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Abstract

We propose a simple algorithm to construct a polynomial divisible by the denomi-
nator of any rational solution of a linear difference equation

an(x)y(x + n) + . . . + a0(x)y(x) = b(x)

with polynomial coefficients and a polynomial right-hand side. Then we solve the same
problem for q-difference equations.

Nonhomogeneous equations with hypergeometric right-hand sides are considered as
well.

§1.Difference equations

Consider the problem of finding all rational solutions of linear difference equations of the
form

an(x)y(x + n) + . . . + a0(x)y(x) = b(x) (1)

or in operator form, Ly(x) = b(x), where

L = an(x)En + . . . + a1(x)E + a0(x). (2)

Here a0(x),. . . , an(x), b(x) are polynomials over a field K of characteristic zero. In [Abr89b]
an algorithm to find a polynomial u(x) such that u(x) is divisible by the denominator of any
(reduced) rational solution of Eq. (1) has been proposed. After constructing u(x) one can
substitute z(x)/u(x) in Eq. (1) for y(x), where z(x) is an unknown polynomial. This results
in an equation for z(x) with polynomial coefficients and a polynomial right-hand side. The
search for polynomial solutions has been considered in [Abr89a], [ABP95].

∗Work reported herein was supported in part by the Russian Fund for Fundamental Research under Grant
95-01-01138a.
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The algorithm of [Abr89b] is quite complicated. Here, we can demonstrate how the same
goal can be achieved more directly. If one takes as input

A(x) = an(x − n), B(x) = a0(x)

then the following algorithm gives a polynomial u(x) which can be used as the denominator
of any rational solution of Eq. (1):

input: nonzero polynomials A(x), B(x)
output: a polynomial u(x)

u(x) := 1;
R(m) := Resx(A(x), B(x + m));
if R(m) has some nonnegative integer root then

N := the largest nonnegative integer root of R(m);
for i = N, N − 1, ..., 0 do

d(x) := gcd(A(x), B(x + i));
A(x) := A(x)/d(x);
B(x) := B(x)/d(x − i);
u(x) := u(x)d(x)d(x − 1) . . . d(x − i)

od

fi.

Example 1.

(2x3 + 13x2 + 22x + 8)E3y − (2x3 + 11x2 + 18x + 9)E2y+

+(2x3 + x2 − 6x)Ey − (2x3 − x2 − 2x + 1)y = 0.

It is easy to see that u(x) = x3 − x in this example. The substitution y(x) = z(x)/(x3 − x)
yields the equation

(2x4 + 7x3 + 7x2 + 2x)E3z + (−2x4 − 11x3 − 18x2 − 9x)E2z+

+(2x4 + 7x3 − 3x2 − 18x)Ez + (−2x4 − 11x3 − 16x2 − x + 6)z = 0.

The general polynomial solution of this equation is C(2x2 − 3x). Therefore the general
rational solution of the initial equation is C(2x − 3)/(x2 − 1).

Below we prove correctness of the algorithm, but first we introduce some terminology.
We will call a polynomial special if its full factorization over K has the form

pγ0(x)pγ1(x + 1) . . . pγh(x + h) (3)

where p(x) is irreducible, h, γ0, . . . , γh are nonnegative integers. We will call two special
polynomials related if their product is special again.

Let g(x) be a special polynomial of the form (3). We will call a divisor

pσ(x + l) (4)
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of g(x) critical of the first kind if the relationship

pσ1(x + l1)|g(x) (5)

along with l1 > l implies σ1 < σ and along with σ1 > σ implies l1 < l (i.e., it is impossible
to increase σ without decreasing l, and to increase l without decreasing σ). We will call a
divisor of the form (4) of g(x) critical of the second kind if the relationship (5) along with
l1 < l implies σ1 < σ and along with σ1 > σ implies l1 > l (i.e., it is impossible to increase
σ without increasing l, and to decrease l without decreasing σ).

