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Abstract—We consider matrices with entries in some domain , i.e., in a ring, not necessarily com-
mutative, not containing non-trivial zero divisors. The concepts of the row rank and the column rank
are discussed. (Coefficients of linear dependencies belong to the domain ; left coefficients are used
for rows, right coefficients for columns.) Assuming that the domain satisfies the Ore conditions, i.e.,
the existence of non-zero left and right common multiples for arbitrary non-zero elements, it is proven
that these row and column ranks are equal, which allows us to speak about the rank of a matrix without
specifying which rank (row or column) is meant. In fact, the existence of non-zero left and right com-
mon multiples for arbitrary non-zero elements of  is a necessary and sufficient condition for the
equality of the row and column ranks of an arbitrary matrix over . An algorithm for calculating the
rank of a given matrix is proposed. Our Maple implementation of this algorithm covers the domains
of differential and ( -)difference operators, both ordinary and with partial derivatives and differences.

DOI: 10.1134/S0965542523050020

1. INTRODUCTION
Operations with matrices are widely used in basic and applied research. In carrying them out, it is

important to bear in mind that their properties depend on the properties of the algebraic structure to which
the matrix entries belong.

A domain in this paper is a ring, not necessarily commutative, which contains no nontrivial zero divi-
sors (in literature the terms entire ring, integral domain etc.are also used). In the sequel,  always denotes
a domain.

Definition 1. Let  be a matrix over . The rows  of  are linearly dependent over  if there
are , not all zero, such that ; otherwise, these rows are linearly
independent over . The columns  of  are linearly dependent over  if there are

, not all zero, such that ; otherwise, these columns are linearly
independent over . The maximum number of linearly independent rows resp. columns of  is called the
row rank or the left rank, resp. the column rank or the right rank, of .

The definition of the rank of a matrix as the maximum number of its linearly independent rows, and
the proof that this number is equal to the maximum number of its linearly independent columns, is the
approach in classical linear algebra. But there are examples of non-commutative domains for which these
ranks need not coincide (see, e.g., Example 1 in Section 2), so it is natural to ask for a characterization of
domains  such that the row and column ranks of matrices over  do coincide. We provide such a char-
acterization in Theorem 1 in Section 3 where we show that domains with this property are exactly those
satisfying the Ore conditions, i.e., where non-zero left and right common multiples exist for arbitrary non-
zero .

Let us review here some of the definitions and theorems from the literature on these and related topics,
and compare them with our approach.
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In order to determine the row resp. column rank of , we need to test linear dependence of sets of rows
resp. columns of . Note however that in a general domain , the familiar linear-algebraic methods for
testing linear dependence of a set  may not work. In the literature, one can find different
approaches to defining the rank of a matrix over a domain. Often the definition is selected based on the
convenience of proving the desired theorems, which may lead to apparent inconsistencies with results
from sources using non-equivalent definitions. Even for equivalent definitions, the proofs of their equiv-
alence can be rather complicated and cumbersome; an example is presented later in this section.

The questions of embeddability of a domain into a skew field (a non-commutative field) and, in par-
ticular, of existence of a skew field of fractions, are discussed in many publications: see, e.g., [4, 7, 8, 15].
In [4], the rank concept is given in Definition 1.1: Let , where  is a skew field. The subspace of

 spanned by the row vectors of  is called the row space of , and the subspace of  spanned by the
column vectors of  is called the column space of . The dimension of the row space of a matrix  is called the
row rank of , and the dimension of the column space of a matrix  is called the column rank of . The fol-
lowing assertion is then proved as Theorem 1.2: Let  be an arbitrary -matrix over a skew field K. Then
the row rank of  and the column rank of  are equal. Notice that since  is a skew field, the dimension of
the row resp. column space equals the maximum number of linearly independent rows resp. columns of

. An example of such a skew field  is the left skew field  of quotients of , i.e., the skew field of formal
fractions of the form  with , . The existence of this skew field is guaranteed if  satisfies
the Ore conditions (see, e.g., [12], Section 2, [7], or [14], part II, §9). We prove Theorem 1 in Section 3
by showing that the row and column ranks over  coincide with the corresponding ranks over , and
hence with each other. Note that instead of with the left skew fields of quotients, it is equally possible to
work with the right skew fields of formal fractions of the form  with , . It is also known
that for domains  satisfying the Ore conditions, their skew fields of left and right quotients are isomor-
phic, but this is not essential here.

