By
tc(s) we denote the coe�cient at xν(s) assuming tc(0) = 0.

The derivative of the series s(x) =
∑∞

i=−∞ cix
i (in our case only �nitely many coe�cients

with negative indices may be non-zero) is de�ned as D(s(x)) = s′(x) =
∑∞

i=−∞ dix
i, where

di = (i+ 1)ci+1 for all i. It follows that the coe�cient d−1 is always zero.
Let K be a �eld of characteristic 0 and L be a di�erential operator

ad(x)D
d + · · ·+ a1(x)D + a0(x), (6)

where a0(x), a1(x), . . . , ad−1(x) ∈ K[[x]], ad(x) ∈ K[[x]] \ {0}. We consider the equations of the
form

L(y) = f(x), (7)

where f(x) ∈ K[[x]]. The main question we are interested in concerns a bound for the orders
of the series s(x) ∈ K ′((x)) such that L(s(x)) = f(x).

Given the operator L and equation (7), we consider the integer

b = min
0≤j≤d

(ν(aj)− j) (8)

and the algebraic equation
I(t) = 0,

where
I(t) =

∑
0≤j≤d

ν(aj)−j=b

tc(aj)t
j, (9)

tj = t(t− 1) · · · (t− j+ 1). The equation I(t) = 0 is called the indicial equation, corresponding
to the operator L and the equation L(y) = f(x).

Let N be the set of all integer roots of the indicial equation. We put

λ =

{
minN, if N 6= ∅,
∞, if N = ∅. (10)

It is easy to check that s(x) ∈ K[[x]], ν(s) = m, imply ν(L(s(x))) ≥ m + b, and the
coe�cient at xm+b of the series L(s(x)) is equal to smI(m), where sm = tc(s). Therefore, this
coe�cient is equal to zero i� I(m) = 0. Thus, we have

Proposition 1. Let L has the form (6), f(x) ∈ K[[x]]. Let s(x) ∈ K((x)) and L(s) = f(x).
Then we have

ν(s) ≥ min(ν(f)− b, λ), (11)

where b and λ are de�ned by (8) and (10).

(The detailed proof can be performed by considering the casesm+b = ν(f) andm+b < ν(f);
the inequality m+ b > ν(f) is impossible when L(s(x)) = f(x).)

As a consequence, we get that a homogeneous di�erential equation L(y) = 0 has no non-zero
solution in the �eld K((x)) if the indicial equation I(t) = 0 corresponding to the operator L
has no integer roots.

We denote by l the value of the right-hand side of inequality (11):

l = min(ν(f)− b, λ). (12)

If f(x) is zero series, i.e., equation (7) is homogeneous, then l = λ. The values λ and l do not
depend on the way the solutions of the di�erential equation (7) are considered: as series over
K or over some its extension.
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If ν(ad) = 0 in equation (6), and L(s(x)) = f(x), then ν(s) ≥ 0. This follows from the
following fact: if ν(ad) = 0 then the series ad(x) is inverible in K[[x]]. We add that for ν(ad) = 0
we have b = −d and I(t) = t(t− 1) · · · (t− d+ 1).

Consider the accuracy of the estimation (11). In the following proposition, speaking about
solutions of the equations of the form (7) with coe�cients and right-hand sides in K[[x]], we
mean solutions in K((x)).

Proposition 2. Let an equation L(y) = f(x), where L is the operator of the form (6) and
f(x) ∈ K[[x]], have a partial solution, and additionally the equation L(y) = 0 have d linearly
independent solutions. Then the equation L(y) = f(x) has a solution of order l.

Proof. At �rst, we show that the indicial equation has d di�erent integer roots, and that
for each root there exists a solution of L(y) = 0 whose order is equal to this root. Indeed,
performing Gaussian elimination on d linearly independent solutions of L(y) = 0, one can
construct d new solutions with pairwise di�erent orders. These orders must be the roots of the
indicial equation, and the degree of this equation cannot exceed d. Thus, the indicial equation
cannot have �extraneous� roots.

