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Abstract—Linear ordinary differential equations with coefficients in the form of truncated formal
power series are considered. Earlier, it was discussed what can be found from an equation specified in
this way about its solutions belonging to the field of formal Laurent series. Now a similar question is
discussed for regular solutions. We are still interested in information about these solutions that is
invariant under possible prolongations of truncated series representing the coefficients of the equation.
The possibility of including in the solutions symbolic unspecified coefficients of possible prolonga-
tions of the equation is also considered.
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1. INTRODUCTION
In this article, as in [1], the linear differential equation is defined in an “approximate” form: its coef-

ficients are truncated series; i.e., each coefficient is an expression

(1)

where  is a polynomial and . We are interested in information about regular (representable
by power-logarithmic expansions; the definition is given in Section 3) solutions that are invariant to all
possible prolongations of the truncated series representing the coefficients of the equation. The algorithm
proposed allows one to build the longest possible segments of the series arising in the solutions: the terms
entering into these segments do not depend on possible prolongations (“tails”) of the truncated coeffi-
cients of the equation, i.e., on the unspecified terms that are hidden in expressions (1) under the symbol . In a
certain sense, the algorithm can also clarify the influence of these terms on the subsequent (not invariant
to all possible prolongations) terms of the series entering into regular solutions. We mean formulas
expressing these terms via unspecified coefficients. The unspecified coefficients are denoted by symbols.
These unspecified coefficients will be called literals.

As to previous studies, it should be said that, in Bruno’s works (see, e.g., [2]), a method for construct-
ing regular solutions is proposed, which, for all series entering into this type of solution, enables one to
find, in particular, any specified number of terms. The equations, generally speaking, are nonlinear. They
may have a very general form and are specified using explicit analytical functions of several variables.
In this case, as is well known, linear (completely specified) equations are solved using classical approaches:
the Frobenius [3; 4, Ch. 4, § 8] and Heffter [5] methods, as well as their modern versions [6–8]; for most of
them, there is a computer implementation.

It only remains to repeat that, in contrast to previous works, in this article, linear differential equations
are specified not completely but in “approximate”, i.e., truncated, form. In this case, for the Laurent
series entering into the representation of regular solutions, the proposed algorithm finds the maximum
possible number of terms invariant with respect to the unknown terms of the series representing the coef-
ficient of the equation.

The implementation of the proposed algorithm in the Maple environment [9] is described in Section 6.
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2 ABRAMOV et al.
It should be emphasized that the term “regular solutions” for the solutions that are considered in this
article and whose exact definition is given in Section 3 has entrenched in computer algebra [9–11]. Orig-
inally, it appeared because, in the analytical theory of linear differential equations, it is customary to sub-
divide (see [12, Ch. 3, § 10]) the singular points of the equations into regular (or weakly singular) and irreg-
ular (or strongly singular). In the neighborhood of a regular singular point, there exists a basis for the space
of solutions of the equation, consisting of regular (in the above sense) solutions, and this was the reason
for introducing the concept of a regular solution. It should be noted that, in this article, we consider solu-
tions as formal expressions. The series that enter into these expressions, in turn, are formal Laurent series
in . In this sense, we consider solutions at the point 0 and look for the maximum possible number of lin-
early independent regular solutions. This number does not exceed the order of the equation and can be
smaller. We do not deal with the convergence of the series. The role of constants is played by abstract
quantities: elements of an algebraically closed field of characteristic 0, which will be discussed in the next
section.

2. PRELIMINARY INFORMATION
2.1. Basic Concepts

First, let us recall some concepts and standard notation. Let  be some field. The following notation
is standard:

 is the ring of polynomials with coefficients from K;
 is the ring of formal power series with coefficients from K;
 is the quotient field of the ring .

In , the differentiation  is defined. We will consider operators and dif-

ferential equations written with the designation .

Definition 1. The elements of the field  are formal Laurent series. For a nonzero element
, its valuation  is defined as ; in this case, .

Let ; the -truncation  is obtained by discarding all terms in  of degree higher than ;
if , then . The number  is called the degree of truncation.

Henceforward, the field K, by default, will be assumed to be algebraically closed and having a charac-
teristic .

In the original operator

(2)

the polynomial coefficient  will be assumed to have the form

(3)

where  is a nonnegative integer greater than or equal to ,  (if , then
 for ). It is assumed that the constant term of at least one of the polynomials

 is nonzero.
Definition 2. A polynomial  (the leading coefficient of the differential operator  from (2)) is

assumed to be nonzero. A prolongation of the operator  is any operator

for which , i.e., , .
In what follows, to a truncated differential equation

(4)
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REGULAR SOLUTIONS OF LINEAR ORDINARY 3
, , we assign operator (2) and the set of numbers . In this case, the pro-
longation of operator (2) will also be called a prolongation of equation (4).

