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Abstract

Let L(y) = 0 be a linear homogeneous ordinary differential equation with polyno-
mial coefficients. One of the general problems connected with such an equation is to
find all points a (ordinary or singular) and all formal power series

∑∞
n=0 cn(x − a)n

which satisfy L(y) = 0 and whose coefficient cn – considered as a function of n – has
some “nice” properties: for example, cn has an explicit representation in terms of n,
or the sequence (c0, c1, . . .) has many zero elements, and so on. It is possible that such
properties appear only eventually (i.e., only for large enough n).

We consider two particular cases:
1. (c0, c1, . . .) is an eventually rational sequence, i.e., cn = R(n) for all large enough

n, where R(n) is a rational function of n;
2. (c0, c1, . . .) is an eventually m-sparse sequence, where m ≥ 2, i.e., there exists an

integer N such that
(cn 6= 0) ⇒ (n ≡ N (mod m))

for all large enough n.
Note that those two problems were previously solved only “for all n” rather than

“for n large enough”, although similar problems connected with polynomial and hy-
pergeometric sequences of coefficients have been solved completely.

Résumé

Soit L(y) = 0 une équation différentielle linéaire ordinaire homogène et à coeffi-
cients polynomiaux. Un problème général en liaison avec une telle équation est la
recherche de tous les points a (ordinaires ou singuliers) et de toutes les séries formelles∑∞

n=0 cn(x − a)n qui vérifient L(y) = 0 et dont les coefficient cn – considérés comme
une fonction de n – vérifient de “bonnes” propriétés, comme par exemple, que cn ad-
mette une représentation explicite en termes de n, ou que la suite (c0, c1, . . .) comprend
de nombreux termes nuls. Un autre cas intéressant est par ailleurs celui où de telles
propriétés n’apparaissent qu’asymptotiquement (ex: pour des n assez grands).
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Dans cet article, nous considérons les deux cas particuliers suivants :
1. (c0, c1, . . .) est une suite ultimement rationnelle, i.e., cn = R(n) pour tout n assez

grand, où R(n) est une fraction rationnelle en n ;
2. (c0, c1, . . .) est une suite ultimement m-creuse, où m ≥ 2, i.e., il existe un entier

N tel que
(cn 6= 0) ⇒ (n ≡ N (mod m))

pour tout n assez grand.
Remarquons que ces deux problèmes n’avaient été jusqu’ici résolus que “pour tout

n”, et non “pour des n assez grands”, bien que des problèmes similaires en connection
avec des suites de coefficients polynomiaux ou hypergéométriques aient été résolus de
façon complète.

Keywords: Linear differential equations, Formal solutions, Recurrences for coefficients,
m-Sparse power series, Eventually rational points, Eventually m-points.

1 Introduction

Algorithms for solving ordinary differential equations by means of power series date back to
Newton. It is of interest in the context of modern computer algebra and theory of generating
functions to consider the problem of the search for formal power series solutions

∞∑

n=0

cn(x − a)n (1)

whose coefficients cn have some “nice” properties, for example, cn as a function of n has an
explicit representation in terms of n, or there are many zeros among c0, c1, . . ., and so on.
In the general case a fixed class M of sequences c = (c0, c1, . . .) ∈ C∞ is given. For a given
differential equation, one of the problems is connected with the search for such solutions
which have the form (1) with (c0, c1, . . .) ∈ M. The choice of the point a is of fundamental
importance in such a problem, because it is possible that such a solution exists at one point
and does not exist at another.

We will consider also the following more general problem: to find all points a (ordinary or
singular) and all formal power series solutions (1) of the given equation such that elements of
(c0, c1, . . .) coincide with the corresponding elements of some sequence of the class M for all
large enough n (i.e., eventually). In particular, we can discuss solutions in the form of series
whose coefficient sequence is eventually polynomial (i.e., there exists a polynomial p(n) such
that cn = p(n) for all large enough n) or eventually rational (i.e., there exists a rational
function r(n) such that cn = r(n) for all large enough n) and so on. Such a formulation of
the problem is quite natural because, for example, a rational function can be undefined for
some nonnegative integer numbers.

We will call any solution of the form (1) of a differential equation local at the point a.
Local solutions at a fixed point a form a linear space over C that we will denote by Oa(L).

