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Abstract

We consider the applicability (or terminating condition) of the
well-known Zeilberger’s algorithm and give the complete solution to
this problem for the case where the original hypergeometric term
F (n, k) is a rational function. We specify a class of identities
∑n

k=0 F (n, k) = 0, F (n, k) ∈ C(n, k), that cannot be proven by Zeil-
berger’s algorithm. Additionally we give examples showing that the
set of hypergeometric terms on which Zeilberger’s algorithm termi-
nates is a proper subset of the set of all hypergeometric terms, but a
super-set of the set of proper terms.

Résumé

Nous considérons l’applicabilité (ou la condition de terminaison) du cé-
lèbre algorithme de Zeilberger et nous donnons la solution complète de
ce problème dans le cas où le terme hypergéométrique initial F (n, k)
est une fonction rationnelle. Nous indiquons une classe d’identités
∑n

k=0 F (n, k) = 0, F (n, k) ∈ C(n, k), qui ne peuvent être démontrées
par l’algorithme de Zeilberger. De plus, nous donnons des exem-
ples qui prouvent que l’ensemble des termes hypergéométriques pour
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lesquels l’algorithme de Zeilberger se termine est un sous-ensemble
propre de l’ensemble de tous les termes hypergéométriques mais un
super-ensemble de l’ensemble des termes propres.

Keywords: Zeilberger’s algorithm; Hypergeometric term; Rational func-
tion; Terminating condition; Linear difference and q-difference operators;
Z-pair; Decomposition of indefinite sum.

1 Preliminaries

Zeilberger’s algorithm [9, 15, 19], also known as the method of creative tele-
scoping, is a useful tool for proving identities of the form

∞
∑

k=−∞

F (n, k) = f(n) , (1)

where F (n, k) and f(n) are the given functions. The algorithm, named here-
after as Z, can also be used for proving identities which include definite sums
of the forms such as

∑n
k=0 F (n, k) (see Example 7). Given a function F (n, k)

as input, Z tries to construct for F (n, k) a Z-pair (L, G) which consists of a
linear difference operator with coefficients which are polynomials in n over C

L = aρ(n)Eρ
n + · · ·+ a1(n)E1

n + a0(n)E0

n , (2)

and a function G(n, k) such that

LF (n, k) = G(n, k + 1) − G(n, k) . (3)

(En is the shift operator w.r.t. n, defined by EnF (n, k) = F (n + 1, k). Sim-
ilarly Ek is the shift operator w.r.t. k, defined by EkF (n, k) = F (n, k + 1).)
Note that the operator L is k-free. If such a Z-pair exists, then set s(n) =
∑

∞

k=−∞
F (n, k), and by summing (3) over all integer values of k, we obtain

the relation Ls(n) = G(n,∞)−G(n,−∞). This gives a possibility to estab-
lish various properties of s(n), and to prove identities of the form (1). In
some particular cases a Z-pair also allows us to find a closed form of s(n)
explicitly.

So for a given input F (n, k), Z is expected to return a Z-pair (L, G)
for F (n, k). Note that the algorithm can only be applied to F (n, k) which
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is a hypergeometric term in both arguments, i.e., there exist first order op-
erators L1 ∈ C[n, k, En], L2 ∈ C[n, k, Ek] such that L1F = L2F = 0. It
is shown in [19] that if F (n, k) is a hypergeometric term that has a Z-pair
(L, G(n, k)) then G(n, k) equals the product of a rational function R(n, k)
by F (n, k), and thus is also a hypergeometric term. As a consequence, in the
case where F (n, k) is a rational function, G(n, k) is also a rational function.
It is noteworthy that a Z-pair does not exist for every hypergeometric term
(see Example 2). Furthermore, if it exists it is not uniquely defined, for if
(L, G) is a Z-pair for F (n, k) and M ∈ C[n, En], then (M ◦ L, MG) is also
a Z-pair for F (n, k). It is proven in [19] that if the Z-pairs for F (n, k) exist,
then Z terminates with one of the Z-pairs and the operator L in the returned
Z-pair is of minimal possible order. However, it is not necessarily true that
one will obtain a linear recurrence of minimal possible order when summing
both sides of (3) over k (see [14]).

The question for what hypergeometric terms the Z-pairs do exist is not
conclusively answered although a sufficient condition is known. The “fun-
damental theorem”, first proven in [17] (see also [9, 15, 18]), states that a
Z-pair exists if F (n, k) is a proper term, i.e., it can be written in the form

F (n, k) = P (n, k)

∏l
i=1(αin + βik + γi)!

∏m
i=1(α

′

in + β ′

ik + γ′

i)!
unvk , (4)

where P (n, k) ∈ C[n, k], αi, βi, α
′

i, β
′

i ∈ ZZ, l, m are nonnegative integers,
γi, γ

′

i, u, v ∈ C. (It follows from [18] that γi, γ
′

i, u, v may even contain param-
eters different from n and k.)