Below, to denote an operator with the coefficient in the form of series

(5)

where

we use the letter . For , we also assume that there is a number  such that . To denote an oper-
ator with polynomial coefficients (e.g., for an operator with truncated coefficients) we use the letter .

If  (or ) is some differential operator, then solutions of the operator  (or ) will be understood as
the solutions of the equation  (correspondingly, ).

If  is a truncated variant of the operator , we will call  and  truncations of the operator 
and, correspondingly, the equation .

2.2. Laurent Solutions

A solution of the equation in the form of a Laurent series will be called a Laurent solution.
First of all, for a truncated equation , the algorithm from [1] finds a finite set of candidates for

all possible valuations of Laurent solutions. This set contains all valuations of Laurent solutions for all pro-
longations of this equation. For each element of this set, it is then checked whether, for any prolongation
of the equation, there is a Laurent solution having such a valuation. If the answer is ‘no’, this valuation is
no more considered. If the answer is ‘yes’, it is possible to calculate an integer  such that the terms of all
Laurent solutions having this valuation coincide (up to a common nonzero constant factor, since the
equations are homogeneous) up to terms of the order . In this case, the maximum possible  is chosen.
As a result, in addition to the set of valuations , we obtain the set  of the corresponding
values of .

The aforementioned actions: discarding excess valuations, finding the values of , etc., are performed
using the induced recurrence equation that is assigned to the differential equation.

2.3. Induced Recurrence Equation

Let  denote the shift operator  for any sequence . The transformation

(6)

puts into correspondence to the differential equation

(7)

where , to the induced recurrence equation (relation)

(8)

Let ,  then, . In this case, applying the induced
recurrence operator  to the sequence  of coefficients of the series  gives the
sequence  of the coefficients  of the series: formulas (6) clearly indicate how the sequence of coef-
ficients is transformed when the series is multiplied by  and when the operation  is applied to it. All this
makes induced equations a useful tool when considering inhomogeneous equations of the form

 with Laurent right-hand sides.
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4 ABRAMOV et al.
Let the equation

(9)

have the right-hand side in the form of a Laurent series:

Then, the right-hand side of the induced recurrence equation will be equal to  (  for ):

(10)
Homogeneous equation (7) (and inhomogeneous equation (9)) has a Laurent solution

 if and only if the two-sided sequence …, 0, 0, , … satisfies Eq. (8) (cor-
respondingly, Eq. (10)) (see the proof in [13]).

It should be recalled that, by our assumption, the constant term of at least one of the polynomials
 is not zero. Hence,

(11)

is a nonzero polynomial. It can be considered a variant of the indicial polynomial of the original equation.
The finite set  of integer roots of this polynomial contains all possible valuations  of the Laurent
solutions of Eq. (7). The valuations of Laurent solutions (9) are determined by both  and the val-
uation  of the right-hand side .

The calculation of ,  is performed by successively increasing , starting with , the mini-
mum integer root of the polynomial  (starting from  for (9)). If, for some integer , we
have , then (8) and (10) allow us to find  from  (since  are equal to zero,
for each integer , the induced recurrence equation has a finite number of nonzero terms on the left-hand
side). If , then we declare  an unknown constant. Then, the previously calculated values

, in the homogeneous case, must satisfy the relationship

(12)
and, in the inhomogeneous case,

(13)
Perhaps, such relationships will make it possible to calculate the value of some previously unknown

constants. If relationship (13) for some integer  turns into a false identity, then (9) does not have Laurent
solutions. After  exceeds the largest integer root , new unknown constants and relationships of the
form (12) and (13) will not arise. The unknown constants that have not obtained values during the calcu-
lations are declared arbitrary constants entering into the Laurent solution of the differential equation.

If a truncated equation  is specified under the condition that the constant term of at least one
of the polynomials  is nonzero, then, obviously, (11) does not depend on the prolongation.

3. REGULAR SOLUTIONS
3.1. Power Factors

Definition 3. A solution of the equation , having the form

(14)

where , , and , , will be called a regular solution. We say that  is
a power factor of solution (14). The set

(15)
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REGULAR SOLUTIONS OF LINEAR ORDINARY 5
is called a complete set of power factors of regular solutions of the equation  if

—among , none differ by an integer;

—each element of set (15) is a power factor for some nonzero regular solution of the equation ;

—for each nonzero regular solution of the equation , among (15), there is a power factor for
this solution.

Let  have form (5). It is known (see [3, 4]) that, if  is the set of all roots of indicial polynomial
(11) such that  for , then (15) is a complete set of power factors of regular solutions of

. Moreover, for each power factor , the value of  in (14) such that  is smaller (with
allowance for multiplicity) than the number of roots of the indicial polynomial that differ from  by an
integer number.