To illustrate the claim that proofs of equivalence of various definitions of the concept of rank of matri-
ces over non-commutative domains can be complicated, we turn to [2], where the rank of a matrix over
an Ore polynomial ring (see [13] or [3]) is defined as the maximum number of its linearly independent
rows. The authors of [2] note that their definition differs from the one in [8], Section 0.6, where the rank
of a matrix  over  is defined as the rank of the left module  generated by the rows of  over , i.e.,
as the cardinality of a maximal -linearly independent subset of . Theorem A.2 in [2] states that for
matrices over an Ore polynomial ring, the two quantities ultimately are the same. However, the part of the
proof of this theorem which shows that the rank of  does not exceed the maximum number of -linearly
independent rows of  certainly appears to be non-trivial.

In Lopatinsky’s book [10], the importance of the concept of rank for the study of integral manifolds of
systems of linear partial differential equations is emphasized, and the proof of equality of the row and col-
umn ranks is given there only for differential operators. In [2], the proof of equality of the row and column
ranks of matrices over a ring of (non-commutative) Ore polynomials equipped with an automorphism 
and a self-map  which is a differentiation with respect to  is given (see, e.g., [13] or [3]). Such one-vari-
able Ore polynomials do not cover, say, partial differential operators. As for the ring of one-variable Ore
polynomials over a commutative field of coefficients like the one considered in [2], this ring is Euclidean.

The articles [16, 17] also give examples of proofs of the equality of different ranks defined for matrices
over domains having some specific properties. The definitions considered differ from our Definition 1. Let
us add that Definition 1 is natural and agrees with that accepted in classical linear algebra.

In our proofs in Section 3 we proceed from the more general assumption that for the domain , the
Ore conditions are satisfied. For a multivariate Ore polynomial ring (in particular, for the ring of partial
differential operators), this condition is satisfied, as shown in [5]. As a special case, our Theorem 1 covers
matrices with ordinary differential operators as elements. In [15], equality of the row and column ranks of
such matrices is proved using the fact that the ring of ordinary differential operators is Euclidean. In [8],
Subsection 8.1, Theorem 1.1, a more general case is considered with  a principal ideal ring. Note that
every Euclidean ring is a principal ideal ring, but the Ore conditions can be satisfied also for a domain that
is not a principal ideal ring.

The theory of left and right determinants proposed by Ore in [12] does not seem to provide a quick way
to prove equality of the row and column ranks, although it allows one to establish that the rows of a matrix

 over  are linearly dependent if and only if so are the columns of . It seems that the available literature
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ON RANKS OF MATRICES OVER NONCOMMUTATIVE DOMAINS 773
lacks a complete proof of equality of the row and column ranks (in the sense of Defnition 1) for matrices
over a domain  that satisfies the Ore conditions.

The contents of the rest of the paper are as follows. Section 2 lists the main properties of the ranks of
matrices over , and presents two examples: one of a matrix with differing row and column ranks, and one
which demonstrates why it is opportune to define the column ranks by using linear combinations with
right scalar factors, and the row ranks by using linear combinations with left scalar factors – as we do in
Definition 1. Section 3 contains Lemmas 1, 2 and Theorem 1 which prove the main theoretical result of
the paper – namely, that the row and column ranks of matrices over domains satisfying the Ore conditions
are equal. It also shows that if one has an algorithm for calculating non-zero left common multiples of
domain elements, one can compute matrix ranks by Gaussian elimination. In Section 4, a Maple imple-
mentation of this approach is proposed, oriented towards matrices whose entries are either partial differ-
ential or partial difference or partial -difference operators, and showcased by several computational
examples.

A preliminary version of this paper was published as [1], where instead of the Ore conditions a more
complex necessary and sufficient condition for equality of the row and column ranks of a matrix  over 
was proposed, namely that for any positive integer , the rows of any matrix from  as well as the
columns of any matrix from  are linearly dependent over . In fact, in the current paper this con-
dition is strengthened: the only value of  that should be considered for ,  is .

2. PRELIMINARIES AND MOTIVATING EXAMPLES

Considering a matrix  of the form

(1)

we will denote by  the -th row, , and by  the th column, , of .

If the given domain  is embedded in a skew field , then the left and right ranks over  of a matrix
 are equal, but the question of equality of ranks of this matrix over  remains open. If we consider

the skew field  of left fractions (i.e. fractions of the form ), or the skew field  of right fractions of
the form  as an extension of , then given that over each of these skew fields the left and right ranks
of  are equal, it is not clear a priori whether these ranks over  and  are equal. Lemma 2 proved below
in Section 3 gives an affirmative answer about the equality of all left and right ranks over , , .