It is possible, however, to give an example of a hypergeometric term that
is not a proper term but Z terminates and returns a Z-pair. It is also possible
to give an example of a hypergeometric term that is not a proper term either
and Z never terminates. (Sect. 6 is devoted to those examples.) Therefore
the set T of hypergeometric terms on which Z terminates is a proper subset
of the set of all hypergeometric terms, but a super-set of the set of proper
terms. The complete explicit description of T , we repeat again, is unknown.

In this paper we present the conclusive answer to the question of specify-
ing the class of rational functions F (n, k) that have Z-pairs or, equivalently,
the class of rational functions which, when given as input, allow Z to termi-
nate. (The rational functions are a particular case of hypergeometric terms.)
As a consequence, we suggest an improvement to Z. We will describe a class
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of identities of the form
∑n

k=0 F (n, k) = 0, F (n, k) ∈ C(n, k), such that
the corresponding rational functions F (n, k) do not have a Z-pair, i.e., these
identities cannot be proven using Z. We will also summarize a similar result
for the q-difference case [12].

The preliminary publications on this topic have appeared as [4, 5]. In
addition to correcting a few minor mistakes, we simplify the proof of Lemma 4
(Sect. 3), clarify and verify the criterion usage (Sect. 4). A new, complete
Maple implementation is described (Sect. 5). We also present a similar result
for the q-difference case (Sect. 8).

2 Sum of Two Rational Functions

In the subsequent text we will use the following

Lemma 1 Let there exist Z-pairs for F1, F2 ∈ C(n, k). Then there exists a
Z-pair for F = F1 + F2.

Proof : Let L1, L2 ∈ C[n, En], G1, G2 ∈ C(n, k) be such that

L1F1 = (Ek − 1)G1, L2F2 = (Ek − 1)G2 .

Set L = lclm(L1, L2), L ∈ C[n, En]. We have L = L′

1 ◦L1 = L′

2 ◦L2 for some
L′

1, L
′

2 ∈ C(n)[En]. Then

LF = LF1+LF2 = L′

1(L1F1)+L′

2(L2F2) = L′

1((Ek−1)G1)+L′

2((Ek−1)G2) .

Since EkEn = EnEk and Eka(n) = a(n)Ek for any a(n) ∈ C(n), the operators
L′

1, L
′

2 commute with the operator Ek − 1. Thus

LF = (Ek − 1)(L′

1G1 + L′

2G2) . (5)

Since L′

1G1 + L′

2G2 ∈ C(n, k), (L, L′

1G1 + L′

2G2) is a Z-pair for F . ✷

In general the operator L constructed above is not of minimal order.

Example 1 Consider the rational function

F = F1 + F2, F1 =
1

n + 4 k + 2
, F2 =

1

n + 4 k − 3
.
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Applying Z to F1 and F2 results in the Z-pairs (L1, G1), (L2, G2) for F1 and
F2, respectively, where L1, L2 have the minimal possible orders:

(L1, G1) =
(

E4

n − 1, F1

)

, (L2, G2) =
(

E4

n − 1, F2

)

.

Set L̃ = lclm(L1, L2) = E4
n − 1. It follows from Lemma 1 that

(L̃, G̃) =
(

E4

n − 1,
1

n + 4 k + 2
+

1

n + 4 k − 3

)

is a Z-pair for F. On the other hand, applying Z to F = F1 + F2 results in
the Z-pair (L, G) where the operator L = E3

n − E2
n + En − 1. Notice that in

this example, the difference operator L̃ = lclm(L1, L2) in the Z-pair (L̃, G̃) is
not of minimal possible order.

3 A Criterion for the Existence of a Z-pair

for a Rational Function

The goal of this section is to give a criterion (a necessary and sufficient
condition) for a given rational function F (n, k) to have a Z-pair.

For F (n, k) ∈ C(n, k), denote F (n; k) as an element of C(n)(k) (some-
times, when fitting, as an element of the ring C(n)[k]). We also consider
polynomials in k whose coefficients are algebraic functions of n, i.e. they are
elements of the ring C(n)[k], and denote these polynomials as p(n; k), q(n; k)
and so on.

Suppose F (n, k) ∈ C(n, k). By applying to F (n; k) any of the algorithms
to solve the decomposition problem [1, 3, 16], we can represent F (n; k) in
the form

F (n; k) = (Ek − 1)S(n; k) + T (n; k) ,

where S, T ∈ C(n)(k) are such that the denominator of T (n; k) has the
minimal possible degree. For (Ek − 1)S(n, k) we have a Z-pair (1, S(n, k)).
By Lemma 1 a Z-pair for F (n, k) exists iff a Z-pair for T (n, k) exists. We
can represent T (n, k) in the reduced form

T (n, k) =
f(n, k)

g(n, k)
, (6)
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where f(n, k), g(n, k) are elements of C[n, k]. By [1], g(n, k) has the following
property:

P1. If p1(n; k), p2(n; k) are factors of g(n; k) irreducible over C(n) then
p1(n; k + h) 6= p2(n; k) for all h ∈ ZZ \ {0}.