Remark 1. For the equation , there exist as many linearly independent solutions of the
form (14) as the number of roots  (with allowance for the multiplicity) of the indicial polynomial. These
solutions form a basis of the linear space of regular solutions; i.e., any linear combination of solutions of
the form (14) is called a regular solution, but, up to Section 6, regular solutions will be understood as
expressions of the form (14).

Example 1. Regular solutions of the equation

have the form ; in this case,

where  are arbitrary constants.

Remark 2. In [15–17], an algorithmic representation of infinite series was considered: a series 
was specified by an algorithm determining  from . It was found that, in the case of a differential equa-
tion with coefficient in the form of series defined algorithmically, the problem of finding regular solutions,
i.e., the problem of constructing algorithms for representing , , , is solvable (see also
[14], where not only individual scalar equations but also systems were discussed). Since the coefficients of
the equation from Example 1 are specified algorithmically, then  and  can be calculated for any .

Based on the truncated equation , we cannot expect finding its regular solutions in the com-
plete form (14). The algorithm proposed in this article makes it possible to obtain expressions for solutions
in the form of truncated Laurent series . These truncated series are constructed based
on the same principle of selection of valuations and degrees of truncation as in the construction of Laurent
solutions (Section 2).

3.2. General Scheme for Finding Regular Solutions (Heffter’s Approach)

Let  have the form (5). For , we can construct the operators
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6 ABRAMOV et al.
where  is a binomial coefficient and . Based on Heffter’s approach [5], the general scheme for

finding regular solutions with  consists in considering for  systems of the form

(17)

(for , the system consists of one equation ). A Laurent solution of system (17) will be
understood as any solution  with the components belonging to .

Proposition 1 (see [5]). The set of nonnegative integers  for which system (17) has a Laurent solution
, , is finite (such a solution can exist for some  only if the solution exists

also for ). If this set is empty, then  does not have nonzero solutions in . If this set is
not empty and  is its maximum element, then any solution of the equation , belonging to

, has the form

(18)

where

(19)

is a Laurent solution of system (17) for . At the same time, any Laurent solution of the form (19) to
system (17), for , generates a solution (18) of the equation .

If  is known, then the substitution

(20)

reduces the search for regular solutions to the search for solutions belonging to . For , we
take the roots of the indicial polynomial.

We obtain the following scheme (considered in detail in [14]):

1. For the equation  with operator (5), find indicial polynomial (11). Considering two roots
 of this polynomial equivalent if , construct a set  containing one representative from

each equivalence class.

2. For each , find regular solutions having a power factor :

(a) Construct the equation  by substituting (20) into  and then multiplying by .

(b) Construct Laurent solutions of systems (17) for , where  are obtained by for-
mula (16), up to , when (17) has no longer Laurent solutions such that . This gives reg-
ular  solutions  in the form (18) to the equation .

(c) Multiply the resulting regular solutions by .
Remark 3. At step 2a, instead of the substitution into the differential equation, an equivalent operation

on the induced recurrence equation can be performed. If (8) is the induced recurrence equation for the
original equation , then the induced recurrence equation for  has the form

For more detail, see, e.g., [14].
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REGULAR SOLUTIONS OF LINEAR ORDINARY 7
3.3. Working with Inhomogeneous Equations

The equation

will be denoted by  (the equation  is denoted by ).
Suppose that we have constructed a Laurent solution  of the equation , i.e., of the equation

 (see Subsection 2.3). This solution contains several unknown constants. We use  to obtain
the right-hand side of the equation S1, i.e., the equation , and the aforementioned
unknown constants enter into this right-hand side linearly. As soon as, when constructing , relation-
ship (13) arises (its right-hand side  linearly depends on the constants entering into ), this relation-
ship is used, if possible, to calculate the value of some unknown constant. If it turns out that ,
this means that  and the construction of regular solutions is completed.

We continue constructing  for the next equation  by calculating the unknown constants entering
into ,  …,  until . According to Proposition 1, this process terminates. The
unknown constants among ,  …,  that have not obtained values, are declared arbitrary.

Remark 4. For a Laurent solution, its -truncation is constructed using the induced recurrence equa-
tion for  not exceeding . When constructing an -truncation of a Laurent solution  to the equa-
tion , it is necessary to know the elements of the sequence , the right-hand side of induced recur-
rence equation (10) up to . It is easy to show that, for this, it suffices to construct -truncations of

, , .