Now we turn to the proof of the proposition. We shall prove the stronger statement: the
equation L(y) = f(x) has a solution of the order ν(f)− b, and if λ < ν(f)− b then it also has a
solution of the order λ. Let v(x) be a solution of the equation L(y) = f(x). Using d solutions
of L(y) = 0 described above and performing Gaussian elimination we can �nd a solution ṽ(x)
of L(y) = f(x) of the order di�erent from all roots of the indicial equation. For ṽ(x) we have
ν(ṽ) = ν(f) − b. If λ < ν(f) − b then we take ṽ(x) + w(x), where w(x) is a solution of the
homogeneous equation such that ν(w) = λ. 2

3 Indicial rational functions

We turn to the case when the coe�cients of our operator L and the right-hand side of the
equation L(y) = f(x) are polynomials. >From now on we assume that in this equation

L = ad(x)D
d + · · ·+ a1(x)D + a0(x), (13)

and a0(x), a1(x), . . . , ad−1(x) ∈ K[x], ad(x) ∈ K[x] \ {0}. We also assume that f(x) ∈ K[x].
Turning from the �eld K to some its extension K ′ containing all roots of the polynomial

ad(x), for each root α we can construct the equation

Lx+α(y(x)) = f(x+ α), (14)

where
Lx+α = ad(x+ α)Dd + · · ·+ a1(x+ α)D + a0(x+ α). (15)

Polynomials can be viewed as (Taylor) series, that is why we can determine the value of l
using (12). For convenience, we denote it by lα (similarly, one may write λα). We call the
rational function ∏

ad(α)=0

(x− α)lα (16)

the indicial rational function (indicial function for brevity) of the equation L(y) = f(x). If
any exponent lα is in�nity then the indicial function (16) does not exist.

We show that one can �nd the values lα without necessarily using shifted equations of the
form (14). First of all, for f(x), p(x) ∈ K[x], where p(x) is irreducible, we de�ne the value
νp(x)(f) as the maximal k ∈ N such that pk(x) | f(x), for a non-zero f(x), and ∞ for f(x) = 0.
Let α be �xed such that ad(α) = 0. In our case f(x) and aj(x), j = 0, 1, . . . , d, are polynomials.
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We have νx(f(x+ α)) = νx−α(f(x)), and the value tc(f(x+ α)) can be found using the Taylor
formula, which is true for polynomials over any �eld of characteristic 0:

tc(f(x+ α)) =
f (m)(α)

m!
,

where the order of the derivative m is equal to νx−α(f(x)). One can obtain similar relations for
aj(x), j = 0, 1, . . . , d. Using the notation

mα,j = νx−α(aj(x)), j = 0, 1, . . . , d,

we can rewrite (8) as
bα = min

0≤j≤d
(mα,j − j), (17)

Formula (9) becomes

Iα(t) =
∑

0≤j≤d
mα,j−j=bα

a
(mα,j)
j (α)

mα,j!
tj ; (18)

and, eventually, ν(f(x)) can be rewritten as νx−α(f(x)) in (11). Thus, Proposition (1) yields

Proposition 3. For each root α of the polynomial ad(x) the exponent lα in (16) is

min(νx−α(f(x))− bα, λα), (19)

where λα is the least integer root of the indicial equation Iα(t) = 0 (if there are no integer roots
then λα =∞).

Proposition 4. Let the indicial function V (x) exist for the equation L(y) = f(x). Then
V (x) ∈ K(x).

Proof. Let an irreducible over K polynomial p(x) be a divisor of ad(x), and K
′ be an extension

of the �eld K that contains all roots of the polynomial ad(x). For a �xed j, 0 ≤ j ≤ d, the
values νx−α(aj(x)) coincide for all α such that p(α) = 0: over the �eld K ′ we have νx−α(aj(x)) =
νp(x)(aj(x)). >From this it follows that the values bα de�ned via (17) also coincide for these α.
Similarly, νx−α(f(x)) = νp(x)(f(x)). Obviously, the values λα also coincide, since the equations
Iα(t) = 0 have the same sets of integer roots. Thus the values lα de�ned via (19) coincide too
for all α such that p(α) = 0. Denote these values lα by lp(x), then the expression (16) for the
indicial function can be rewritten as ∏

p(x)∈Irr(K)
p(x)|ad(x)

plp(x)(x), (20)

where Irr(K) is the set of normalized irreducible polynomials over K. The proof follows from
this. 2

4 Rational solutions

Proposition 5. Let our equation L(y) = f(x) have a solution F (x) ∈ K(x). Then

(i) the indicial function does exist for the equation L(y) = f(x);

(ii) F (x) = q(x)V (x), where q(x) ∈ K[x] and V (x) is the indicial function of the equation.
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Proof. LetK ′ be an extension of the �eldK that contains all the roots of the polynomial ad(x).