On the other hand, if G, V ∈ C(n, k) are such that (Ek − 1)G = V and

V (n, k) =
a(n, k)

b(n, k)
, (7)

where a(n, k), b(n, k) are relatively prime elements of C[n, k], then b(n, k) has
the following property:

P2. If q1(n; k) is a factor of b(n; k) irreducible over C(n) then there exist
a factor q2(n; k) irreducible over C(n) of b(n; k) and a non-zero integer h such
that q1(n; k + h) = q2(n; k).

Lemma 2 Let a rational function T (n, k) of the form (6) be such that g(n, k)
has property P1. Let L ∈ C[n, En] be such that LT (n, k) is of the form (7)
and b(n, k) has property P2. Then for any factor u(n; k) of the polynomial
g(n; k) irreducible over C(n) there exist an irreducible factor v(n; k) of g(n; k)
(it is possible that u(n; k) = v(n; k)) and j, h ∈ ZZ, j > 0, such that u(n; k) =
v(n + j; k + h).

Proof : Suppose L is of the form (2). Without loss of generality we can
assume a0(n) 6= 0. Otherwise, take a new L and V (n, k), namely E−λ

n ◦L and
V (n− λ, k), where λ is the minimal positive integer such that the coefficient
of Eλ

n in L is not zero. Then V (n, k) is equal to

aρ(n)T (n + ρ, k) + · · ·+ a0(n)T (n, k), a0(n) is a non-zero polynomial.

Consider the partial fraction decomposition of T (n; k) over C(n). The ap-
plication of aν(n)Eν

n, 0 ≤ ν ≤ ρ, to a simple fraction, i.e., a fraction of the
form s(n)/p(n; k)m where p(n; k) is irreducible, m ≥ 1, gives another simple
fraction. Since u(n; k) is an irreducible factor of g(n; k), the decomposition
of T (n; k) contains a fraction of the form

s(n)

u(n; k)µ
, s(n) ∈ C(n), µ ≥ 1 .
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If neither the fraction (a0(n)s(n)) /u(n; k)µ nor any other fraction with the
denominator u(n; k)µ is in the decomposition of LT (n; k) then the decomposi-
tion of T (n; k) contains a fraction t(n)/v(n; k)µ such that v(n+j; k) = u(n; k),
where 0 < j ≤ ρ and aj(n) is a non-zero polynomial. So in this case we get
what was claimed.

Suppose that a fraction with the denominator u(n; k)µ is in the de-
composition of LT (n; k). Since LT (n, k) = a(n, k)/b(n, k) and b(n, k) has
property P2, the polynomial b(n; k) has a factor u(n; k − h), h 6= 0. This
implies that the decomposition of T (n; k) contains a fraction of the form
t(n)/u(n − j; k − h)τ , where τ > 0, j ≥ 0, and Ej

n has a non-zero coefficient
in L. Additionally, the denominator of T has property P1; therefore, j must
be positive. By setting v(n, k) = u(n− j, k−h) we get what was claimed. ✷

Lemma 3 Let g(n, k) ∈ C[n, k] and for any factor p1(n; k) of g(n; k) ir-
reducible over C(n) there exist an irreducible factor p2(n; k) of g(n; k) and
j1, h1 ∈ ZZ, j1 > 0 such that p1(n; k) = p2(n + j1; k + h1). Then there exist
J, H ∈ ZZ, J > 0 such that p1(n, k) = p1(n + J, k + H).

Proof : If p1 = p2, then take (J, H) = (j1, h1) and the claim follows. Oth-
erwise, for any factor p1(n; k) of g(n; k) irreducible over C(n), there exist
j1, h1 ∈ ZZ, j1 > 0, such that p1(n; k) = p2(n + j1; k + h1), where p2(n; k) is a
factor of g(n; k) irreducible over C(n). We can continue this process and con-
struct a sequence p1(n; k), p2(n; k), p3(n; k), . . . of factors of g(n; k) irreducible
over C(n) such that for any l ≥ 1, we have pl(n; k) = pl+1(n + jl; k + hl),
jl, hl ∈ ZZ, jl > 0. Since g(n; k) has only a finite number of irreducible factors,
there exists an irreducible factor p(n; k) such that the relation

pα(n; k) = pβ(n; k) = p(n; k)

holds for some 1 ≤ α < β. Then for J = jα + · · ·+ jβ−1, H = hα + · · ·+hβ−1,
we have p(n; k) = p(n + J ; k + H), J > 0 ; and for J ′ = j1 + · · · + jα−1,
H ′ = h1+· · ·+hα−1, we have p1(n, k) = p(n+J ′, k+H ′), J ′, H ′ ∈ ZZ, J ′ > 0.
Consequently, p1(n, k) = p(n + J + J ′, k + H + H ′) = p1(n + J, k + H). ✷

Definition 1 A polynomial p(n, k) ∈ C[n, k] is integer-linear if it has the
form an + bk + c where a, b ∈ ZZ and c ∈ C.