4. HEFFTER'S SCHEME FOR TRUNCATED COEFFICIENTS
4.1. Constructing Laurent Solutions of the Truncated Equation

The algorithm from [1] constructs for Eq. (4) a finite set of -truncations of Laurent solutions. Any
element  of this set does not contain literals, i.e., unspecified coef-
ficients of Eq. (4). Each coefficient  was calculated, as described in Subsection 2.3, successively in 
starting from , where  is an integer root of the indicial polynomial, to a value  such that  does
not depend on literals but  does depend. When searching for regular solutions, it is preferable to con-
struct the Laurent solutions of the homogeneous equation  (and the inhomogeneous equation ,

) in the form of one expression:

(21)

where  and . Here, the coefficients  may contain literals.
The representation in the form of one truncation with the use of literals makes it possible, if necessary,

to proceed to the representation of the solution in the form of a set of truncations such as in [1]. In order
to obtain this representation, it is necessary for each valuation  to calculate the values of arbitrary con-
stants for which ,  …,  are equal to zero and, after substituting these values into (21), to discard
all terms whose coefficients contain literals. This will give a -truncation for the valuation , invariant
with respect to the prolongation of the original equation.

Expression (21) is constructed, as described in Subsection 2.3, successively in  starting from
 to , where  are all integer roots of the indicial polynomial (for , it is easy to

show that , where  is the right-hand side of the inhomogeneous equation ). In the
course of calculations, at  such that , it is necessary to consider relationship (12) (corre-
spondingly, (13) for ). If this relationship with  is not an identity, then, in contrast to the case
of a completely specified equation, if (12) and (13) depends on literals, we do not use it to calculate the
values of the unknown constants. In the end, we obtain ,  …, , the set of unknown constants, and
a set of relationships for the unknown constants containing literals. Based on this set of relationships, we

−
=

= − = , , ,0
1

( ) ( ), 0 1 ,
k

k j k j
j

L g L g k … r

kS =0 0( ) 0L g 0S

0( )g x 0S
=0 0( ) 0L g 0( )g x

= −0 1 1 0( ) ( )L g L g
1( )g x

nb 0( )g x
=0( ) 0g x

=� 0k

( )kg x kS
0( )g x ,1( )g x −1( )kg x ≠0( ) 0g x

0( )g x ,1( )g x
�

( )kg x
m

n m m ( )kg x
kS ( )nb

=n m m
0( )g x ,1( )g x … −1( )kg x

im
+ +

++ + + +v v

v v

1 1
1 ( )i i i i

i i i

m m
mc x c x … c x O x

nc n
jn jn = in m

imc
+1imc

0S kS
> 0k

+ +
++ + + + ,v v

v v

1 1
1 ( )m m

mc x c x … c x O x

=v vmin i = max im m nc

vi

v
c + ,

v 1c −v 1i
c

im vi

n
=v min jn = max jw n jn > 0k

≥ vval ( )b x ( )b x kS
= jn n =0( ) 0ju n

> 0k = jn n

v
c + ,

v 1c wc
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 1  2020



8 ABRAMOV et al.
find the values of the unknown constants that are invariant with respect to all prolongations of the speci-
fied truncated equation (e.g., as described in Remark 5).

Next, we calculate the values of  as long as there exists a nontrivial set of values of the remaining
unknown constants (i.e., not all constants are equal to zero; we can restrict the consideration to sets in
which one element is equal to unity and the rest to zero) for which  does not depend on literals.

Remark 5. Let us consider the set of relationships (12) and (13) that arise when constructing Laurent
solutions of homogeneous and inhomogeneous equations in Heffter’s scheme for a truncated equation.
The left- and right-hand sides of this relationship are polynomials in literals whose coefficients are linear
combinations over  of the unknown constants introduced when solving the equations ,  …, .
We equate the coefficients multiplying the same monomials on the right- and left-hand sides. We obtain
a linear homogeneous system with respect to the unknown constants. When solving this system, a part of
the unknown constants will obtain values and the rest will remain unknown.

Example 2. Let us trace the work of the proposed algorithm on the example of the operator

(22)

This operator was considered in [1, Example 2]. Here, the defining polynomial is , the
set  of its integer roots contain all possible valuation of the Laurent solutions to the equation

. Calculations using the induced recurrence equation begin with the minimal integer root of the
indicial polynomial, i.e., with . In the end of the calculations, we obtain a -truncation of the Lau-
rent solution, written using literals:

(23)

Hereinafter, the literal denoted by  corresponds to an unspecified coefficient of  in the coefficient

multiplying  in the original equation;  and  are arbitrary constants. The calculations are carried out
to a power of . The set of solutions of our interest can be described more brief ly by discarding the term
of degree  in (23) and replacing  by . We have written out this term in order that the reason for
terminating the calculations be visible.