For any rational function we put G(x) = g(x)
h(x)

,

νp(x)(G(x)) = νp(x)(g(x))− νp(x)(h(x)).

The last de�nition is correct (it does not depend on the choice of f(x), g(x)).
Since every polynomial in x over K can be viewed as a (Taylor) series, we can write

K[x] ⊂ K[[x]]. A rational function represented as a quotient of two polynomials g(x) and h(x),
can be viewed as a Laurent series obtained by multiplying g(x) by h−1(x) in K((x)). This
series doesn't depend on a speci�c representation of the original rational function. In terms of
this correspondence the �eld K(x) can be isomorphically embedded into the �eld K((x)). If
the series Ĝ(x) corresponds to the rational function G(x) then νx(G(x)) = ν(Ĝ(x)), and the
derivative of the series Ĝ(x) corresponds to the derivative of the rational function G(x). It
follows that a rational solution can have a pole only in a such point α that ad(α) = 0. The last
statement also holds true when considering rational functions over arbitrary extension of the
�eld K ′.

Consider an arbitrary root α of the polynomial ad(x). The di�erential equation Lx+α(y) =
f(x + α) (see (14), (15)) has the rational solution G(x) = F (x + α) and, respectively, the
solution in the form of the series Ĝ(x), whence the indicial equation Iα(t) = 0 has integer
roots. Thus we conclude (i). The least integer root does not exceed ν(Ĝ(x)), i.e., does not
exceed νx−α(F (x)), therefore we have (ii). 2

Proposition 5 reduces the problem of �nding rational solutions of equations of the type being
concerned to �nding polynomial solutions of the same type. It is well known (e.g., [1, 10]) that
for a given di�erential equation L(y) = f(x) of this type one can a priori give an upper bound
to the degrees of its polynomial solutions. Let's �nd

c = max
0≤j≤d

(deg aj(x)− j)

and construct the algebraic equation I∞(t) = 0, where

I∞(t) =
∑

0≤j≤d
deg aj(x)−j=c

lc(aj)t
j

(as usual, lc denotes the leading coe�cient of a polynomial). If q(x) ∈ K[x] and L(q(x)) = f(x)
then

deg q(x) ≤ max(deg f(x)− c, µ), (21)

where µ is the greatest integer root of the equation I∞(t) = 0, and if there are no integer roots
then µ = −∞.

This proof of Proposition 2 can be modi�ed to the case of polynomial solutions: if a di�er-
ential equation has �many� polynomial solutions then the estimate (21) is precise, i.e., among
polynomial solutions there is a solution such that its degree is equal to the degree of the right-
hand side of (21).

After setting the upper bound for �nding polynomial solutions, the method of undetermined
coe�cients can be applied. It reduces the problem to solving a system of linear algebraic
equations with coe�cients in K.

A rational function U(x) ∈ K(x) such that any rational solution of the original equation
can be written as u(x)U(x), u(x) ∈ K[x] will be called a universal factor of the equation being
considered. >From Proposition 5(ii) it follows that the indicial function is a universal factor.

The following proposition shows that the indicial rational function in some sense is the
optimal variant of a universal factor.
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Proposition 6. Let the indicial function V (x) exist for an equation L(y) = f(x) and have the
form (20). Let p1(x), p2(x), . . . , pk(x) be all di�erent irreducible factors of the leading coe�cient
ad(x) of the operator L. Let the equation L(y) = 0 have d linearly independent solutions in
K(x) and let U(x) ∈ K(x) be its universal factor. Then U(x) = ps11 (x)ps22 (x) . . . pskk (x)r−1(x),
where r(x) ∈ K[x], r(x) is not divisible by p1(x), p2(x), . . . , pk(x), and

s1 ≤ lp1(x), s2 ≤ lp2(x), . . . , sk ≤ lpk(x).

As a consequence, if F (x) ∈ K(x), L(F (x)) = f(x) and F (x) = u(x)U(x) = v(x)V (x),
u(x), v(x) ∈ K[x], then deg v(x) ≤ deg u(x).

Proof. It is possible to represent a rational solution of the original equation as a series. Using
Proposition 2 we get νpi(x)(U(x)) ≥ lpi(x), i = 1, 2, . . . , k, and also νq(x)(U(x)) ≤ 0 for all
irreducible q(x) that does not divide ad(x) (in this case lq(x) = 0). 2

Thus, using the substitution with a universal factor, we get the problem of �nding polyno-
mial solutions. We may �nd an upper bound for the degrees of all polynomial solutions and use,
for example, the method of undetermined coe�cients. In the case considered in Proposition 6
we get an equation that has �many� polynomial solutions, and the estimate of the form (21)
is precise in the sense of our discussion. That is why the order of the system of linear alge-
braic equations we need to solve using the method of undetermined coe�cients will reach its
minimum when the indicial function is used as a universal factor.