7



Lemma 4 Let g(n, k) ∈ C[n, k] and for any factor p1(n; k) of g(n; k) irre-
ducible over C(n) there exist J, H ∈ ZZ, J > 0, such that

p1(n; k) = p1(n + J ; k + H). (8)

Then g(n, k) = c p1(n, k) · · · pm(n, k), where c ∈ C and p1(n, k), . . . , pm(n, k)
are integer-linear polynomials.

Proof : Take any factor p1(n; k) of g(n; k) irreducible over C(n). It follows
from (8) that for all m ∈ ZZ

p1(n + mJ ; k + mH) = p1(n; k) (9)

with J 6= 0. Note that p1(n; k) is linear in k because the coefficient field C(n)
is algebraically closed. We can assume p1(n; k) to be monic. Let

p1(n; k) = k − ϕ(n) ,

where ϕ(n) is an algebraic function. Assume that 0 is a regular point of ϕ(n)
(otherwise substitute n by n−z0 where z0 ∈ C is any arbitrary regular point
of ϕ(n)). The substitution of n = k = 0 into (9) yields

p1(mJ ; mH) = p1(0; 0) for all m ∈ ZZ .

This implies that mH −ϕ(mJ) has a constant value for all m ∈ ZZ and, as a
consequence, that for some γ ∈ C

ϕ(mJ) = mH − γ for all m ∈ ZZ .

Since ϕ(n) is an algebraic function, we have

ϕ(n) =
H

J
n − γ for all n ∈ C .

The last equality means that

p1(n, k) = k −
H

J
n + γ =

1

J
(Jk − Hn + Jγ) . ✷
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Theorem 1 (Criterion for the existence of a Z-pair for a rational function.)
Let F (n, k) ∈ C(n, k) be such that

F (n, k) = (Ek − 1)S(n, k) + T (n, k) , (10)

S(n, k), T (n, k) ∈ C(n, k), and the denominator g(n, k) of T (n, k) is such that
degk g(n, k) has the minimal possible value. Then a Z-pair for F (n, k) exists
iff each factor of g(n, k) irreducible in C[n, k] is an integer-linear polynomial.

Proof : The necessary condition follows from Lemmas 2, 3 and 4. Since
(Ek − 1)S(n, k) and T (n, k) (which is a proper term) both have Z-pairs, the
sufficient condition follows by applying Lemma 1. ✷

This approach can possibly be applied to develop a criterion that works
in the general case of hypergeometric terms in two variables. Note that in [6]
the decomposition problem, which is an analogue of (10), for hypergeometric
terms was solved. However, no analogue of Lemma 2 was considered in [6].

4 An Algorithm for Using the Criterion

First we consider the question of how to recognize if a given polynomial can
be written in the form

k + cn + γ, c ∈ Q, γ ∈ C. (11)

Lemma 5 A monic irreducible polynomial p(n; k) ∈ C(n)[k] has the form (11)
iff

p(n; k − cn) ∈ C[k]. (12)

Proof : If p(n; k) has the form (11) then (12) evidently holds. Conversely,
if (12) holds, then

p(n; k − cn) = α(k − β1) . . . (k − βm), α, β1, . . . , βm ∈ C.

This gives us

p(n; k) = α(k + cn − β1) . . . (k + cn − βm).

Since p(n; k) is monic and irreducible, we get what was claimed. ✷
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Let w(n, k) ∈ C[n, k] and c ∈ Q. Denote by wc(n, k) the product of all
monic irreducible factors of w(n, k) where each factor has the form (11). If
there is no such factor, then wc(n, k) = 1. It is evident that wc(n, k) 6= 1 only
for a finite set of values of c.

Theorem 2 Let w(n, k) ∈ C[n, k], degk w(n, k) > 0. Let c0, . . . , cm be all
rational values of c such that wc(n, k) 6= 1. Set δi = degk wci

(n, k). Then
w(n, k) can be represented as a product of integer-linear factors iff

δ0 + · · · + δm = degk w(n, k). (13)

Proof : If w(n, k) can be represented in the desired form, then (13) holds
since the wc0(n, k), . . . , wcm

(n, k) are pairwise relatively prime. If (13) holds,
then any irreducible factor p(n, k) of w(n, k) such that degk p(n, k) > 0
divides one of the wc0(n, k), . . . , wcm

(n, k). This implies that p(n, k) is an
integer-linear polynomial. If degk p(n, k) = 0 then p(n, k) is evidently integer-
linear.