We pass from (23) to the representation in the form of a set of invariant truncations for each of the val-
uations. For the valuation  (i.e., for  and ), discarding the terms starting with the first
whose coefficient contains literals gives :

For the valuation  (i.e., for  and ), such a discard gives :

nc

nc

K 0S ,1S kS
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0 1 2( 1 ) 2 ( 6 ) 3 2L x x x x t t t
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xx
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+ − − − + − −
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x C U C C U C U C C U C U

)
, , , , , , , ,

, , , ,
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2
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5
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C U C U C U C U O x
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θi
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4
4 5( )O x 4( )O x

= −v1 2 ≠1 0C ≠2 0C
=1 0m
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22

5 ( )C C C O x
xx
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3 6 30
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REGULAR SOLUTIONS OF LINEAR ORDINARY 9
These invariant truncations were also obtained in [1, Example 2]. Representation (23) also makes it
possible to obtain a prolongation of the truncation for each individual valuation. For the valuation

, it coincides with (23). For , it is equal to

4.2. The Algorithm

For the equation  with coefficients (3), the indicial polynomial is constructed as the coeffi-
cient  of the induced recurrence equation. The set of its roots is found, and the set  is formed. This
calculation corresponds to step 1 of Heffter’s scheme (Subsection 3.2).

For each noninteger , we perform step 2(a), i.e., we obtain the equation . At step 2(b), the solu-
tion of system (17) with a current  consists in finding the truncation of the Laurent solution of the equa-
tion  (in this case, possibly, the values of some unknown constants entering into , , 
are also calculated). This truncation contains literals; the degree of truncation is determined as described
in Subsection 4.1. The truncation of the Laurent solution to  is constructed successively using induced
recurrence equation (8) (or (10) for ). For , in order to obtain the right-hand side of the
induced recurrence equation, a successive calculation of the coefficients of the Laurent series on the right-
hand side of the equation  is needed. The search for Laurent solutions terminates either if  is equal to
the number (with allowance for the multiplicity) of integer roots of the indicial polynomial for  or when
it is found that the next system does not have a Laurent solution with . Based on the obtained
truncations of Laurent solutions with literals, a final set of invariant truncations of regular solutions to the
original equation is formed.

Proposition 2. Each of the segments of the series found by the proposed algorithm as a truncation of one or
another series  in solution (14) of the original truncated equation  has the maximum possible
length: adding terms of a higher degree to any of these segments entails a loss of invariance with respect to pos-
sible prolongations of the equation .

Proof. Each of these segments is arranged so that the termination occurs at the moment when the next
term  of the series has a coefficient  that depends on some literals. Such a coefficient will be a poly-
nomial over  in a finite number of literals. Since the characteristic of the field  is zero, the field  is
infinite (it contains a subfield isomorphic to the field of rational numbers) and, for the above polynomial,
one can find two different sets of values of the literals entering into it, such that the values of the polyno-
mial  on these sets do not coincide. This means that the equation  has two prolongations that
lead to different . Indeed, as the first continuation, we take that in which the literals entering into  are
replaced by the values from the first set and the remaining terms of the prolongation are set to zero. Sim-
ilarly, but using the values from the second set, we construct the second prolongation. Therefore, the seg-
ment of the series entering into the solution and containing the term  is not invariant to all possible
prolongations of the equation .

5. EXAMPLES
Example 3. Let us trace the steps of the proposed algorithm on the example of the operator

(24)

The indicial polynomial is . Based on the set of its roots, , we obtain .
The search for Laurent solutions to , as described in Subsection 4.1, gives

(25)

where  is an unknown constant. Further on, for , we obtain a -truncation of the right-hand side of
the equation:

= −v1 2 =v2 0

( ), , ,+ + + + + + + + .2 3 4 5
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kS
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( )ig x =( ) 0L y

=( ) 0L y

s
sw x sw

K K K
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s
sw x

=( ) 0L y

= − + + θ − θ, = , = , = .2 2
0 1 2( 1 ) 2 3 1 2L x x t t t

= − −2
0( ) 2u n n n { }− ,2 0 { }Λ = 0

0S

, , ,= + + ,4 5
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1( ) ( )
24

g x C x C U O x

,0 1C 1S 4

, , ,+ + .4 5
0 1 0 1 0 4

52 ( )
12

C x C U O x
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10 ABRAMOV et al.
Here, the induced recurrence equation (10) for  has the form

where  is the unknown constant arising at  and corresponding to the coefficient  of the solu-
tion. This relationship has the form (13), which cannot be used to calculate the values of unknown con-
stants  and , since this relationship includes the literal . For the prolongations of operator (24)
for which , we find that  and  remains an unknown constant. In this case, ; i.e.,

. For prolongations with , calculations will be continued and  will be obtained. We set
 and . Thus, we obtain  and truncated regular solution (25). We pass from it to the set

of invariant truncations:

where  is an arbitrary constant.