5 Constructing the indicial rational function using the

complete factorization

Suppose that all di�erent irreducible factors p1(x), p2(x), . . . , pk(x) of the leading coe�cient
ad(x) of operator L are known. Let p(x) be one of these factors. We can �nd

mp(x),j = νp(x)(aj(x)), j = 0, 1, . . . , d,

and
bp(x) = min

0≤j≤d
(mp(x),j − j),

and construct a polynomial in two variables

Jp(x)(t, x) =
∑

0≤j≤d
mp(x),j−j=bp(x)

a
(mp(x),j)

j (x)

mp(x),j!
tj . (22)

By construction, this polynomial is such that the substitution of any root α of the polynomial
p(x) for x gives Iα(t). We noticed above in the proof of Proposition 4 that for all α such that
p(α) = 0 the sets of integer roots of equations Iα(t) = 0 are the same. We denote the set of
these roots by Np(x) and show two ways of computing it.

The �rst method. Rewrite the equation Jp(x)(t, x) = 0 in the form

uv(x)t
v + uv−1(x)t

v−1 + · · ·+ u0(x) = 0, (23)

where u0(x), . . . , uv−1(x), uv(x) are polynomials in x of degree smaller than deg p(x) (each poly-
nomial in x can be replaced by its remainder of division of this polynomial by p(x)), and uv(x)
is a non-zero polynomial. Expand this equation by powers of x:

wk(t)x
k + wk−1(t)x

k−1 + · · ·+ w0(t) = 0, (24)
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where k ≤ deg p(x) − 1, wi(t) ∈ K[t], i = 0, 1, . . . , k, wk(t) ∈ K[t] \ {0}. After substitution of
some root α of the polynomial p(x) for x, the equation obtains an integer root n0 i� all wi(t)
occurring in (24) becomes zero when t = n0 (because an element of the �eld K(α), p(α) = 0,
written as a polynomial in α of degree smaller than deg p(α) is zero i� all its coe�cients are
zero). The set of common integer roots of polynomials wi ∈ K[t], i = 0, 1, . . . , k, is �nite,
because wk(t) ∈ K[t] \ {0}. This set is just Np(x).

The second method is based on the fact that Np(x) is the set of integer roots of the equation

Resx(Jp(x)(t, x), p(x)) = 0

(the resultant in the left-hand side is a polynomial in t).
After �nding Np(x) in some way, we put λp(x) equal to the minimal element of this set if it

is not empty, and equal to ∞ in the other case. Further we easily �nd the value lp(x) of degree
of polynomial p(x) in (20):

lp(x) = min(νp(x)(f(x))− bp(x), λp(x)).

If the exponent lp(x) is equal to in�nity for some irreducible factor p(x) of the polynomial
ad(x), the indicial function does not exist.

Example 1. Let p(x), q(x) be irreducible over Q, m,n ∈ N+. Consider the di�erential equation

p(x)q(x)y′ − (mp(x)q′(x)− nq(x)p′(x))y = 0. (25)

Taking the factor q(x) of the leading coe�cient, we get bq(x) = 0 and Jq(x)(t, x) = p(x)q′(x)t−
mp(x)q′(x). Hence, lq(x) = λq(x) = m. Similarly, taking p(x) we get lp(x) = λp(x) = −n.
Therefore V (x) = p−n(x)qm(x). The substitution y(x) = u(x)V (x) in (25) leads to the equation

u′ = 0, therefore the general rational solution of the original equation is C qm(x)
pn(x)

, where C is an
arbitrary constant.

Now we consider the inhomogeneous equation

p(x)q(x)y′ − (mp(x)q′(x)− nq(x)p′(x))y = (26)

p(x)q(x)q′(x)−mp(x)q(x)q′(x) + nq2(x)p′(x).