Notice that Lemma 5 gives us a possibility to find degk wc(n, k) for all c ∈
Q such that wc(n, k) 6= 1, and Theorem 2 shows how to use the criterion for
an arbitrary rational function. We now describe an algorithm to determine
the applicability of Z to rational functions.

Let F (n, k) be a given rational function. Represent F (n, k) in the form (10)
and rewrite T (n, k) as the quotient f(n, k)/g(n, k) of two relatively prime
polynomials from C[n, k]. Now we can apply Lemma 5 and Theorem 2 to
g(n, k), but to simplify the computation, first extract from g(n, k) the max-
imal factors v1(n) ∈ C[n] and v2(k) ∈ C[k]. Set

w(n, k) = g(n, k)/(v1(n)v2(k)) ∈ C[n, k].

Now it remains to investigate whether w(n, k) can be decomposed into factors
of the form

k + cn + γ, c ∈ Q \ {0}, γ ∈ C (14)

or not. Substitute k − cn into w(n, k) for k (this gives us a polynomial
w̃(c, n, k)) and compute all nonzero rational values of c such that w̃(c, n, k)
has a non-constant factor from C[k]. To attain this goal we represent w̃(c, n, k)
as a polynomial in n with coefficients in C[c, k] and find all nonzero ra-
tional values of c such that these coefficients have a non-constant great-
est common divisor (a polynomial wc from C[k] for each value of c). This
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can be achieved by using resultant or subresultant approaches [2]. We find
c0, . . . , cm, i.e., all non-zero rational values of c such that degk wc(n, k) 6= 0.
Set δi = degk wci

(n, k). To check whether the criterion holds, it is sufficient
to check if relation (13) is satisfied.

Note that the algorithm does not require a complete factorization of the
denominator g(n, k) into integer-linear factors.

We conclude this section with a description of the algorithm isZapplicable
which determines the applicability of Z to F (n, k) ∈ C(n, k).

algorithm isZapplicable;
input: a rational function F (n, k) ∈ C(n, k);
output: true if Z is applicable to F (n, k); false otherwise;

apply an algorithm to solve the rational sum decomposition
problem w.r.t. k to obtain S(n, k), T (n, k) in (10);

if T (n, k) = 0 then return true; fi;
f(n, k) := numerator (T (n, k)); g(n, k) := denominator (T (n, k));
v1(n) := contentk (g(n, k)); w(n, k) := g(n, k)/v1(n);
v2(k) := contentn (w(n, k)); w(n, k) := w(n, k)/v2(k);
if w(n, k) = 1 then return true; fi;
w̃(c, n, k) := w(n, k − cn);
let {a1(c, k), . . . , aρ(c, k)} be the coefficients of w̃(c, n, k) ∈ C[c, k][n];
for i = 1, 2, . . . , ρ − 1 do

for j = i + 1, i + 2, . . . , ρ do

r := resultantk (ai(c, k), aj(c, k));
if r 6= 0 then

let s = {c0, . . . , cm} be the non-zero rational roots of r;
if s = {} then return false; fi;
for t = 0, 1, . . . , m do

wct
(k) := contentn (w̃(ct, n, k));

δt := degk wct
(k);

od;
if degk w(n, k) = (δ0 + · · ·+ δm) then

return true;
else

return false;
fi;
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fi;
od;

od;

The correctness of the algorithm follows from Lemma 5 and Theorem 2.

5 Implementation

The criterion usage and related functionalities are implemented in Maple 6.
They are grouped together into a package, named Zeilberger, by using the
module-based approach (see Chapter 6, [13]).

> eval(Zeilberger};

module Zeilberger ()
export IsHypergeomTerm, SumDecomposition, Gosper, Zeilberger,

is Z applicable, Z verify;
option package;
description

“Implementation of Zeilberger’s algorithm for the difference case”;
end module

The exported local variables indicate the functions that are available.
They include:

• IsHypergeomTerm(F, n): check if F is a hypergeometric term in n;

• SumDecomposition(F, n): application of the algorithm to solve the ra-
tional sum decomposition problem on F w.r.t. n [3];

• Gosper(F, n): application of Gosper’s algorithm on F w.r.t. n;

• Zeilberger(F, n, k, En): application of Zeilberger’s algorithm on F (n, k);

• is Z applicable(F, En, n, k): implementation of the criterion usage as
described in Sect. 4;

• Z verify(F,Z-pair, En, n, Ek, k): verification of the result from Zeilberger
and is Z applicable.
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The procedure is Z applicable has the following calling sequence

is Z applicable(F, En, n, k,Z-pair);

where F is a rational function in n and k, and En denotes the shift operator
w.r.t. n. The procedure is Z applicable returns false if F does not satisfy
the criterion as stated in Theorem 1; true if it does. In this case, if the fifth
optional argument Z-pair (which can be any name) is given, it is assigned to
the computed Z-pair (L, G) for F.

