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Abstract—The roots of the indicial polynomial constructed for a given linear ordinary differential
operator provide information on the singularities of the solutions of the corresponding homogeneous
differential equation. Operators and equations whose coefficients are formal Laurent series are dis-
cussed. Solutions of the same type are also considered. Under these assumptions, the structure of the
indicial polynomial of the product of differential operators is described. This structural (multiplica-
tive) property is preserved in the case of convergent series.
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1. INTRODUCTION
Solutions of a linear ordinary differential equation that have the form of formal Laurent series can be

constructed using an induced recurrent operator that provides a relation for the coefficients of such solu-
tions. Let us clarify that a formal Laurent series over a field  is an expression  (a formal sum—issues
of convergence for such series are not considered) having the form

(1)

where all , i.e., the coefficients of the series belong to , and there exists  such that  for

; for such , the series (1) can be rewritten as , or as . It
should be emphasized that, even with existence of such , the series (1) is consider to be two-sided, as
well as the sequence of its coefficients: in such a two-sided sequence, all elements that have, in particular,
negative indices sufficiently large in absolute value are equal to zero.

In some publications on computer algebra, the term “a formal meromorphic series” is used; in this arti-
cle, we use the term “a formal Laurent series”, as in most publications.

For formal Laurent series, the basic arithmetic operations and differentiation are defined—details are
given in Section 2.

In this context, consideration of recurrent operators arises in connection with the fact that, if there is
a differential operator

(2)

(hereinafter,  is the operator of differentiation of a series with respect to ) and the role of the coeffi-
cients of the operator  is played by formal Laurent series over some field , then this  can be associated
with an induced recurrent operator

(3)
in which

•  is the shift operator; i.e.,  for an arbitrary sequence ;
• the coefficients  are polynomials in  over , having degree not higher than —the maximum

degree of  in ,
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• the operator  enters into  with a finite number of integer nonnegative exponents and, generally
speaking, with an infinite number of integer negative exponents. Details are given in Section 2.

Thus,  is represented as a formal Laurent series in . Then, if application of L to the series (1)
yields a two-sided series , then the two-sided sequence of coefficients  is obtained by

applying  to the two-sided sequence . In particular, any solution of the form (1) of the equation
 is associated with a solution  of the equation  and vice versa. It is essential that

the solution of the equation  is a formal series, while the solution of the equation  is a
sequence of coefficients.

The operator  can be used in calculating the coefficients of the series solution. Of course, the
induced operator  has to be constructed. But, if it has already been constructed (taking into account
that only a certain fragment of the operator  rather that the entire operator may be required for the pro-
posed calculations, only a finite number of terms of the operator  with negative powers of  are needed
in the calculations), then, as will be established below, the indicial polynomial (see Section 2) and some
other auxiliary objects have also been constructed, if the aforementioned fragment was sufficiently repre-
sentative—these auxiliary objects are extracted from  rather easily. Even before the direct computa-
tional use of the recurrent operator, its very form allows one to find some characteristics of the series solu-
tion, which additionally opens up an opportunity for proving some properties of the coefficients of the
solutions, as well as various quantities and objects associated both with the differential equation itself and
with its solutions. In particular, in Section 3, some multiplicative properties of the indicial polynomials
are proved (Theorems 1 and 2).

It is worth emphasizing that the article does not propose new methods for solving differential equa-
tions. The aim of the article is different: to prove the existence of useful nontrivial properties for such an
important tool for studying and solving differential equations as the indicial polynomial and, accordingly,
the indicial equation.

The article uses the standard notation  for the ring of polynomials and  for the field or ring
of formal Laurent series in  over a given field (or ring) , i.e., polynomials and series with coefficients
belonging to the field or ring K.

2. PRELIMINARY INFORMATION
2.1. Formal Laurent Series

For brevity, where it does not cause misunderstanding, we will write “Laurent series” or simply
“series” instead of “formal Laurent series”. A series all of whose coefficients are zero is denoted by .
There is also a series all of whose coefficients , except , are zero, while ; it is denoted by .

A series  is the opposite of the series . A series  is the

inverse of a series  if ; for any nonzero series , there exists an inverse, .
If , then, as was already said in Section 1, there exists a minimum  such that the coeffi-

cient  of the series  is nonzero. We will denote this  by  and call it the valuation of the
series  (in [2], Chapter 15, the term “lower power” is used). The coefficient  is called the lowest
coefficient of the series  and is denoted by . By definition, we assume that  and

. It is easy to check that  , and
 for any . It should be added that

 and  for any .
Under the operations defined in this way, the formal Laurent series over the field  form the field

. This and other properties of such series can be found in [2], Chapter 15; [3], Chapter 1, Section 1;

and [4], Chapter 1. The derivative of a series  is defined as 

, where  for all , which implies that the coefficient  of the deriv-
ative is always zero.
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Each of the series under consideration has a finite valuation, which allows one to apply to a series a dif-
ferential operator. Such an application yields a zero series if and only if applying the induced operator to
the sequence of coefficients of the series yields a zero sequence.

Below, we use the notation , where , for an unspecified formal series whose valuation is
greater than or equal to .

2.2. Valuation Block, Increment, and Indicial Polynomial

The indicial polynomial, associated with the equation , where  has the form (2), contains
among its roots all valuations of the Laurent solutions of the original equation. Such a polynomial may
also have “extra” roots. There are known algorithms for checking the existence of a solution with a given
valuation  and constructing such solutions if they exist. Extra roots can be rejected by these algorithms.