The left-hand side of the equation is not changed, hence bp(x), bq(x), Jp(x)(t, x), Jq(x)(t, x), λp(x)
and λq(x) remain the same. Denote the right-hand side of equation (26) by f(x); we get
νq(x)(f(x)) = 1, νp(x)(f(x)) = 0. Thus we have lp(x) = −n, lq(x) = 1 and V (x) = p−n(x)q(x).
After substitution y(x) = u(x)V (x) we obtain an equation having the polynomial solution
Cqm−1(x) + pn(x). This corresponds to the fact that the general rational solution of (26) is
Cqm(x)+q(x)p(x)

pn(x)
.

6 Constructing the indicial rational function using a bal-

anced factorization and the sub-partitioning

In the algorithm from Section 5 one needs to �nd all irreducible factsors p1(x), p2(x), . . . , ps(x)
of the polynomial ad(x). If the complete factorization is undesirable by some reason, it is
possible to use the other variant of this algorithm based on a balanced factorization [2]. We
give necessary de�nitions.

Let f(x), g(x) ∈ K[x], deg f(x) > 0. The polynomial f(x) is called balanced w.r.t. g(x) if
either g(x) is zero, or g(x) = f l(x)ĝ(x), ĝ(x) ∈ K[x], l ≥ 0, and polynomials f(x), ĝ(x) are
relatively prime. A factorization

f(x) = u1(x)u2(x) . . . uk(x),
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deg ui(x) > 0, i = 1, 2, . . . , k, is called a balanced factorization of f(x) w.r.t. g(x) if every
polynomial ui(x) is balanced w.r.t. g(x). Let S be a �nite subset of polynomials in K[x] and
f(x) ∈ K[x], deg f(x) > 0. Then f(x) is called balanced w.r.t. S if it is balanced w.r.t. every
element of S. A representation f(x) in the form of product of factors balanced w.r.t. S is called
a balanced factorization of the polynomial f(x) w.r.t. S.

The algorithm for constructing a balanced factorization using base operations on polynomi-
als and computation of the greatest common divisors of polynomials (gcd-technique) is given
in [2]. A more formal de�nition (a pseudocode) of this algorithm can be found in [7].

We can make the polynomial ad(x) square-free taking the quotient of ad(x) by
gcd(ad(x), a

′
d(x)). Denote the result by A(x). Let a balanced factorization of A(x) w.r.t.

the set of polynomials
f(x), a0(x), a1(x), . . . , ad(x) (27)

has the form
h1(x)h2(x) · · ·hk(x). (28)

Let g(x) be one of polynomials (27), and h(x) be one of the factors of the product (28). We
denote by

νh(x)(g(x))

the greatest exponent such that the power h(x) divides g(x). It follows from the balanced
factorization de�nition that for any irreducible factor p(x) of h(x) we have

νp(x)(g(x)) = νh(x)(g(x)).

Thus the approach described in Section 5 can be used for factors that may not be irreducible
but are balanced in this sense. However, we need to introduce clarity into �nding integer roots
of equation (24), since we cannot assume that all wi(t) are be zero if the left-hand side of the
equation is zero. Thus the �rst method of computing integer roots described in Section 5 does
not work in this case. But the formal application of the second method creates no di�culties.
By analogy with (22), �nd the polynomial Jh(x)(t, x) using h(x) instead of p(x) and consider
the set of integer roots of the equation

Resx(Jh(x)(t, x), h(x)) = 0.

We can de�ne λh(x) similarly to λp(x), and then de�ne the exponent for h(x) as

lh(x) = min(νh(x)(f(x))− bh(x), λh(x)).

Finding the product of all balanced factors with such exponents we obtain the rational function
Ṽ (x).

The substitution y(x) = u(x)Ṽ (x) allows, for example, to turn from problem of �nding
rational solutions of original di�erential equation to the problem of �nding polynomial solutions
of the new equation of the same order [2], but Ṽ (x) in the general case is not the indicial
function, and the substitution described above may be more crude in the sense of Proposition 6
than the substitution y(x) = u(x)V (x) with the indicial function V (x).

However, Ṽ (x) will be the indicial function if every balanced factor h(x) is �at with a �nite
exponent, i.e., for all roots α, β, . . . of the polynomial h(x) the indicial equations

Iα(t) = 0, Iβ(t) = 0, . . . (29)

have integer roots and the least integer roots of these equations equal the same number n.
Then n is the exponent of the factor h(x) in V (x). If all equations (29) have no integer roots
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then we say that the balanced factor h(x) is �at with the exponent ∞. The existence of a �at
factor with the exponent ∞ implies that the indicial function does not exist.