Example 4. Add to the coefficients of operator (24) one term (  in the coefficient multiplying ):

(26)

This operator was considered in [1, Example 3], and it was determined that, for any prolongation of
the coefficients, this operator, like operator (24), has a Laurent solution , where  is an arbitrary
constant.

The indicial polynomial , as well as for operator (24), has the roots , and, there-
fore, .

For , we obtain the same truncation of solution (25). Finding a Laurent solution for  gives

(27)

The truncation , like the truncation , was calculated up to the power , since, both for
 and , only the coefficient multiplying  contains literals. For the calculation of , the

-truncation of the right-hand side of the equation  was constructed:

The further search for the Laurent solution of the equation for  is not performed. We obtain 
and a regular solution , where  and  are defined by (25) and (27).

Let us pass to the solution in the form of a set of invariant truncated regular solutions. For the valuation
 in , we obtain an expression containing two truncated series:

where  and  are arbitrary constants. Setting  and  in (25) and (27), we obtain the trun-
cation

= 0n

, , ,− = ,11 1 2 0 12 2C U C

,11C = −2n −2c

,11C ,0 1C ,1 2U
, =1 2 0U , =0 1 0C ,11C =0( ) 0g x

=� 0k , ≠1 2 0U =� 1k

, =11 0C , =0 1 0C =� 0k

+ ,4( )C O x

C
2x θ1

= − + + θ + − + θ, = , = = .�

2 2 2
0 1 2( 1 ) ( 2 ) 3 2L x x x t t t

+ 4( )C O x C

= − −2
0( ) 2u n n n { }− ,2 0

{ }Λ = 0

0S 1S

( ) (
) (

, ,
, , , , , , , , , , ,

, , , , , , , , , , , , , , ,

= − + + + − + − + −
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20 1 0 1
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3
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C C
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xx
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2
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REGULAR SOLUTIONS OF LINEAR ORDINARY 11
This truncation corresponds to the truncation of the Laurent solution of the equation  with the val-
uation .

Remark 6. The solutions  of the equations  may contain the same arbitrary con-
stants; therefore, the transition from the representation using literals to invariant truncations is performed
not for each Laurent solution  separately, but for the entire regular solution (18) with the
factor  including these Laurent solutions. In this example, the Laurent solution  is
discarded when constructing the invariant truncation  with .

6. COMPUTER IMPLEMENTATION AND EXAMPLES OF USE
The algorithm is implemented in the Maple environment [9] in the form of the RegularSolution

procedure. The main arguments of the procedure are the same as the argument of the LaurentSolution
procedure presented in [1], which implements the algorithm of searching for Laurent solutions. The first
argument to the procedure is a differential equation of the form (4). The application of  to an unknown
function  is written as theta(y(x),x,k). As in the case of LaurentSolution, it is also possi-

ble to use the ordinary differentiation (the operator ); in this case, the application of the operator  to

an unknown function  is specified in the standard Maple form diff(y(x),x$k). The truncated
coefficients of the equation have the form , where  is a polynomial of degree not higher
than  over the field of algebraic numbers. Irrational algebraic numbers in Maple are represented in the
form RootOf(p(_Z),index=k), where p(_Z) is an irreducible polynomial, the th root of which is
a given algebraic number. For example, .

The second argument of the procedure is the unknown function.
The result of the procedure is a list of truncated regular solutions that are invariant to prolongations of

the coefficients of a given equation. In truncations, arbitrary constants of the form  may occur.
Additionally, the optional parameter `output`=`literal` can be specified to get the answer not

in the form of a list of invariant truncations but as a single truncation with literals. It is also possible to
specify the optional parameter `degree`=n, where n is an integer for obtaining a truncation of a given
degree (in this case, coefficients expressed via literals will be added to the truncations; the degree of the
truncation can be greater than the specified ; at least as many coefficients as required to determine all the
possible valuations of Laurent solutions that arise in the calculations will be calculated). It should be noted
that the LaurentSolution procedure is also supplemented with similar options.