The program consists of three main steps:

1. decomposition problem: rewrite F in the form (10).

2. applicability of Z: check whether the denominator of T (n, k) factors
into integer-linear polynomials.

3. creative telescoping: if the answer in step 2 is positive, then apply the
routine Zeilberger to T (n, k) starting with order 1 for the difference
operator L until Z terminates. Then use Lemma 1 to obtain a Z-pair
for F (see Example 4).

Note that there exist different implementations of Z [7, 10, 11, 14, 15] such
as zeil in the package EKHAD [15], and sumrecursion in the distributed
Maple package sumtools [10]. Since the terminating condition that allows a
hypergeometric term to have a Z-pair is unknown, a maximum value of the
order of the difference operator L in the Z-pair (L, G) needs to be specified
in advance (for instance, the default values are 6 for the parameter MAXORDER
in zeil, and 5 for the global parameter ‘sum/zborder‘ in sumrecursion).
As a consequence, when given a rational function as input, these programs
might fail even if a Z-pair exists, i.e., the maximum order of L is not set high
enough, or they simply “waste” CPU time trying to find a Z-pair when no
such Z-pair exists. Our program, based on Theorem 1, compensates for these
weaknesses. It just calls Z when it is guaranteed that a Z-pair exists, and if
that is the case, there is no need to set an upper limit for the order of L.

For the next two examples, the rational function T (n, k) in the decom-
position (10) is identical to the given F (n, k) ∈ C(n, k). infolevel is also
used to show the main steps of the algorithms.

Example 2 Consider the rational function

F (n, k) =
1

k3 − 5 n k2 − 2 k2 + k n − 5 n2 − 17 n + 3 k − 6
.
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The denominator can be written in the form − (k − 5n − 2)(k2 + n + 3). It
does not satisfy the criterion, and hence there does not exist any Z-pair for F .
It takes our program 0.28 seconds to return the desired answer, as opposed
to 7382.53 seconds for zeil and about 18569 seconds for sumrecursion to
return the inconclusive answers “No recurrence of order ≤ 6 was found” and
“System error, ran out of memory”, respectively 1.

> with(Zeilberger);

[IsHypergeomTerm, SumDecomposition, Gosper, Zeilberger,
is Z applicable, Z verify]

> F := 1/(k^3-5*n*k^2-2*k^2+k*n-5*n^2-17*n+3*k-6):

> is_Z_applicable(F,E_n,n,k);

"solve the decomposition problem for the input function"

"check for the applicability of Z"

"Z is not applicable"

false

Example 3 Consider the rational function

F (n, k) =
1

n2 + 9 nk − 4 n − 22 k2 + 21 k − 5
.

The denominator can be written as (n − 2 k + 1) (n + 11 k − 5) . Therefore,
F (n, k) satisfies the criterion. This example illustrates the case when both
zeil and sumrecursion fail even though a Z-pair (L, G) exists. zeil returns
“No recurrence of order ≤ 6 was found”, and sumrecursion returns FAIL

(we use the default values of the orders of L for these two programs).
> F := 1/(n^2+9*n*k-4*n-22*k^2+21*k-5):

> is_Z_applicable(F,E_n,n,k,’Z_pair’);

"solve the decomposition problem for the input function"

"check for the applicability of Z"

"Z is applicable"

"find a Z-pair for the input rational function"

"The computation of a Z-pair is successful"

true

1All the reported timings were obtained on 400Mhz, 1Gb RAM, SUN SPARC
SOLARIS.
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The difference operator L in the computed Z-pair (L, G) is
> L := Z_pair[1];

L := (13 n + 157)E n12 + (13 n + 144)E n11 − (13 n + 14)E n − (13 n + 1)

As for G(n, k), its representation is too big in size to be shown here. But we
can verify that LF = (Ek − 1)G:
> Z_verify(F,Z_pair,E_n,n,E_k,k);

true

Example 4 In step 3 (creative telescoping) of the algorithm, we suggest that
Z be applied to T (n, k) and then Lemma 1 be used to obtain the computed
Z-pair, as opposed to applying Z directly to the input rational function. (It
is easy to check that the application of Lemma 1 in this case does give the
operator L in (5) of minimal possible order.) Let us name our algorithm Z-
modified, and the classical Z Z-original. We now compare the two algorithms
via a set of examples where S(n, k) in the decomposition (10) is non-trivial
(the cost is the same otherwise).

Set

T (n, k) =
8 n − 7 k − 4

(k − 3)2 (k + n − 5)3

in (10). Table 2 shows the timing (in seconds) and memory (in bytes) re-
quired by the two algorithms on a set of examples where Si,j(n, k) are ran-
domly generated (see Table 1; the indices i, j denote the total degrees of the
numerator and the denominator of S(n, k), resp.). It also shows the speedup
factors and the reductions in memory usage when Z-modified is used. The
results were verified by using the routine Z verify.