Let Nh(x) be the set of integer roots of the equation Resx(Jh(x)(t, x), h(x) = 0. Starting with

h(x), Jh(x)(t, x), Nh(x)

a factorization of h(x) into �at factors can be done by a simple procedure based on the gcd-
technique. This procedure is called the sub-partitioning. We describe this procedure using for
simplicity the notation J(t, x) instead of Jh(x)(t, x).

Let N = {n0, n1, . . . , nδ} and n0 < n1 < · · · < nδ. Then for n0 we �nd h[n0](x) =
gcd(J(n0, x), h(x)) and change h(x) replacing it by the quotient of h(x) by h[n0](x). Then
we do the same with J(t, x); using changed h(x) and n1 we obtain the polynomial h[n1](x) and
so on. As a result we decompose h(x) into the factors

h[n0](x), h[n1](x), . . . , h[nδ](x). (30)

If after computing h[nδ](x) and changing h(x) we get deg h(x) > 0 then the indicial function
does not exist. If it is not the case then the polynomials from (30) that is equal to 1 can
be excluded from the further consideration; the remained polynomials of the form h[ni](x),
0 ≤ i ≤ δ, are �at with the exponent ni.

Example 2. Let us turn to equation (25). The leading coe�cient (denote it by a1(x)) is square-
free, and its possible balanced factorization consists of the single factor h(x) equal a1(x). We
get bh(x) = 0 and

Jh(x)(t, x) = (p(x)q(x))′t− (mp(x)q′(x)− nq(x)p′(x)).

The set of integer roots of the equation Resx(Jh(x)(t, x), h(x)) is N = {−n,m}. If the

sub-partitioning is not used, we obtain Ṽ (x) = (p(x)q(x))−n. Let us apply the sub-
partitioning. We have gcd(Jh(x)(−n, x), h(x)) = p(x). Changing h(x), we get h(x) = q(x)
and gcd(Jh(x)(m,x), q(x)) = q(x). We obtain the indicial function V (x) = p−n(x)q(x)m.

The substitution y(x) = u(x)Ṽ (x) leads to the equation

q(x)u′(x)− (n+m)q′(x)u(x) = 0

having polynomial solution Cqn+m(x). The substitution y(x) = u(x)V (x) results in the equa-
tion u′(x) = 0, its polynomial solutions are constants.

Treating in the similar way equation (26) we get (p(x)q(x))−n before the sub-partitioning,
and p−n(x)q(x) after it.

In this example p(x) and q(x) are not necessary irreducible. A balanced factorization, as
well as a balanced factorization with the sub-partitioning, can be performed in the same way
under the weaker assumption that p(x), q(x), and also p(x), p′(x) and q(x), q′(x) are relatively
prime.

7 Implementation and experiments

The algorithm for constructing a universal factor has already been implemented in computer
algebra system Maple [9] as an auxiliary procedure used for �nding rational solutions of a
di�erential equation with polynomial coe�cients in procedure DEtools[ratsols]. There exist
even two such procedures. One of them uses the complete factorization and constructs the
indicial function for a homogeneous equation. The other uses a balanced factorization (without
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the sub-partitioning) and constructs a universal denominator (i.e., U(x) from Proposition 6
with s1 ≤ 0, . . . , sk ≤ 0).

To compare the e�ectiveness of algorithms described in Sections 5, 6, we had to modify the
existing code, to implement the sub-partitioning and to design all as a separate procedure that
is available to users.

Thus, the package IndicialFunction has been implemented in Maple 11. We demonstrate
the work of the main procedure of the package using the equation from Example 1. The
equation (25) is written as usual in Maple

> ode := p(x)*q(x)*diff(y(x),x)-m*p(x)*diff(q(x),x)-

> n*q(x)*diff(p(x), x))*y(x):

We put p(x) = x5 + 2,m = 5, q(x) = x3 + x− 3, n = 7:

> ode1 := eval(ode=0, {p(x) = x^5+2, m = 5,

> q(x) = x^3+x-3, n = 7}):

Compute the indicial function:

> IndicialFunction(ode1, y(x));

(x3 + x− 3)5

(x5 + 2)7

Similarly, for the inhomogeneous equation (26)

> f := p(x)*q(x)*diff(q(x),x)-(m*p(x)*diff(q(x),x)-

> n*q(x)*diff(p(x), x))*q(x):

> ode2 := eval(ode=f, {p(x) = x^5+2, m = 5,

> q(x) = x^3+x-3, n = 7}):

we get

> IndicialFunction(ode2, y(x));

x3 + x− 3

(x5 + 2)7

The package contains three procedures for constructing the indicial function:

• IndicialFunction:-ByFactors: uses complete factorization of the leading coe�cient;
calls standard Maple procedure factors;

• IndicialFunction:-ByFactorsAndResultant: uses complete factorization and compu-
tation of Np(x) by a resultant;

• IndicialFunction:-BySubpartition: uses a balanced factorization followed by the sub-
partitioning.