Let pα1(x + M1), . . . , p
αs(x + Ms) be all critical divisors of the first kind, and pβ1(x +

m1), . . . , p
βt(x + mt) be all critical divisors of the second kind. Let M1 > . . . > Ms and

m1 < . . . < mt. Then α1 < . . . < αs and β1 < . . . < βt. Let α0 = β0 = 0 additionally.
Let A(x), B(x) ∈ K[x]. We will call a special polynomial g(x) of the form (3) bounded

by the pair (A(x), B(x)) if

pαi−αi−1(x + Mi)|A(x), i = 1, . . . , s, (6)

pβj−βj−1(x + mj)|B(x), j = 1, . . . , t. (7)

Theorem 1. Let the result of applying the operator (2) to a rational function S(x)
with special denominator be a polynomial. Then the denominator of S(x) is bounded by
(an(x − n), a0(x)).

Proof. Let the denominator of S(x) be a polynomial g(x) of the form (3). Let us prove,
for example, (6). Let

an(x − n) = pδ1(x + M1) . . . pδs(x + Ms)f(x),

where δ1, . . . , δs are nonnegative integers, and f(x) is not divisible by p(x+Mi), i = 1, . . . , s.
Note that S(x) can be decomposed as the sum of a polynomial and of fractions of the form

w(x)

pγ(x + l)
, deg w(x) < deg pγ(x + l),

where values of l are pairwise different. This decomposition includes fractions with denomi-
nators

pα1(x + M1), . . . , p
αs(x + Ms).

Apply the operator L to each element of the decomposition and sum the elements with
equivalent denominators. This gives us the decomposition of the function LS(x). Therefore
if αi − δi > αi−1 for some i then the decomposition of LS(x) includes an element with the
denominator pαi−αi−1(x + Mi) and LS(x) is not a polynomial. Contradiction.

Theorem 2. Let a special polynomial g(x) be bounded by (A(x), B(x)). Let

R(m) = Resx(A(x), B(x + m)).

Let R(m) have nonnegative integer roots and let v be the largest of them. Let

d(x) = gcd(A(x), B(x + v)), c(x) = d(x)d(x − 1) . . . d(x − v).
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Let
g̃(x) = g(x)/gcd(g(x), c(x)),

Ã(x) = A(x)/d(x),

B̃(x) = B(x)/d(x − v).

Then g̃(x) is bounded by (Ã(x), B̃(x)) and g(x)|c(x)g̃(x).
Proof. The second part of the statement is obvious. To prove the first part, we note that

critical divisors of g̃(x) are also critical divisors of g(x). Back to (6),(7). If g(x) has been
transformed to g̃(x) then the differences αi − αi−1, i = 1, . . . , s and βj − βj−1, j = 1, . . . , t
have been transformed without increasing. Distinction between A(x) and Ã(x), and between
B(x) and B̃(x), respectively, either does not concern the factors p(x+Mi), i = 1, . . . , s, p(x+
mj), j = 1, . . . , t, or concerns only the exponents of p(x + M1), p(x + m1) (or even only one
of them). But in the latter case the exponents of p(x+M1), p(x+m1) in g(x) either undergo
the same change as the exponents in A(x) and B(x), or vanish.

Finally, note that if R(m) has no nonnegative integer root then 1 is the only polynomial
bounded by (A(x), B(x)).

The last theorem shows that the algorithm proposed in the beginning of the paper allows
one to compute a polynomial u(x) divisible by any special polynomial bounded by

(A(x), B(x)).

But any rational nonpolynomial function S(x) can be presented in the form S1(x)+. . .+Sk(x)
where S1(x), . . . , Sk(x) are rational functions with nonrelated special denominators. The
product of the denominators is equal to the denominator of S(x). Applying operator (2) to
Si(x), 1 ≤ i ≤ k, gives either a polynomial, or a sum of a polynomial and a rational function
with a denominator which is special and related to the denominator of Si(x). Therefore if
S(x) is a solution of Eq. (1) then every Si(x), i = 1, . . . , k, has the denominator which is
bounded by (an(x−n), a0(x)). And we obtain the desired ”universal denominator” by using
A(x) = an(x − n), B(x) = a0(x) as input for this algorithm.

In conclusion of the paragraph we have to refine our suppositions on the field K. Ap-
parently we must know how to find integer roots of an algebraic equation R(m) over K.
Our coefficient field is (as in [Abr89b]) so-called suitable field in the sense of the following
definition:

1) Q⊆ K;
2) there is an algorithm for finding integer roots of algebraic equations over K in one

unknown.
The field Q is obviously suitable. It is easy to see that a simple extension (algebraic or

transcendental) of a suitable field K is itself suitable.
The algorithm presented in this paragraph is a version of the algorithm which was given

in [Abr 94]. Unfortunately, there was a mistake in the text of the published paper which
has been corrected in Errata. The paper [Abr95] has a mistake also. The new version of the
algorithm and its verification have not been published before.