Below we present six examples, which we combine into one, containing in paragraphs 1–6.
Example 5.
1. The equation specified by operator (24):
> eq1:=(-1+x+x^2+O(x^3))*theta(y(x),x,2)+(-2+O(x^2))*theta(y(x),x,1)+

(O(x^4))*y(x);

> RegularSolution(eq1, y(x));

The answer is the same as in Example 3.
2. An equation specified by operator (26):
> eq2:=(-1+x+x^2+O(x^3))*theta(y(x),x,2)+(-2+x^2+O(x^3))*theta(y(x),x,1)+

O(x^4)*y(x);

> RegularSolution(eq2, y(x));

1S
=v2 0

, , 0( ) ( )kg x … g x , , 0kS … S

, , 0( ) ( )kg x … g x
λx ,= + 4

0 0 1( ) ( )g x C O x
1( )g x , =0 1 0C

θk

( )y x

= dD
dx

kD

( )y x
++ 1( ) ( )it

ia x O x ( )ia x
it

k
− , = = −2RootOf( 2 2) 2_Z index

j_c

n

:= − + + + θ , , + − + θ , , +2 3 2 41 ( 1 ( )) ( ( ) 2) ( 2 ( )) ( ( ) 1) ( ) ( )eq x x O x y x x O x y x x O x y x

+ 4
1[ ( )]_c O x

:= − + + + θ , , + − + + θ , , +2 3 2 3 42 ( 1 ( )) ( ( ) 2) ( 2 ( )) ( ( ) 1) ( ) ( )eq x x O x y x x x O x y x x O x y x

 − + + + + + , +  

4 41 1
2 1 22

4 ( ) ln( )( ( )) ( )_c _c _c O x x _c O x _c O x
xx
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12 ABRAMOV et al.
The answer is the same as in Example 4.
We apply the procedure again to the same equation with the option of representing the result in literals;

the result is a regular solution containing truncations of the form constructed as described in Subsection 4.1,
i.e., to such a degree that the reason for terminating the calculations is visible:

> RegularSolution(eq2,y(x),‘output‘=‘literal‘);

The answer is the same as the answer in literals in Example 4.
We apply the procedure again to the same equation with the option of specifying the degree of trunca-

tion:
> RegularSolution(eq2,y(x),‘degree‘=2);

The answer shows that, in order to obtain a -truncation as a continuation of the invariant truncation,
it is necessary to specify , i.e, coefficients of the equation multiplying

, respectively.
3. Equation
> eq3:=(1+x^2+O(x^3))*theta(y(x),x,3)+(4-x+(1/2)*x^2+O(x^3))*theta(y(x),x,2)+

(4-2*x+x^2+O(x^3))*theta(y(x),x,1)+O(x^3)*y(x);

> RegularSolution(eq3, y(x));

In this case, we have three different truncations of the regular solution, the corresponding Laurent
series are truncated to different degrees, and the logarithm enters up to degree ; i.e., the Laurent solu-
tions were found for three equations: , , and .

( ) ( )
( )
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xx
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REGULAR SOLUTIONS OF LINEAR ORDINARY 13
4. Truncation of the equation from Example 1:
> eq4:=(-1+x+O(x^3))*theta(y(x),x,2)+(-1-x-(3/2)*x^2+O(x^3))*theta(y(x),x,1)+

(3/4+(1/4)*x+(3/4)*x^2+O(x^3))*y(x);

> RegularSolution(eq4, y(x));

In this case, we obtained a regular solution with a noninteger  in the factor .
5. Equation
> eq5:=(1+O(x^2))*theta(y(x),x,3)+(1+2*x+O(x^2))*theta(y(x),x,2)+

(2+x+O(x^2))*theta(y(x),x,1)+(2-x+O(x^2))*y(x);

> RegularSolution(eq5, y(x));

In this case, the indicial polynomial, , has three nonequivalent
roots: , where  and  are represented by the constructions

 and .
6. An equation specified via the differentiation operator  rather than the operator :
> eq6:=(-x+x^2+x^3+O(x^4))*(diff(y(x),x,x))+
> (-3+x+2*x^2+O(x^3))*(diff(y(x), x))+O(x^3)*y(x)

> RegularSolution(eq6, y(x));

As a result of the transition to  in the equation, we obtain an equation with truncations of the coeffi-
cients, similar to the equation in paragraph 2. Therefore, the calculation results are identical.

FUNDING
This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00032).

ACKNOWLEDGMENTS
We are grateful to Maplesoft (Waterloo, Canada) for consultations and discussions.

REFERENCES
1. S. A. Abramov, A. A. Ryabenko, and D. E. Khmelnov, “Linear ordinary differential equations and truncated

series,” Comput. Math. Math. Phys. 59 (10), 1649–1659 (2019).
2. A. D. Bruno, “Asymptotic behaviour and expansions of solutions to an ordinary differential equation,” Russ.

Math. Surv. 59 (3), 429–480 (2004).