Table 1: The set of randomly-generated Si,j(n, k) used for testing.

S1,1 = (4 − k − 4n)/(−1 − k − 4n)
S1,2 = (−2 + 3k + 4n)/(4 − 3k − 3n + 4nk − n2)
S1,3 = (5 + k + 5n)/(−n− nk − 2k2 − 3nk2 + 3k3 − 5n2k)
S2,1 = (5 + 2k + 4n− 3nk − 3n2 − k2)/(−5 − 2k − 2n)
S2,2 = (−4 + k + n + 3nk − 4n2)/(4 − k + 2n + 4nk + n2 + 3k2)
S2,3 = (−5 + 3n − 5nk + n2 − 4k2)/(2nk + 3k2 + nk2 + 3n3 + 5n2k)
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Table 2: Time and space requirements of Z-original and Z-modified.

Timing Memory
Z-original Z-modified Speedup Z-original Z-modified Reduction

S1,1 45.580 5.570 8.183 168,974,832 25,003,012 85.20%
S1,2 83.170 6.290 13.220 316,153,824 26,150,832 91.73%
S1,3 310.510 8.380 37.053 720,545,420 30,709,100 95.74%
S2,1 12.110 5.970 2.028 49,911,296 23,388,768 53.14%
S2,2 87.980 6.390 13.770 323,202,104 25,854,140 92.00%
S2,3 305.350 7.860 38.850 908,073,148 31,811,268 96.50%

Example 5 We now show an example of a sequence of rational functions
F0(n, k), F1(n, k), . . . such that a Z-pair (Lm, Gm) for Fm(n, k) exists for every
m ∈ IN, and ord Lm > m, i.e., it is not always possible to set the order of L
high enough.

Consider the sequence of rational functions

Fm(n, k) =
1

n + (m + 1)k
, m ∈ IN .

It is easy to check that (Lm, Gm) = (Em+1
n − 1, Fm) is a Z-pair for Fm.

Notice that ord Lm = m + 1 > m. Suppose there exists L′

m ∈ C[n, En] such
that ordL′

m ≤ m and L′

mFm = (Ek − 1)G′

m for some G′

m ∈ C(n, k). We
can assume that the coefficient of E0

n in L′

m is a non-zero element of C[n].
Otherwise, choose the new Z-pair for Fm

(E−λ
n ◦ L′

m, G′

m(n − λ, k))

where λ is the minimal positive integer such that the coefficient of Eλ
n in

L′

m is not zero. Set Hm = L′

mFm = a(n, k)/b(n, k) taken in reduced form.
Since Hm is rational summable, b(n, k) has property P2. Therefore, for the
factor n + k(m + 1) of b(n, k), there exists a non-zero integer h such that
n + (k + h)(m + 1) is also a factor of b(n, k). Since all the irreducible factors
of b(n, k) have the form n + i + k(m + 1), i = 0, 1, . . . , ordL′

m, this means
(n+(k+h)(m+1))−(n+ i+k(m+1)) = h(m+1)− i is the zero polynomial
for some i. This is not possible since 0 ≤ i ≤ m and h 6= 0.
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6 A Remark on Zeilberger’s Algorithm and

Proper Terms

It is not easy to find in the literature an example of a hypergeometric term to
which Z is not applicable. For instance, the book [15], especially devoted to
certifying identities, does not have such an example. In [9] (p. 239), first the
very true statement that Z occasionally does not work is given. The authors
then state that Z fails on the simple hypergeometric term 1/(nk+1) and refer
the readers to Ex. 107. This exercise (p. 255) asks to prove that 1/(nk+1) is
not a proper hypergeometric term. But the fact that a hypergeometric term
is not proper does not imply that Z fails on that hypergeometric term (see
Example 6 below). In a similar manner it is shown in [18] that 1/(n2 +k2) is
not a holonomic function (see [18] for the definition) since there does not exist
any annihilator from C[n, En, Ek] for 1/(n2 +k2) (it was proven preliminarily
that for any holonomic function such an annihilator must exist). But, again,
this does not give grounds for claiming that Z fails on 1/(n2 + k2).

Based on the criterion established in Sect. 3, it is clear that there does
not exist any Z-pair for 1/(nk+1) and 1/(n2 +k2). Hence Z fails on them (a
direct short proof that 1/(nk+1) does not have any Z-pair is presented in [4]).
It is also clear from Example 6 that the non-existence of an annihilator from
C[n, En, Ek] for a given hypergeometric term does not imply that Z fails on
this hypergeometric term or, equivalently, that there does not exist a Z-pair
for this hypergeometric term.