The algorithm proposed in [Abr89b] is more complicated. But it takes into account all
a0(x), . . . , an(x), b(x), not only a0(x), an(x). Conceivably such an algorithm could give u(x)
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of smaller degree than the algorithm proposed in this paragraph. But this question has not
been investigated yet.

Undoubtedly the algorithm described above is quite convenient for implementation (much
more so than the one proposed in [Abr89b]). Additionally, it can be adapted for the case of
q-difference equations.

§2.q-Difference equations

We consider now the problem of looking for denominators of rational solutions of linear
q-difference equations of the form

an(x)y(qnx) + . . . + a1(x)y(qx) + a0(x)y(x) = b(x), (8)

or in operator form, Ly(x) = b(x), where

L = an(x)Qn + . . . + a1(x)Q + a0(x).

Here a0(x), . . . , an(x), b(x) ∈ K[x], q is an indeterminate parameter. Our coefficient field K
is a so-called q-suitable field in the sense of the following definition:

1) Q(q) ⊆ K;
2) there is an algorithm for finding the roots of the form qm, where m is a nonnegative

integer, of algebraic equations over K in one unknown.
The field Q(q) is obviously q-suitable. It is easy to see that a simple extension (algebraic

or transcendental) of a q-suitable field K is itself q-suitable.
Let us investigate the polynomial u(x) which arises as the result of the q-analog of the

algorithm that has been proposed in §1 (consider B(qi) instead of B(x + i), d(q−ix) instead
of d(x − i) and so on). The algorithm we describe as the function

function P (A(x), B(x))
u(x) := 1;
R(m) := Resx(A(x), B(qmx));
if R(m) has some nonnegative integer root then

N := the largest nonnegative integer root of R(m);
for i = N, N − 1, ..., 0 do

d(x) := gcd(A(x), B(qix));
A(x) := A(x)/d(x);
B(x) := B(x)/d(q−ix);
u(x) := u(x)d(x)d(q−1x) . . . d(q−ix)

od

fi;

return(u(x)).

Note that the equation R(m) = 0 has the form

ftq
tm + ft−1q

(t−1)m + . . . + f1q
m + f0 = 0,

f0, . . . , ft ∈ K. Searching for its nonnegative roots is equivalent to searching for roots of the
form qm of the algebraic equation

ftX
t + ft−1X

(t−1) + . . . + f1X + f0 = 0
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over K. Since K is a q-suitable field, the roots can be found.
Theorem 3. Let Eq. (8) have a solution v(x)/w(x) s.t.

v(x), w(x) ∈ K[x], gcd(v(x), w(x)) = 1,

w(x) = xαw∗(x), w∗(0) 6= 0.

Let
a0(x) = xβa∗

0(x), an(x) = xγa∗

n(x), a∗

0(0) 6= 0, a∗

n(0) 6= 0.

Let
A(x) = a∗

n(q−nx), B(x) = a∗

0(x), u(x) = P (A(x), B(x)).

Then
w∗(x)|u(x). (9)

Proof. First of all we remark that for any irreducible polynomials p1(x), p2(x) ∈ K[x]
s.t. p1(0) 6= 0, p2(0) 6= 0, we can find at most one nonnegative integer l s.t. p1(q

lx) and
p2(q

lx) are equal up to a factor from K. Thus, all arguments that we gave in §1 will hold if
we replace shifts

x → x + h, x → x − h,

where h is a nonnegative integer, by

x → qhx, x → q−hx,

and if we ignore the factor x when considering irreducible factors of polynomials.
To consider a0(x), an(x) instead of a∗

0(x), a∗

n(x), we can remark that any rational solution
of Eq. (8) can be presented in the form

f(x)

g(x)
+

l1
x

+ . . . +
lm
xm

, (10)

where f(x), g(x) ∈ K[x]; g(0) 6= 0; l1, . . . , lm ∈ K; m is a nonnegative integer. The results
of substituting f(x)/g(x) and

l1
x

+ . . . +
lm
xm

(11)

for y(x) in the left-hand side of Eq. (8) are rational functions with relatively prime denom-
inators. Therefore the results must be some polynomials. We already know how to find a
polynomial u(x) s.t. g(x)|u(x). It is necessary now to find an upper bound M for m. Then
U(x) = xMu(x) can be taken as a universal denominator of rational solutions of Eq. (8).