( )
( )

:= − + + θ , , + − − − + θ , ,

+ + + +

3 2 3

2 3

34 ( 1 ( )) ( ( ) 2) 1 ( ) ( ( ) 1)
2

3 31 ( ) ( )
4 4 4

eq x O x y x x x x O x y x x

x x O x y x

   − + + + + + , +     

3 31 1
2 1 22

2 8 ( ) ln( )( ( )) ( ( ))_c _cx _c O x x _c O x x _c O x
xx

λ λx

:= + θ , , + + + θ , ,
+ + + θ , , + − +

2 2

2 2

5 (1 ( )) ( ( ) 3) (1 2 ( )) ( ( ) 2)

(2 ( )) ( ( ) 1) (2 ( )) ( )

eq O x y x x x O x y x x

x O x y x x x O x y x

( )
( )

+ , =

+ , =

 + + − + + , = + +


+ − + + , = +


2

2

RootOf ( 2 1) 2 21
2 2

RootOf ( 2 2) 2 2
3 3

1( ) (20 23RootOf( 2 1)) ( )
54

1 (20 23RootOf( 2 2)) ( )
54

_Z index

_Z index

_c O x x _c x _Z index _c O x
x

x _c x _Z index _c O x

= + +2
0( ) ( 1)( 2)u n n n

Λ = − − − −{ 1, 2, 2} −2 − −2
+ , =2RootOf( 2 index 1)_Z + , =2RootOf( 2 index 2)_Z

D θ

( ) := − + + + + − + + + + 
 

22 3 4 2 3 3
26 ( ( )) ( ) ( 3 2 ( )) ( ) ( ) ( )d deq x x x O x y x x x O x y x O x y x

dxdx

 − + + + + + , +  

4 41 1
2 1 22

4 ( ) ln( )( ( )) ( )_c _c _c O x x _c O x _c O x
xx

θ

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 1  2020



14 ABRAMOV et al.
3. G. Frobenius, “Integration der linearen Differentialgleichungen mit verander Koefficienten,” J. Reine Angew.
Math. 76, 214–235 (1873).

4. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).
5. L. Heffter, Einleitung in die Theorie der linearen Differentialgleichungen (Teubner, Leipzig, 1894).
6. E. Tournier, “Solutions formelles d'équations différentielles: Le logiciel de calcul formel DESIR: Étude

théorique et realization,” Thèse d'État (Université de Grenoble, Grenoble, 1987).
7. D. A. Lutz and R. Schäfke, “On the identification and stability of formal invariants for singular differential

equations,” Linear Algebra Appl. 72, 1–46 (1985).
8. E. Pflügel, DESIR-II, RT 154 (IMAG, Grenoble, 1996).
9. Maple Online Help. http://www.maplesoft.com/support/help/

10. M. Barkatou and E. Pflügel, “An algorithm computing the regular formal solutions of a system of linear differ-
ential equations,” J. Symb. Comput. 28, 569–587 (1999).

11. S. Abramov, M. Bronstein, and D. Khmelnov, “On regular and logarithmic solutions of ordinary linear differ-
ential systems,” Lect. Notes Comput. Sci. 3718, 1–12 (2005).

12. E. Kamke, Gewohnliche Differentialgleichungen (Akademie-Verlag, Leipzig, 1959).
13. S. Abramov, M. Bronstein, and M. Petkovšek, “On polynomial solutions of linear operator equations,” Proc. of

ISSAC'95, 290–296 (1995).
14. S. A. Abramov and D. E. Khmelnov, “Regular solutions of linear differential systems with power series coeffi-

cients,” Program. Comput. Software 40 (2), 98–106 (2014).
15. S. Abramov and M. Barkatou, “Computable infinite power series in the role of coefficients of linear differential

systems,” Proc. of CASC'2014, Lect. Notes Comput. Sci. 8660, 1–12 (2014).
16. S. Abramov, M. Barkatou, and D. Khmelnov, “On full rank differential systems with power series coefficients,”

J. Symb. Comput. 68, 120–137 (2015).
17. S. Abramov, M. Barkatou, and E. Pflügel, “Higher-order linear differential systems with truncated coeffi-

cients,” Proc. of CASC'2011, Lect. Notes Comput. Sci. 6885, 10–24 (2011).

Translated by E. Chernokozhin
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 1  2020


	1. INTRODUCTION
	2. PRELIMINARY INFORMATION
	2.1. Basic Concepts
	2.2. Laurent Solutions
	2.3. Induced Recurrence Equation

	3. REGULAR SOLUTIONS
	3.1. Power Factors
	3.2. General Scheme for Finding Regular Solutions (Heffter’s Approach)
	3.3. Working with Inhomogeneous Equations

	4. HEFFTER'S SCHEME FOR TRUNCATED COEFFICIENTS
	4.1. Constructing Laurent Solutions of the Truncated Equation
	4.2. The Algorithm

	5. EXAMPLES
	6. COMPUTER IMPLEMENTATION AND EXAMPLES OF USE
	REFERENCES