The problem of the search for the local solutions that have the coefficient sequence
(c0, c1, . . .) belonging to one or another class was considered in a few papers. The basis
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of each of the approaches was the following: if a point a is fixed then the coefficients of any
local solution at a of the equation

pr(x)y(r) + · · ·+ p1(x)y′ + p0(x)y = 0, (2)

p0(x), . . . , pr(x) ∈ C[x], satisfy the linear recurrence

ql(n)cn+l + ql−1(n)cn+l−1 + · · · + qt(n)cn+t = 0, (3)

ql(n), ql−1(n), . . . , qt(n) ∈ C[n]. The last recurrence can be easily constructed. In [14] the
search for local solutions of (2) at a fixed point a with hypergeometric sequences (i.e., se-
quences which satisfy first order linear homogeneous recurrences with polynomial coefficients)
of coefficients has been considered. It was shown that if the corresponding solutions of re-
currence (3) are found, then constructing the desired local solutions of (2) is a simple linear
algebra problem. Algorithm Hyper [13] can be used to search for all hypergeometric solutions
of recurrence (3). Additionally in [14] an algorithm to search for primitive m-hypergeometric
sequences satisfying a recurrence of the form (3) is given. This allows one to find all local
solutions with primitive m-hypergeometric sequences of coefficients (for all n or eventually).
We remark that a sequence (ck, ck+1, . . .) is m-hypergeometric if a(n)cn+m + b(n)cn = 0,
n = k, k+1, . . ., for some polynomials a(n), b(n); an m-hypergeometric sequence (ck, ck+1, ...)
is primitive if it satisfies no linear homogeneous recurrence with polynomial coefficients of
order < m.

But in [14] only the case of a fixed point a was discussed, and the search for suitable
points a was not considered. In [6] the problem was considered for polynomial, rational
and hypergeometric sequences of coefficients. Looking for suitable points was the principal
moment of the investigation. It was shown that if (2) has a local solution with a polynomial
sequence of coefficients (for all n or eventually) then a + 1 is a singularity of equation (2),
i.e., pr(a+1) = 0. It was shown also that if (2) has a local solution with a rational sequence
of coefficients (for all n) then a is a singularity of equation (2), i.e., pr(a) = 0. It was shown
that if (2) has a local solution with a hypergeometric sequence of coefficients at an ordinary
point a then such solutions exist at any ordinary point, i.e., an ordinary point a can be
chosen arbitrarily and then investigated. All singular points have to be investigated one
after another (there is a finite set of them).

In [2, 3] the case of m-sparse sequences of coefficients was considered. The sequence
(c0, c1, . . .) is m-sparse, where m ≥ 2, if there exists an integer N such that

(cn 6= 0) ⇒ (n ≡ N (mod m)). (4)

The problem of the search for corresponding points a was solved for the case where the
sequence of coefficients is m-sparse for all n. An upper bound for m was found and it was
shown that for any fixed m either there exist only finitely many suitable points a (they are
called m-points of the given equation) and they can be found explicitly, or all points a ∈ C
are m-points of the given equation and the operator

L = pr(x)Dr + · · ·+ p1(x)D + p0(x) (5)
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can be factored as
L = L̃ ◦ C (6)

where C is an operator of the special m-sparse form with constant coefficients.
The solutions in the form of power series with m-sparse coefficients are of interest by

themselves and especially in connection with the search for m-hypergeometric m-sparse
power series solutions like power series for sin(x), cos(x) (2-hypergeometric 2-sparse), Airy
functions (3-hypergeometric 3-sparse), etc. The sum of any of these power series and a
polynomial is an eventually m-hypergeometric m-sparse power series for some m.

Note that the mentioned algorithm from [14] allows one to find only primitive m-hy-
pergeometric solutions of a recurrence. But it is easy to prove that an m-hypergeometric
m-sparse solution having cn 6= 0 with arbitrary large n is primitive m-hypergeometric. Thus
the algorithm from [14] together with an algorithm to search for all m-points is sufficient for
the search of all m-hypergeometric m-sparse local solutions of the given differential equation.

Looking through the list of solved problems of the search for local solutions one can detect
two gaps in it. In [14, 6, 2, 3] the following two concrete cases have not been considered.