To obtain a bound on m one can use the technique of indicial equations. (This technique
is well known in the theory of linear ordinary differential equations.) We write all the ai(x)
involved in (1) in the form

ai(x) = xαia∗

i (x) (12)

where a∗

i (x) ∈ K[x], a∗

i (0) 6= 0, αi is a nonnegative integer. If ai(x) is the zero polynomial,
then a∗

i (x) = ai(x), αi = ∞. Let

α = min{α0, . . . , αn}.
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Assume that α = αi for i = i1, . . . , is. If m < α then substituting (11) for y(x) in the left-
hand side of (8) trivially gives a polynomial. If m > α then the monomial xα−m in the result
of such substitution must have coefficient zero (the degree α − m of x is formally minimal
in the result of substitution). The condition allows to write down the indicial equation

a∗

i1
(0)(q−m)i1 + . . . + a∗

is
(0)(q−m)is = 0. (13)

Therefore, if qm1 , . . . , qmt are all the roots of the form ql, l is a nonnegative integer, of the
algebraic equation

a∗

is
(0)X i1−is + a∗

is−1
(0)X i1−is−1 + . . . + a∗

i1
(0) = 0, (14)

then we can take M = max{m1, . . . , mt, α} as an upper bound for m in (10).
The full algorithm to compute a universal denominator U(x) of rational solutions of

Eq. (8) can be given as follows:

input: Eq. (8)
output: a universal denominator U(x)

compute a∗

i (x), αi(i = 0, . . . , n) as in (12);
α := min{α0, . . . , αn};
construct Eq. (14);
N := max{m|qm is a root of Eq. (14)}, or

−1 if the set is empty;
M := max{N, α};
U(x) := xMP (a∗

n(q
−nx), a∗

0(x)).

After constructing U(x) one can substitute z(x)/U(x) in Eq. (8) for y(x), where z(x) is
an unknown polynomial. This results in an equation for z(x) with polynomial coefficients
and a polynomial right-hand side. The search for polynomial solutions has been considered
in [ABP95].

Example 2. Consider the equation

q3(qx + 1)Q2y − 2q2(x + 1)Qy + (x + q)y =

= (q5 − 2q3 + 1)x2 + (q4 − 2q3 + 1)x.

Compute the universal denominator U(x). Here α = 0 and the algebraic equation (14) has
the form

qX2 − 2q2X + q3 = 0,

q is its unique solution of the wanted form. Hence M = 1. We can additionally find the
factor x + q of U(x) with the help of the function P . So, U(x) = x(x + q). Replacing
y = z(x)/x(x + q) in the original equation we get that

Q2z − 2Qz + z = (q5 − 2q3 + 1)x2 + (q4 − 2q3 + q)x.

The last equation has the polynomial solutions

C + qx2 + x3,
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where C is an arbitrary constant. Therefore

C + qx2 + x3

x(qx + 1)

is the general rational solution of the original equation.

§3.The case when q is a number

In the previous paragraph we discussed the case when q is an undetermined parameter.
But q-difference equations can be considered with a fixed number in the role of q. Let q be
a number, q 6= 1. Let K be the field Q if q is a rational number, and Q(q) otherwise. If we
want to retain the main steps of the previous algorithm we have to place restrictions on q.

First, we cannot use a root of unity in the role of q, because otherwise our remark at
the begining of the proof of Theorem 3 is not valid. Next, we have to inspect closely the
problem of finding roots of the form qm of algebraic equations over K. If q is rational or
transcendental this is easy. If q is algebraic over Q and |q| 6= 1 then we can construct an
algebraic equation over Q s.t. all the roots of the old equation satisfy the new equation, and
we can find upper bounds for the moduli of the nonzero roots of the new equation. Then we
find an upper bound for m using the existing information about |q|.