Example 6 Consider

F (n, k) = (Ek − 1)
1

nk + 1
=

1

n(k + 1) + 1
−

1

nk + 1
. (15)

It is easy to see that (1, 1/(nk +1)) is a Z-pair for the rational function (15).
Therefore Z is applicable to F (n, k). Now we prove that the hypergeometric
term F (n, k) is not proper. Although (15) is not written in proper hyperge-
ometric form (4), we do not have yet any argument to claim that it is not
proper. This problem is not so simple: a remark from [9] especially empha-
sizes that the hypergeometric terms 1/(nk) and 1/(n2 − k2) are proper while
1/(nk+1) and 1/(n2+k2) are not. It was proven in [18] (see also [9, 15]) that
any proper hypergeometric term can be annihilated by a non-zero operator
M ∈ C[n, En, Ek] (the coefficients depend only on n). It was shown in the
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solution of Ex. 107 in [9] that for the hypergeometric term 1/(nk + 1) such
M does not exist (it follows that 1/(nk + 1) is not proper). Suppose that
F (n, k) of the form (15) is proper. Then MF (n, k) = 0 for some non-zero
M ∈ C[n, En, Ek] and hence

M((Ek − 1)
1

nk + 1
) = (M ◦ (Ek − 1))

1

nk + 1
= 0 .

But M ◦ (Ek − 1) is a non-zero operator from C[n, En, Ek]. Contradiction.
So it is not true that Z is applicable to all rational functions. It is also

not true that Z is applicable to a rational function F (n, k) only if F (n, k) is
a proper term. Finally, the non-existence of an annihilator from C[n, En, Ek]
for a given rational function F (n, k) does not in general imply that Z fails
on F (n, k).

7 On a Class of Evident Identities

Suppose R(n, k) is a rational function that has no pole at (n0, k0) with
n0, k0 ∈ ZZ, 0 ≤ k0 ≤ n0. Then clearly

n
∑

k=0

F (n, k) = 0 , (16)

where
F (n, k) = R(n, k) − R(n, n − k) . (17)

If there exists a Z-pair for (17), we can use Z to prove identities of the
form (16).

Example 7 Let R(n, k) = 1/(k+1) and, resp., F (n, k) = 1/(k+1)−1/(n−
k + 1). Then F (n, k) has a Z-pair (En − 1, 1/(n − k + 2)):

F (n + 1, k) − F (n, k) =
1

n − k + 1
−

1

n − k + 2
.

By applying the summation operator
∑n

k=0 to both sides of the last equality,
we obtain

n
∑

k=0

F (n + 1, k) −
n

∑

k=0

F (n, k) = 1 −
1

n + 2
. (18)
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Set s(n) =
∑n

k=0 F (n, k). We have from (18) that s(n + 1) − s(n) = 0. This
difference equation is of order 1 and its leading coefficient does not vanish
when n ≥ 0. Therefore it is sufficient to check (16) for n = 0. The result
of this checking is positive, i.e., s(0) = 0. However this method of identity
proving is possible only if the given rational function F (n, k) satisfies the
criterion formulated above. A rational function of the form (17) in most
cases does not have a Z-pair and Z fails on this function. This takes place,
for instance, if F (n, k) = R(n, k) − R(n, n − k) and R(n, k) is one of the
following rational functions:

1

nk + 1
,

1

nk + 2
, . . .

or
1

n2 + k2 + 1
,

1

n2 + k2 + 2
, . . .

or
1

n2 + k + 1
,

1

n2 + k + 2
, . . .

and so on.

8 q-Difference Case

Zeilberger’s algorithm can be carried over to the q-difference case [18, 11].
It is shown in [12] that after establishing the q-analogue of Properties P1

and P2 of the decomposition problem [3] as described in Sect. 2, one can
derive an analogous theorem for the applicability of Zeilberger’s algorithm
to rational functions in the q-difference case.

Theorem 3 (Criterion for the existence of a qZ-pair for a rational function.)
Let F (qn, qk) ∈ C(q)(qn, qk) be such that

F (qn, qk) = (Qk − 1)S(qn, qk) + T (qn, qk),

S(qn, qk), T (qn, qk) ∈ C(q)(qn, qk), and the denominator g(qn, qk) of T (qn, qk)
is such that degqk g(qn, qk) has the minimal possible value. Then a qZ-pair
for F (qn, qk) exists iff

g(qn, qk) = αqan
∏

i

(

qk − γiq
cin

)

, ci ∈ Q, γi, α ∈ C(q), a ∈ ZZ.
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Note that q is an indeterminate parameter, Qn, Qk denote the q-shift
operators w.r.t. qn and qk, resp., defined by QnF (qn, qk) = F (qn+1, qk),
QkF (qn, qk) = F (qn, qk+1).

9 Availability

The Maple package Zeilberger and related documents are available and can
be downloaded at the following URL

http://www.scg.uwaterloo.ca/~hqle/Zeilberger/difference/.
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