G1. (c0, c1, . . .) is an eventually nonpolynomial rational sequence, i.e., we have cn = R(n)
for all large enough n, where R(n) is a nonpolynomial rational function of n.

G2. (c0, c1, . . .) is eventually m-sparse (in particular m-hypergeometric m-sparse), i.e.,
there exists an integer N such that (4) holds for all large enough n.
Concerning G1, note that any rational sequence is hypergeometric. But there is no method
in [6, 7] which lets one select such ordinary points at which a local solution with a rational
coefficient sequence exists.

It is possible to give examples showing that series with the coefficient sequences mentioned
in G1, G2 exist at points which algorithms from [6, 2, 3] do not find.

Example 1 The equation
(1 − x)y′′ − y′ = 0 (7)

has the local solution

− log(1 − x) =
∞∑

n=1

xn

n
(8)

with nonpolynomial rational function coefficients for n ≥ 1, while the point a = 0 is not a
singularity of (7).

Example 2 The equation

(x5 − 2x3 − x2 + x + 1)y′ − (x4 − 2x2 + 2x + 1)y = 0 (9)

has the local solution

x +
1

1 − x2
= 1 + x + x2 + x4 + x6 + · · · (10)

which is 2-sparse (and 2-hypergeometric as well) for n ≥ 2. But applying the algorithm from
[2, 3] to (9) with m = 2 results only in the information that (9) has no 2-points, and does
not yield the point a = 0.

Below we will fill in the two indicated gaps (G1 and G2). The result is that either only
a finite set of candidates for suitable points exist, or all points are suitable. In the first
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case each candidate can be checked by solving a simple linear algebra problem. We will not
discuss this check because it is very similar to the one described in [14].

A preliminary version of this paper has appeared as [4].

2 Generalities

We can write (2) in the operator form L(y) = 0, where L is equal to (5). The recurrence (3)
for coefficients of a local solution at 0 can be written as R(c) = 0 where R is a difference
(recurrence) operator

ql(n)El + ql−1(n)El−1 + · · · + qt(n)Et (11)

with l ≥ t; ql(n), . . . , qt(n) ∈ C[n]; ql(n), qt(n) 6= 0. The operator R is the R-image of L

where R is the isomorphism of C[x, x−1, D] onto C[n, E, E−1]:

RD = (n + 1)E, Rx = E−1, Rx−1 = E;

resp.
R−1E = x−1, R−1E−1 = x, R−1n = xD

(see [7]).
It can be useful to consider sequences of the form

c = (ck, ck+1, . . .) (12)

where k is an integer, possibly negative. If c has the form (12) then we write ν(c) = k. A
sequence of the form (12) can be multiplied by any α ∈ C and, therewith, ν(αc) = ν(c).
The sum of two sequences c and c′ is such that ν(c + c′) = max{ν(c), ν(c′)}. The actions of
the shift operator E and its inverse E−1 are defined in the natural way, ν(Ec) = ν(c) − 1,
ν(E−1c) = ν(c) + 1. Finally, if c is of the form (12) and a function f(n) is defined for all
n ≥ k then f(n)c = (f(k)ck, f(k+1)ck+1, . . .) and ν(f(n)c) = ν(c). We say that c of the form
(12) satisfies the equation R(z) = 0 if applying R to c gives the sequence (dk−l, dk−l+1, . . .)
with zero elements.

If the coefficient of xi in the polynomial pj(x) is not equal to zero in (5) then we write
xiDj ∈ L. It is easy to check that if L is of the form (5) and R = RL then

l = max
xiDj∈L

{j − i}, t = min
xiDj∈L

{j − i}. (13)

We set ω∗(R) = l, ω∗(R) = t. In the case R = RL we write

ω∗(L) = ω∗(R), ω∗(L) = ω∗(R).

Let c = (c0, c1, . . .). Denote by (c, x) the formal series c0 + c1x + · · · and by (c)≥k the
sequence (ck, ck+1, . . .) with ck = ck+1 = ... = c−1 = 0 if k < 0. It can be shown that if
R = RL and R is of the form (11), t = ω∗(L), then

L((c, x)) = 0 ⇐⇒ R((c)≥t) = 0 (14)
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(see [5, 7]). Let R be of the form (11) and ρ0 be the maximal nonnegative integer root of
ql(n) if such roots exist, and −1 otherwise. Set

ι∗(R) = l + ρ0 = ω∗(R) + ρ0.