Recall that the skew field axioms differ from the field axioms in the absence of the commutativity
axiom of multiplication; skew fields are sometimes called non-commutative fields. The equality of the left
and right ranks over an arbitrary skew field is proved in, e.g., [4], Theorem 1.2.

The main properties of the ranks of matrices of the form (1) are the following:
(P1) From [4, 6] it follows that if  is embedded in some skew field  and if the linear dependencies

of the rows (columns) are considered with coefficients belonging to  (one can speak of a dependence over
), then the left and right ranks over  coincide.

The notation  and  will be used for the left and right ranks of the matrix  over the
domain or skew field .

(P2) It is evident that if  is a skew field and , then

(P3) Conditions for the existence of a skew field were suggested by O. Ore in [12]:

In order for a domain  to have the left skew field  (with elements of the form ), it is necessary
and sufficient that for any  there exists a left common multiple , i.e., that

 for some .
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Ore himself uses the term common multiplum for such a . We will write . It is established
inductively that if , then  exists: for each  with  we have

 for some .
Similarly, we can consider the right common multiple  and, respectively, the right skew field

of fractions  i.e., the skew field of fractions of the form .
We present here two examples which show that the row and column ranks of matrices over a domain

 behave differently when  is a non-commutative domain than in the familiar case when  is a field. The
first example shows that the row and column ranks of matrices over a non-commutative domain need not
coincide.

Example 1. Let  be the ring of polynomials in non-commuting variables  and  (hence )
over some field, e.g., the field of rational numbers . Consider the matrix

Its rows  and  are linearly independent over . So, the row rank of  is 2, while its column rank is 1.
Example 2 features a domain  such that, according to Lemma 2 in Section 3, the row and column

ranks of every matrix over  coincide, but this would be false if linear dependence of a set of columns were
defined alternatively using the multipliers  in Definition 1 as left rather than right factors.

Example 2. Let , and let  be the ring  of linear ordinary differential operators with

coefficients in . The columns  of the matrix

satisfy , so under the above alternative definition of linear dependence they would be linearly

dependent, and the column rank of  would be 1. On the other hand, assume that  for
some . Then

(2)

(3)

hence  by (3), so  by (2), and  by (3), implying that the rows of  are linearly inde-
pendent, and the row rank of  is 2.

However, if we consider the rank by columns as the right-hand rank, then for  this rank will be equal
to 2. Indeed, if  then

(4)

(5)

Multiplying (5) on the left by  and subtracting from (4) we obtain . From (5) we now get .

3. THE RANKS AND THEIR COMPUTATION
Lemma 1. Let the domain  satisfy the Ore conditions for existence of the left and right skew fields of frac-

tions, and let ,  be those left and right skew fields of fractions for . Then
(i) .
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Proof. (i) It is sufficient to show that rows of  are linearly dependent over  if and only if these rows
are linearly dependent over .

It is evident that dependency over  implies dependency over . To prove the converse, let

(6)

, , , . Let , and let  be
such that , . Then the left multiplication of (6) by  gives ,
and since  for some , the absence of zero divisors in  guarantees that .

(ii) Can be proved similarly: each element of the skew field  is represented as , , .
Lemma 2. Let the domain  satisfy the Ore conditions for existence of the left and right skew fields of frac-

tions, and let ,  be those left and right skew fields of fractions for . Let  be a matrix over . Then
, , , , ,  are all equal.

Proof. It follows from Lemma 1(i) and (P2) that

(7)
It can be proved similarly that

(8)

Taking into account the equalities ,  (see (P1)), we get
from (7), (8) that , and, at the same time, . Hence the sign

 in (7), (8) can be replaced by . Thus

(9)

are all equal among themselves.
Remark 1. For the special case of Ore algebra (an algebra of skew polynomials in several indetermi-

nates), F. Chyzak and B. Salvy proposed in [5] an algorithm for computing non-zero right and left com-
mon multiples of non-zero elements, for example, it works for linear differential and ( -)difference oper-
ators, both ordinary and those with partial derivatives and differences. F. Chyzak implemented this algo-
rithm as the command annihilators of Maple package Ore_algebra [11].

