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Abstract

We present an approach to sharpen the bounds for the set of poles
of meromorphic solutions of difference equations with polynomial co-
efficients. The desingularization of the operator corresponding to the
given equation plays the key role. Additionally we consider certain
problems related to the existence of solutions that are analytic (or r

times continuously differentiable, or continuous) everywhere on R.

1 Introduction

Let E be the shift operator defined on functions of x as Ey(x) = y(x + 1).
Let L ∈ R[x,E], i.e. L is an operator of the form

ad(x)Ed + · · · + a1(x)E + a0(x) (1)

with ai(x) ∈ R[x], i.e. ai(x) is a polynomial in x with coefficients in R. De-
note R(x) as the field of quotients of R[x], i.e., the field of rational functions
of x with coefficients in R. An operator T ∈ R[x,E] is right divisible over
R(x) by L if there exists an operator G ∈ R(x)[E] such that T = G ◦ L.

Here R(x)[E] is the set of all
∑m

i=0 ri(x)Ei with ri(x) ∈ R(x). Suppose
that the trailing coefficient a0(x) of L vanishes for some values of x. The
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following two problems are handled in [1]: (a) Does there exist an operator
T ∈ R[x,E] right divisible over R(x) by L such that the set of the roots
of the trailing coefficient of T is a proper subset of the set {x | a0(x) = 0}?
(It is desirable to eliminate as many of the roots of a0(x) as possible.) (b)
If the answer to problem (a) is positive, then how can one compute such
an operator T ? This elimination process is named the desingularization of
L w.r.t. the trailing coefficient. A similar process can be applied to the
leading coefficient. The algorithm essentially reduces the aforementioned
problems to linear algebra problems. Additionally, the so-called ε-algorithm
is used in [1]. This algorithm helps to answer quickly certain questions
related to the feasibility of the desingularization without the need to con-
struct the corresponding operators. In Sect. 2 we consider an application of
these algorithms in sharpening the bounds for the set of poles of solutions
of difference equations with polynomial coefficients.

Let L be of the form (1). If a solution of the equation LF (x) = 0
is analytic on an interval (A,B), B − A > d = ord L, then, evidently,
F (x) is meromorphic on R. In Sect. 3 we describe necessary and sufficient
conditions for the analyticity of F (x) everywhere on R. These conditions
are represented as a finite set of linear relations among the values of F (x)
and some of its derivatives at some points q1, . . . , qτ ∈ (A,B). These linear
relations and the points q1, . . . , qτ are built beginning with L and A,B,
where q1, . . . , qτ can be selected in any preassigned semi-interval of length d

that belongs to (A,B).
We show that the exact evaluation of the values of F (x) at problem

points is possible, if the mentioned relations hold. Similar questions related
to the differentiability and continuity of F (x) are also considered.

2 Set of Poles

2.1 Supplementary Poles

For a ∈ R, denote by a− the set {a, a − 1, a − 2, . . .}, and by a+ the set
{a, a + 1, a + 2, . . .}. For p(x) ∈ R[x] and c ∈ R, denote

{p(x)}−c =
⋃

p(a)=0, a≤c

a−, {p(x)}+
c =

⋃

p(a)=0, a≥c

a+.

Let A,B ∈ R, A < B, and V be the interval

(A, B). (2)
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Let L be an operator of the form (1), and F (x) be a meromorphic solution
of L, so LF = 0. The poles of F in V can give rise to poles outside V ; these
poles are in the set

W =
⋃

v

{v ± 1, v ± 2, . . .} \ V,

where v runs through the set of the poles belonging to V .
Additionally, supplementary poles can occur (i.e., the poles, that origi-

nate from the operator). The following proposition is well-known.

Proposition 1 Let B − A > d. The poles of F (x) that are not in the set
V ∪ W (i.e., the poles supplementary w.r.t. V ) belong to the set M1 ∪ M2

where
M1 = {ad(x − d)}+

B , M2 = {a0(z)}−A . (3)

2.2 Desingularization and Analysis of Supplementary Poles

Proposition 1 admits a natural generalization as stated in the following
theorem.

Theorem 1 Let S, T be operators from R[x,E] right divisible over R(x) by

L = ad(x)Ed + · · · + a0(x),

ord S = m, ord T = m′. Let t0(x) be the coefficient of E0 in T and sm(x)
be the coefficient of Em in S. Let F (x) be a meromorphic function such
that LF (x) = 0 and V be the interval (A,B). Let B − A > max{m,m′}.
Then the set of the poles of F (x), supplementary w.r.t. V , belongs to the
set M1 ∪ M2 where

M1 = {sm(x − m)}+
B , M2 = {t0(x)}−A . (4)

This theorem allows one to use the desingularization for sharpening the set
of poles of solutions of difference equations.

Example 1. As a simple illustration, consider the difference equation

(x − ν) y(x + 1) − x y(x) = 0, ν ∈ N \ {0}.

Set V = (A,B) = (−ν − 1, 0). It follows from Proposition 1 that the
supplementary poles belong to the set {ν + 1, ν + 2, . . .}. However, the ε-
algorithm [1] confirms the feasibility of the desingularization w.r.t. both the
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leading and the trailing coefficients, and the corresponding operators are of
order ν + 1 (actually, (x− ν)E − x right-divides (E − 1)ν+1). Therefore, by
using the idea of desingularization (the ε-algorithm) and by applying Theo-
rem 1 to (x− ν)E −x, we conclude that there exists no pole supplementary
w.r.t. V .