Let L ∈ C[x, D] and R = RL, then we set ι∗(L) = ι∗(R). For any c = (c0, c1, . . .) such
that L((c, x)) = 0 the values c0, . . . , cι∗(L) allow one to compute (by means of RL) the
values cι∗(L)+1, cι∗(L)+2, . . . (these latter values are uniquely determined because the leading
coefficient of the recurrence RL does not vanish when we compute cn with n > ι∗(L)). Let
a ∈ C. Let L be of the form (5). Observe that the formal power series ya of the form (1) is
such that L(ya) = 0 iff La(y) = 0, where y is equal to

∞∑

n=0

cnxn (15)

and
La = pr(x + a)Dr + · · ·+ p1(x + a)D + p0(x + a). (16)

So, the general case of a fixed a can be reduced to the case a = 0.

Lemma 1 [2, 3] Let L be an operator of the form (5). Let a either be a parameter or belong
to C. Let Ra = RLa and Ra be equal to

gl′(n, a)El′ + · · ·+ gt′(n, a)Et′ .

Then t′ = ω∗(L) and gt′ does not depend on a. If a ∈ C then l′ ≤ r; otherwise l′ = r. ✷

Let R be of the form (11). Let ρ1 be the maximal nonnegative integer root of qt(n) if
such roots exist, and −1 otherwise. Set

ι∗(R) = max{t + ρ1,−1} = max{ω∗(R) + ρ1,−1}.

Let L ∈ C[x, D] and R = RL, then we set ι∗(L) = ι∗(R).
We formulate three properties of the value ι∗ which will be useful later.
1. For any (c0, c1, . . .) such that L((c, x)) = 0 the values ck, ck+1, ... with k > ι∗(L)+1 let

one compute (by means of RL) the values cι∗(L)+1, cι∗(L)+2, ..., ck−1 (these latter values are
uniquely determined because the trailing coefficient of the recurrence RL does not vanish
when we compute cn with n > ι∗(L)).

2. ι∗(L
a) = ι∗(L) (by Lemma 1).

3. Let L have the form (5), R = RL and R be of the form (11). Let R(d) = 0 where
d = (ds, ds+1, . . .), s = ι∗(L) + 1. Let (15) satisfy equation L(y) = 0 and (c0, c1, . . .) be the
coefficient sequence of (15). Let

cn = dn (17)

for all large enough n. Then (17) holds for all n = s, s + 1, . . . (by property 1).
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3 Eventually rational points of operators

If an equation L(y) = 0 of the form (5) has a local solution (1) at a such that (c0, c1, . . .) is
a rational sequence for all n (resp. for all large enough n), then we call a a rational point
(resp. an eventually rational point) of L and of L(y) = 0. It is evident that any rational
point is eventually rational.

Lemma 2 Let L ∈ C[x, D]. Then there exists L[1] ∈ C[x, D] such that for any point a the
operator of differentiation D maps the space Oa(L) onto the space Oa(L

[1]).

Proof: Due to Ore’s theory [11, 12] the operator L[1] is defined by the equality

LCM(L, D) = L[1] ◦ D

(LCM is the least common left multiple). In practice it is convenient to construct L[1]

directly, without using the Euclidean algorithm: let L have the form (5). If p0(x) is the zero
polynomial then L[1] = pr(x)Dr−1 + · · ·+ p1(x), otherwise one can construct

p0(x)D ◦ L − p′0(x)L (18)

which has the form p̃rD
r+1 + · · · + p̃0D and set L[1] = p̃rD

r + · · · + p̃0. ✷

One can construct operators L[2] = (L[1])[1], L[3] = ((L[1])[1])[1], . . . as well.

Lemma 3 Let L ∈ C[x, D] and a either belong to C or be a parameter. Then (La)[1] =
(L[1])a.