Definition 1. The valuation block of an operator  will be understood as any set of integers containing
the valuations of all nonzero formal Laurent solutions of the operator . (It is possible that the valuation
block also contains some integers that are not valuations of the solutions under consideration.)

The indicial polynomial for a given  can be constructed in different ways. Usually, such a construc-
tion involves an integer, which below will be called an increment

Definition 2. We associate with the operator (2) the increment

(4)

By equating to zero the lowest coefficient in the expression for the series , we obtain an algebraic
indicial equation  (see [1], Section 8), the left-hand side of which gives the indicial polynomial:

(5)

.

We have . It is varified directly that, if , then

i.e., the series  has a coefficient  at . Thus, for a nonzero , the equality
 is a necessary condition for the equality .

This is illustrated by a simple example.
Example 1. Let . In accordance with (4), we have

(6)

Thus,  implies ; i.e., . The conclusion that can be drawn here
directly from the aforesaid is as follows: if the  equation has a nonzero solution ,
then , where  is a nonzero constant; the solution  cannot contain  in a
negative power. The equalities (6) do not indicate anything more, in particular, that  for  is
simply 0.

2.3. Induced Recurrent Operators

Let  be a field of characteristic , e.g., some number field, and let  be the shift operator with respect
to : .

Proposition 1 ([5, 6]).
(i) The correspondence

(7)
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defines an isomorphism  of the ring  onto the ring . The inverse isomorphism is
defined as follows:

(8)

(ii) Let  and . Suppose that  and ,
, are such that . Then, , where  and  are sequences of the coef-

ficients of the series  and .
Example 2. Let ; then

Let , where  is a series (1). Then  if and only if ; i.e., the equality
, , is necessary and sufficient for the series (1) to satisfy the equation

. It is easy to see that  for , and  can be chosen arbitrarily and 

for .

3. RECURRENCE RELATION FOR THE SOLUTION COEFFICIENTS 
AND THE INDICIAL POLYNOMIAL

3.1. The Indicial Polynomial and the Increment in the Induced Operator

Proposition 2. Let  have the form (3). Then,

(i) ,

(ii) .

Proof. Denote by  the maximum integer such that  and the corresponding value

 is maximal. The maximum degree of  in  is . The term with the highest

power of  in  is

The coefficient at  is the polynomial

(9)

in . This polynomial has a degree  and, consequently, is nonzero. Obviously, the maximality of
 for  implies the minimality of , which corresponds to the definition (4) of the

value of . We have (i).
Comparison of the coefficient (9) with (4) shows that (ii) is true.

Example 3. Consider again the case of . We have (6). Here,  and . Equalities (i)
and (ii) are obviously satisfied.

Proposition 2 (ii) implies that, if the indicial polynomial has integer roots, then the original equation
 has a solution in the form of a series  whose valuation is equal to the largest of the integer

roots of the polynomial . Thus, we have proven the following proposition.
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Proposition 3. If the indicial polynomial (5) has integer roots, then the set of solutions of the original differ-
ential equation that have the form of nonzero formal series is not empty.

3.2. Multiplicativity of the Indicial Polynomial
Let us formulate and prove the main result of the article.
Theorem 1. Let  and  be differential operators of the form (2). Then,
(i) ;

(ii) 
Proof. By Proposition 1(i), we have

We expand the product on the right-hand side of the last equality:

Hence, we have (i) and (ii).
From the above proof of Theorem 1, it follows that the indicial polynomial has the multiplicative prop-

erty specified in paragraph (ii) of this theorem.

Example 4. Let us return to Example 1 and consider the operator . By Theorem 1, we have

(10)

Theorem 1 (ii) admits the corollary:
Corollary. Let  and . Let  and  be the sets of roots of the

indicial polynomials  and  in some extension  of the field . Then, the set of roots of the polyno-
mial  in  is

3.3. Valuation Blocks

Theorem 2. Let  and  be operators and  and  valuation blocks (see Definition 1) of these operators.
Suppose that  and  is obtained from  by subtracting  from each of its elements. Then,

 is a valuation block of the operator .
Proof. Valuations of the formal Laurent solutions of the operators  and  are roots of the polyno-

mials  and . The valuations of all solutions of the operator  are the roots of . By Theorem 1 (ii),
the valuations of all such solutions are contained in .

3.4. Final Example and Remark
Example 5. For

(11)
in accordance with (4) and (5),

(12)

Using Theorem 1, we can determine  without using the explicit form of the operator :
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With the help of the Maple system ([7]) A.A. Ryabenko found an expression for :

(15)

whence we can also obtain (13) and (14)—terms of the form  in (15) do not affect the increment and
the indicial polynomial associated with the operator .

We can check the correctness of (12) by considering some specific variant of ; i.e., the variant of
the tail of the series in (11).

For example, replace  with a zero series. Thus, . For the operator

we find from (4) and (5) that

and

The same is obtained by Theorem 1: see (13) and (14).
Remark 1. The proven multiplicative property of indicial polynomials (Theorem 1) is preserved when

formal series are replaced with convergent ones, because the rules of addition, multiplication, and differ-
entiation are the same for both types of series.
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