But if q is an algebraic number and |q| = 1, then our problem becomes too difficult. The
author knows a full solution of the problem of solving algebraic equations mentioned above
only for the case when q is a quadratic irrationality and the given equation is quadratic over
Q ([Abr87]).

All other steps of the algorithm described in §2 remain the same.

§4.Hypergeometric right-hand sides

So, one has a key to find rational solutions of linear difference and q-difference equa-
tions with polynomial coefficients and polynomial right-hand sides. A fast algorithm to
solve the analogous problem connected with differential equations has been proposed in
[Abr89b,AbrKva91]. The problem of computing rational solutions of Eq. (1), Eq. (8) or
of analogous differential equations is quite important in computer algebra because some
interesting problems can be reduced to it.

Consider the problem of finding hypergeometric term solution y of the nonhomogeneous
difference equation Ly = b where b is a nonzero hypergeometric term. Thus

Eb(x) = R(x)b(x) (15)

for some R(x) ∈ K(x). Let the coefficients of L be polynomials. In [Pet92] it has been shown
that if a hypergeometric term y(x) satisfies Eq. (1), then it is of the form F (x)b(x) with a
rational F (x). One can substitute F (x)b(x) for y(x) in Eq. (1) with an unknown F (x). This
yields an equation with polynomial coefficients and a polynomial right-hand side. Thus to
search for solutions in the form of hypergeometric terms the algorithm which finds rational
solutions is quite useful.

Example 3. The equation

y(x + 1) − y(x) = b(x)
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with b(x) in the form of hypergeometric term will be transformed, after substituting F (x)b(x)
for y(x), to the following equation for F (x):

R(x)F (x + 1) − F (x) = 1

where R(x) = b(x + 1)/b(x). The last equation can easily be transformed into an equation
with polynomial coefficients and a polynomial right-hand side:

a1(x)F (x + 1) + a0(x)F (x) = c(x).

We can apply our algorithm to the last equation.
Let A(x) = a1(x − 1), B(x) = a0(x), where a1(x), a0(x) are the coefficients of the last

equation for F (x). If we use the well-known Gosper’s algorithm ([Gos78]), designed spe-
cially for indefinite hypergeometric summation, then the denominator u(x) of F (x) will be
computed as follows

u(x) := 1;
R(m) := Resx(A(x), B(x + m));
if R(m) has some nonnegative integer root then

N := the largest nonnegative integer root of R(m);
for i = 0, 1, ..., N do

d(x) := gcd(A(x), B(x + i));
A(x) := A(x)/d(x);
B(x) := B(x)/d(x − i);
u(x) := u(x)d(x)d(x − 1) . . . d(x − i)

od

fi.

It gives in general u(x) of smaller degree. But the last algorithm works well only in the
case of indefinite hypergeometric summation. In the general case of Eq. (1) we can not use
this way.

Example 4. The equation

(x + 5)(x + 8)2y(x + 4) − (x3 + 11x2 + 38x + 40)y(x + 2) + x(x + 2)y(x) = 0

has the rational solution
1

x(x + 2)2(x + 4)2
,

but the last algorithm gives

u(x) = x(x + 1)(x + 2)(x + 3)(x + 4).

Our algorithm gives
u(x) = x(x + 1)(x + 2)2(x + 3)2(x + 4)2.

The idea of this example was communicate me by prof. V. Strehl.
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The result of Petkovšek mentioned above can be generalized easily for the case of an
arbitrary ring of Ore polynomials (see [BroPet94] for definitions). Let k be a field of co-
efficients. If θf/f ∈ k , then θf = af for some a ∈ k. An induction on m allows
us to show that θmf/f ∈ k for any m > 0. Indeed, let θm−1f = cf, c ∈ k. Then
θmf = θ(cf) = σ(c)θf + δ(c)f = (aσ(c) + δ(c))f , but σ(c), δ(c) ∈ k. It is clear now
that L ∗θ f = df, d ∈ k for any L ∈ k[x; σ, δ].

Thus we can use this result not only in the difference case, but, for example, in the
q-difference (see [AbrPet95]) and in the differential cases, i.e. one can use Q or, resp. d/dx
in (15) instead of E and so on.

The author would like to thank M.Petkovšek and V.Strehl for discussions connected with
the subject of this paper.
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