Proof: This is evident if p0(x) is the zero polynomial. Otherwise observe that for the operator
M which is equal to (18) we have

Ma = p0(x + a)D ◦ La − p′0(x + a)La,

and at the same time p0(x + a) is the coefficient of D0 in the operator La. ✷

Let U(n) be a rational function such that for the series ya defined by (1) the equality
cn = U(n) holds for n ≥ k where k is a nonnegative integer. Then the series

y′
a =

∞∑

n=0

fn(x − a)n

is such that fn = (n + 1)U(n + 1) for n ≥ max{0, k − 1}. It is clear that V (n) = (n +
1)U(n+1) is a rational function of n (it is possible that V (n) is a polynomial while U(n) is a
nonpolynomial rational function). It is easy to show that if ya satisfies L(y) = 0 of the form
(2) then cn = U(n) for all N > ι∗(L): in [1] a description of an algorithm to find rational
solutions of a linear recurrence with polynomial coefficients was given; it was shown there
that if S(c) = 0 is such a recurrence then any pole of a rational function which satisfies the
recurrence is ≤ ι∗(S). Therefore in the case S = Ra = RLa, a ∈ C, the poles are ≤ ι∗(L

a).
But by property 2 of the value ι∗ (see Section 2) we have ι∗(L

a) = ι∗(L). We can use further
property 3 of ι∗. We get the following theorem.
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Theorem 1 Let a be an eventually rational point of L ∈ C[x, D]. Then a is a rational point
of L[ι∗(L)+1]. ✷

Therefore, to find all eventually rational points of L it is sufficient to construct the
operator M = L[ι∗(L)+1] and to investigate all points a such that either a itself or a + 1 is a
singularity of the operator M .

Going back to Example 1 we see that the recurrent operator (n+1)(n+2)E2− (n+1)2E

corresponds to equation (7). Therefore ι∗(L) = 0 where L = (1 − x)D2 − D. We have
L[1] = (1 − x)D − 1. The set of singularities and of points a such that a + 1 is a singularity
of L[1] is {0, 1}. Further investigation shows that 0 is an eventually rational point of L.

4 Eventually m-points of operators

As noted in Section 1, a point a is an m-point of an operator L if the equation L(y) = 0 has
a local solution at a with m-sparse sequence of coefficients. If the sequence is m-sparse for
all large enough n then we will call a an eventually m-point of L (hence, any m-point of L

is at the same time an eventually m-point).
We will consider along with operators L and R = RL the set of operators L0, . . . , Lm−1

and R0, . . . , Rm−1 which are called an m-splitting of the operators L and R ([2, 3]). If L and
R are of the form (5) and, resp., (11) then

Lτ =
∑

xiDj∈L

j−i−t≡τ (mod m)

pjix
iDj , (19)

Rτ =
∑

t≤j≤l

j−t≡τ (mod m)

qj(n)Ej , (20)

RLτ = Rτ , τ = 0, . . . , m − 1, l = ω∗(R) = ω∗(L), t = ω∗(R) = ω∗(L). We call a difference
operator of the form (11) m-sparse if for some N

(qj(n) 6= 0) ⇒ (j ≡ N (mod m))

and we call a differential operator M m-sparse if for some N

(xiDj ∈ M) ⇒ (j − i ≡ N (mod m)).

It is easy to see that any differential and any difference operator defined by (19) and by
(20) are m-sparse. It is also easy to show that the R-image of a differential operator is an
m-sparse difference operator iff the original differential operator is m-sparse.

In [8] some properties of the sequences that satisfy equalities T1(c) = T2(c) = · · · =
Tk(c) = 0, where T1, . . . , Tk ∈ C[n, E], are proven. Those results can trivially be extended
to the case T1, . . . , Tk ∈ C[n, E, E−1]. We will use a theorem from [8] that after extending
to operators from C[n, E, E−1] can be presented in the following form:
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Theorem 2 Let T1, . . . , Tk ∈ C[n, E, E−1], s = min{ι∗(T1), . . . , ι∗(Tk)} + 1. Let a sequence
d = {dw, dw+1, . . .}, w > s, satisfy equalities T1(d) = T2(d) = · · · = Tk(d) = 0. Then the
sequence d uniquely can be extended to the sequence

d′ = {ds, ds+1, . . . , dw−1, dw, dw+1, . . .}

such that
T1(d

′) = T2(d
′) = · · · = Tk(d

′) = 0. (21)

✷

Observe that the uniqueness of such an extention is a trivial fact: suppose s = ι∗(Tu) +
1, 1 ≤ u ≤ k, then d′ can uniquely be constructed by means of Tu. The nontrivial part of
the theorem is (21).