Lemma 2 shows that by computing the value of one of the ranks in (9), we find out the value of each
of them. Therefore, to calculate the value of any one of these ranks we can focus on the rank whose cal-
culation looks the simplest. Since  is a (skew) field, the calculation of  looks more convenient
than, say, the calculation of . We concentrate on the calculation of  by Gaussian elim-
ination, using the following elementary rank-preserving transformations:

(T1) Swapping two rows in a matrix.
(T2) Left multiplication of a row by a nonzero element of .
(T3) Replacing a row with the sum of the replaced row itself and some other row, multiplied from the

left by a nonzero element .
These transformations are formulated in [8], §8.1 for matrix columns; right multiplication is used

instead of left.
Gaussian elimination will make it possible to bring the matrix  into a stepped form, where the non-

zero rows have different numbers of initial zero elements. The number of such rows is the desired rank.

We emphasize that it is possible to compute  of a matrix  using only operations from
, i.e., Gaussian elimination can be performed in a fraction-free way. Let some row have the first nonzero

element , and let another row have the first nonzero element  in the same column. Then according to
the Ore conditions there exist  such that

(10)
Multiply the first row from the left by , and the second one by . The sum of the obtained rows gives a
row having zero as its first element. The rank computed by this kind of eliminations is equal to .
By T2, the multiplication of a row of  by  from the left is allowed for invertible . Since ,  is invert-
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776 ABRAMOV et al.
ible in  even if  is not invertible in . All the calculations involved in computing  are carried
out without leaving . Equality of the resulting value to  and  is assured by Lemma 2.

Theorem 1. (i) Let  be a domain satisfying the Ore conditions for the existence of left and right skew fields
of fractions, i.e., for any  there exist  such that , . Then for
any matrix , the values  and  are equal; as a consequence, we can simply speak
about the rank  of the matrix  over .

(ii) If there exists an algorithm for finding a non-zero left common multiple of arbitrary , or a
similar algorithm for finding a non-zero right common multiple of arbitrary , then there is an algo-
rithm for computing  of any matrix , .

Proof. (i) By Lemma 2.

(ii) Assume that we know an algorithm for calculating  for which (10) holds. Let the elements
 of the matrix  be nonzero, and let  be such that . Then replacing the row  with

(11)

results in elimination of the th element in the th row using the th row. If the first  elements in both
 are equal to zero, then the first  elements of (11) are equal to zero.

Similarly, ranks can be computed by Gaussian elimination in the columns of the matrix using right
common multiples of the matrix elements.

Corollary 1. Let  be such a domain that for any  there exist  such that
, . Then multiplication of any row (column) of a matrix on the left (right) by a non-

zero element  does not change .

Proof. Multiplying a row (column) by  does not change  (resp., ). Hence
 do not change either.

Let us add to assertion (i) of Theorem 1 that the Ore conditions are not only sufficient, but also neces-
sary for equality of ranks over  of any matrix with entries in . A proof of necessity of these conditions
is obtained by considering matrices

with arbitrary nonzero .
Remark 2. As a special case, Theorem 1 covers matrices with ordinary differential operators as ele-

ments. This case has been repeatedly discussed in the literature. For example, in [15] the equality of the
row and column ranks of such matrices was proved using the fact that the ring of ordinary differential
operators is Euclidean. In [8], Section 8.1, Theorem 1.1, a more general case is considered with  a prin-
cipal ideal ring (note that every Euclidean ring is a principal ideal ring).

4. IMPLEMENTATION AND USE OF THE ALGORITHM

Using commands of the Maple system mentioned in Remark 1, we have implemented Gaussian elim-
ination on matrices with entries in an Ore algebra. The algorithm is run by invoking the command

OreAlgebraGaussianElimination

and is available at
http://www.ccas.ru/ca/orealgebragaussianelimination.

Let us consider some examples of its applications.
Declare an Ore algebra by the differential type, which is predefined in the package Ore_algebra:
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ON RANKS OF MATRICES OVER NONCOMMUTATIVE DOMAINS 777
Here we introduce differential operators  and . This Ore algebra consists of linear dif-

ferential operators that are linear combinations of monomials of the form  where , with
coefficients which are polynomials in the variables , . For the matrix

Gaussian elimination yields

This result has rank two, hence the source matrix  has rank two as well.
The next example presents an Ore algebra of linear difference operators:

Here we introduce operators , where , and , where .
For the matrix

we find out that its rank is two:

The next matrix has entries which are ordinary difference operators:

We see that the rank of  is three, i.e., that  has full rank.
The last example demonstrates an Ore algebra of linear -difference operators:

Here we introduce operators , where , and , where . For
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we obtain the full-rank result again:
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