The Maple procedure for a balanced factorization `DEtools/balancedfacts`1 has
also been modi�ed and included into the package IndicialFunction. The procedure
`DEtools/balancedfacts` returns a balanced factorization of the polynomial f(x) =
p0p

s1
1 (x) · · · pskk (x) w.r.t. g(x) in the form of the list [p0, [p1(x), s1], . . . , [pk(x), sk]]. For example,

for:

1Such double (and also triple) names with apostrophes were given to auxiliary procedures in older versions
of Maple until the module structure had been introduced. The procedure `DEtools/balancedfacts` has not
its own help page but is available for use.
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> f := x^13+x^11-3*x^10+4*x^8+4*x^6-12*x^5+4*x^3+4*x-12:

> g := x^4+x^2-2*x+x^3-3:

we get

> `DEtools/balancedfacts`(f, [g], x);

[1, [[x5 + 2, 2], [x3 + x− 3, 1]]]

This means that
f(x) = (x5 + 2)2(x3 + x− 3).

During the factorization process we obtain the representation

g(x) = pi(x)
νi ĝi(x).

Since this information is necessary for constructing the indicial function, we programmed the
procedure IndicialFunction:-BalancedFactorization to return it in the second list of the
form [g0(x), νp1(x)(g(x)), . . . , νpk(x)(g(x))] :

> IndicialFunction:-BalancedFactorization(f, [g], x);

[1, [[x5 + 2, 2], [x3 + x− 3, 1]]], [[x+ 1, 0, 1]]

This means that
g(x) = (x+ 1)(x5 + 2)0(x3 + x− 3)1.

Several experiments were made in order to compare the e�ectiveness of algorithms for con-
structing the indicial function. In the following way we get the working time of each algorithm
(in seconds):

> st := time();

> IndicialFunction:-BySubpartition(ode1, y(x)):

> time()-st;

0.012

> st := time();

> IndicialFunction:-ByFactors(ode1, y(x)):

> time()-st;

0.016

> st := time();

> IndicialFunction:-ByFactorsAndResultant(ode1, y(x)):

> time()-st;

0.014

The working times of all procedures are rather small and are practically the same. Let's
increase the degree of polynomial p(x) in equation (25). We use the standard Maple procedure
randpoly to generate a random polynomial of desired degree:

> randpoly(x, degree = 10);
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−56x10 − 62x7 + 97x6 − 73x3 − 4x2

We tested the equation for 50 ≤ deg p(x) ≤ 100. The working times for the degrees 50, 60, 70,
80, 90, 100 are given below:

deg p(x) 50 60 70 80 90 100
ByFactors 0.036 0.032 0.040 0.072 0.104 0.080
ByFactorsAndResultant 0.052 0.044 0.052 0.096 0.148 0.100
BySubpartition 0.328 0.380 0.732 2.360 2.464 3.021

These experiments showed that, as a rule, ByFactors and ByFactorsAndResultant
have the same speed and work essentially faster than BySubpartition. Probably, the reason
is that polynomial factorization in Maple is implemented more thoroughly than the search for
the greatest common divisor.

After experiments we chose ByFactors as a default procedure for constructing the indicial
function. Our package has been used for �nding rational solutions of a di�erential equation.
For the inhomogeneous equation ode2 we have already obtained the indicial function:

> V := IndicialFunction(ode2, y(x));

V :=
x3 + x− 3

(x5 + 2)7

Let us make a substitution y(x) = V (x)u(x):

> ode3 := eval(ode2, y(x) = V*u(x));

ode3 := (x5 + 2)(x3 + x− 3)

(
−35(x3 + x− 3)u(x)x4

(x5 + 2)8
+

(3x2 + 1)u(x)

(x5 + 2)7
+

(x3 + x− 3) d
dx
u(x)

(x5 + 2)7

)
−

(5 (x5 + 2) (3x2 + 1)− 35 (x3 + x− 3)x4) (x3 + x− 3)u(x)