This theorem allows us to establish an important property of eventually m-sparse se-
quences.

Theorem 3 Let R ∈ C[n, E, E−1], t = ι∗(R) + 1. Let an eventually m-sparse sequence
{c0, c1, . . .} satisfy the equality R(c) = 0. Then the sequence c≥t = {ct, ct+1, . . .} is m-sparse.

Proof: For any large enough non-negative integer w the sequence {cw, cw+1, . . .} is m-sparse.
Suppose w is such an integer. If w ≤ t then there is nothing to prove. Suppose w > t. If
R0, . . . , Rm−1 is the m-splitting of R, then by (20), ι∗(R) = ι∗(R0).

Set di = ci, i = w, w + 1, . . . The sequence

d = {dw, dw+1, . . .}

satisfies the equalities
R(d) = R0(d) = · · · = Rm−1(d) = 0.

By Theorem 2 there exists the uniquely-defined sequence d′, ν(d′) = s = min{ι∗(R), ι∗(R0),
. . . , ι∗(Rm−1)} + 1, such that d′

≥w = d and

R(d′) = R0(d
′) = · · · = Rm−1(d

′) = 0.

So we have R0(d
′) = 0 and ι∗(R0)+1 = ι∗(R)+1 = t. Since the sequence d and the operator

R0 are m-sparse this implies that the sequence {dt, dt+1, . . .} is m-sparse. By R(d′) = 0 and
t ≥ s we have di = ci for all i = t, t + 1, . . . ✷

As consequence we get the following

Theorem 4 Let a be an eventually m-point of L ∈ C[x, D]. Then a is an m-point of
L[ι∗(L)+1]. ✷

In [2, 3] was shown that for any fixed m either there exist only finitely many m-points
a and they can be found explicitly, or all points a ∈ C are m-points of the given equation
and the operator L can be factored as (6) where C is an m-sparse differential operator with
constant coefficients, ord C > 0. If a ∈ C is an m-point then La

0, . . . , L
a
m−1, i.e., the elements
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of the m-splitting of the operator La are such that ord GCD(La
0, . . . , L

a
m−1) > 0, where GCD

is the greatest common right divisor.
Note that in the situation where any point is an m-point of L it is possible that at some

points there exist more linearly independent (eventually) m-sparse local solutions than at
others. To select such points one can find an m-sparse differential operator C with constant
coefficients such that (6) takes place with some L̃ ∈ C[x, D] (using the algorithm from [3] one
can find such an operator C of the greatest possible order). It is easy to see that applying C

to an eventually m-sparse series gives an eventually m-sparse series. It means that it would
pay to consider especially the eventually m-points of L̃. If the set of such points is empty
then the only eventually m-sparse solutions of L(y) = 0 are solutions of C(y) = 0 and all
points are interchangeable.

According to [2, 3] we can assume m to satisfy

2 ≤ m ≤ ord L − ω∗(L).

Going back to Example 2, we see that 2 ≤ m ≤ 5. For m = 2 we have GCD(La0
0 , La0

1 ) = 1
for all a0 ∈ C and by [2, 3] the equation L(y) = 0 has no 2-sparse solution. We find ι∗(L) = 1,

M = L[2] = (12x3 + 12x)D + (3x4 − 2x2 − 1).

We have
Ma

0 = (3x4 + (18a − 2)x2 + (3a4 − 2a2 − 1))D + (12x3 + (36a2 + 12)x),
Ma

1 = (12ax3 + (12a3 − 4a)x)D + (36ax2 + 12a3 + 12a).
The algorithm [10] allows to determine that GCD(Ma

0 , Ma
1 ) is

(3x4 − 2x2 − 1)D + (12x3 + 12x)

if a = 0 and 1 otherwise. Therefore the point 0 is the only candidate for eventually 2-
points. There is no such candidate if m ∈ {3, 4, 5}. Further investigation shows that 0 is an
eventually 2-point of L.
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[13] M. Petkovšek, Hypergeometric solutions of linear recurrences with polynomial coeffi-
cients, J. Symb. Comput. 14 (1992) 243–264.
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