(x5 + 2)7
=

(x5 + 2) (x3 + x− 3) (3x2 + 1)− (5 (x5 + 2) (3x2 + 1)−
35 (x3 + x− 3)x4) (x3 + x− 3)

and construct a polynomial solution of the new equation using DEtools[polysols]:

> Psol := DEtools[polysols](ode3, u(x));

Psol := [[81− 108x+ 54x2 − 120x3 + 109x4 − 36x5 + 58x6−
36x7 + 6x8 − 12x9 + 4x10 + x12], 128 + 448x5 + 560x15+

280x20 + 84x25 + 14x30 + x35 + 672x10]

This answer means that the general polynomial solution of the equation ode3 is:

> Psol[1][1]*C+Psol[2];

(81− 108x+ 54x2 − 120x3 + 109x4 − 36x5 + 58x6−
36x7 + 6x8 − 12x9 + 4x10 + x12 )C + 128 + 448x5 + 560x15+

280x20 + 84x25 + 14x30 + x35 + 672x10

where C is an arbitrary constant. Multiplying it by V (x) we obtain the general rational solution
of the equation ode2:
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> V*Psol[1][1]*C+V*Psol[2];

x3 + x− 3

(x5 + 2)7

(
81− 108x+ 54x2 − 120x3 + 109x4 − 36x5+

58x6 − 36x7 + 6x8 − 12x9 + 4x10 + x12
)
C+

x3 + x− 3

(x5 + 2)7

(
128 + 448x5 + 560x15 + 280x20 + 84x25 + 14x30 + x35 + 672x10

)
Using the procedure DEtools[ratsols] we can also get the general rational solution (in another
form):

> DEtools[ratsols](ode2, y(x));

[[
(x3 + x− 3)5

(x5 + 2)7
,

1

(x5 + 2)7
(−71339352 + 118898408 + 79557752x5+

145320248x3 − 79265520x2 − 162934680x4 + 2936432x11 + 1468552x13+

560x16 + 560x18 + 280x21 + 280x23 + 84x26 + 84x28 + 14x31+

14x33 + x36 + x38 − 26421392x8 − 96879632x6 + 80733400x7 − 17616576x10+

291896x15 − 4403640x12 + 29357600x9 − 840x20 − 252x25 − 42x30 − 3x35)]

Now compare the running times of the new procedure:

> st := time();

> V := IndicialFunction(ode2, y(x)):

> ode3 := eval(ode2, y(x) = V*u(x)):

> Psol := DEtools[polysols](ode3, u(x)):

> [Psol[1][1]*V, Psol[2]*V]:

> time()-st;

0.068

and the procedure DEtools[ratsols]:

> st := time():

> DEtools[ratsols](ode2, y(x)):

> time()-st;

0.372

The new program is faster.
In the package IndicialFunction for a di�erential equation with the leading coe�cient

ad(x) the program �rst gets its factorization (complete or balanced)

ad(x) = ps11 (x) . . . pskk (x),

then it successively constructs indicial equations for all factors, �nds its integer roots and
computes the exponents lpi . The factors pi(x) with �nite exponents are included into the
product

V = p
lpi1
i1

(x) · · · p
lpit
it

(x),

that is not always the indicial function. The factors with lpi =∞ are saved in the list

B = [pj1(x), . . . , pjr(x)].

The procedure returns the pair (V,B). E.g., for the equation
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> ode4 := (2+2*x^3+2 x)*y(x)+(x^3+x^4)*diff(y(x), x):

we get

> IndicialFunction(ode4, y(x));

1

(1 + x)2
, [x]

This answer means that this equation cannot have rational solutions, at the point x = −1 it
has solutions in the form of a formal (Laurent) series, and at the point x = 0 such solutions do
not exist. Applying the substitution y(x) = u(x)/(x+1)2 to ode4 and multiplying by common
denominator, we get the equation with coe�cients of lower degree:

> ode5 := numer(normal(eval(ode4, y(x) = u(x)/(1+x)^2)));

ode5 := x3 d

dx
u(x) + 2u(x)

for which V = 1:

> IndicialFunction(ode5, u(x));

1, [x]

If only rational solutions are needed then one can stop the execution of the program as soon
as it gets lpi =∞ to reduce the working time. To do this, use an additional argument 'ratsols':

> IndicialFunction(ode4, y(x), 'ratsols');

Here the program returns NULL, and this means that the indicial function does not exist.
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