3 Analytic, differentiable and continuous solutions

If F (x) satisfies on R an equation LF (x) = 0:

ad(x)F (x + d) + · · · + a1(x)F (x + 1) + a0(x)F (x) = 0, (5)

and F (x) is analytic on V = (A,B) and if, additionally, d < B − A, then,
evidently, F (x) is meromorphic on R. The question is, which additional
conditions should F (x) satisfy on V in order to be analytic everywhere on
R? We describe necessary and sufficient conditions for F (x) to be analytic
for x ≥ B; the case x ≤ A can be considered similarly.

3.1 One step computation

Suppose that q is such that q, q + 1, . . . , q + d − 1 < B, q + d ≥ B. At each
of points

q + i, i = 0, 1, . . . , d − 1, (6)

there exists the series

∞
∑

ν=0

aiνε
ν , aiν =

F (ν)(q + i)

ν!
, (7)

for F (q + i + ε) with a non-zero convergence radius. If we know those series
for points (6), then, using (5), we can construct the corresponding series
(generally speaking, Laurent) for the points q + d, q + d + 1, . . . To do this,
we consider ε as a variable and substitute x + ε for x into (5). We obtain
the transformed equation LǫF (x + ε) = 0:

ad(x+ε)F (x+d+ε)+· · ·+a1(x+ε)F (x+1+ε)+a0(x+ε)F (x+ε) = 0. (8)

The substitution x = q into this equation results in the equation

ad(q + ε)F (q + d + ε) + · · · + a1(q + ε)F (q + 1 + ε) + a0(q + ε)F (q + ε) = 0
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for the series F (q + d + ε); notice that a0(q + ε), . . . , ad(q + ε) ∈ R[ε]. We
can compute the series

ad−1(q + ε)F (q + d − 1 + ε) + · · · + a0(q + ε)F (q + ε)

and multiply it by the series expansion of

−
1

ad(q + ε)
.

If ad(q) = 0 then the product can involve ε with negative exponents, and the
absolute value of the minimal exponent does not exceed the multiplicity µ

of the root q of the polynomial ad(x). The coefficients of ε−1, . . . , ε−µ in the
obtained expansion of F at the point q+d, i.e. the expansion of F (q+d+ε)
at ε = 0, can be represented as linear combinations of the coefficients

aiν , i = 0, 1, . . . , d − 1, ν = 0, 1, . . . , µ − 1,

from (7). Therefore the coefficients of ε−1, ε−2, . . . vanish iff the values of
F (x) and its derivatives F ′(x), . . . , F (µ−1)(x) at points (6) satisfy µ linear
conditions that can be derived using the transformed operator Lǫ and q.
The coefficients of εn, n ≥ 0, of the expansion of F (q + d + ε) also can be
represented as linear combinations of the values of F (x) and its derivatives
at (6). It is easy to see that to obtain the linear conditions that guarantee
the analyticity of F (x) at q + d we need only the first µ coefficients of each
of these series (not the whole series (7)).

Example 2. Consider the equation xF (x + 2) − (3x − 3)F (x + 1) + (2x −
3)F (x) = 0. Let A = −1, B = 1.5. We obtain the transformed equation
(x + ε)F (x + 2 + ε)− (3x− 3− 3ε)F (x + 1 + ε) + (2x− 3 + 2ε)F (x + ε) = 0.
Set q = 0, F (ε) = a00 + a01ε + . . . , F (1 + ε) = a10 + a11ε + . . . Using the
transformed equation we obtain

F (2+ε) = ε−1((−3−3ε)(a10 +a11ε+. . .)−(−3+2ε)(a00 +a01ε+. . .)+. . .) =

(3a00 − 3a10)ε
−1 + (−2a00 + 3a01 − 3a10 − 3a11)ε

0 + . . .

Setting the coefficient of ε−1 to 0, we obtain the necessary and sufficient
condition of the analyticity in the form

F (0) − F (1) = 0. (9)
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The coefficient of ε0 gives the expression for F (2) in the form −2F (0) +
3F ′(0) + 3F (1) − 3F ′(1), that can be rewritten as F (0) + 3F ′(0) − 3F ′(1)
by (9). Notice that the original equation has analytic solutions, for example
F (x) = sin (2πkx) or cos (2πkx) for any integer k; it is easy to see that (9)
as well as F (2) = F (0) + 3F ′(0) − 3F ′(1) are valid for these solutions.

3.2 Classes of roots of the leading coefficient

All roots of the polynomial ad(x) that are greater than or equal to B can
be arranged in disjoint maximal classes in such manner that the numbers
in each class differ only by integers. Following the reasoning of Sect. 3.1 we
get the theorem.

Theorem 2 Let LF (x) = 0 be equation of the form (5). Let {p1, . . . , pl} be
a class of the roots of ad(x) which are greater or equal to B, p1 < . . . < pl,
and let µ1, . . . , µl be the multiplicities of these roots, mi = µ1 + · · · + µi,
i = 1, 2, . . . , l. Let q ∈ (A,B), d < B − A, be such that p1 − q ∈ Z and
q+d−1 < B. Then one can construct matrices M1, . . . ,Ml whose sizes are,
respectively,

µ1 × dm1, . . . , µl × dml,

such that a function F (x) which is analytic on (A,B) and satisfies LF (x) =
0 on R is analytic at all x ≥ B for which x − q ∈ Z}, iff

Mifi = 0, i = 1, 2, . . . , l, (10)

where

fi = (F (q), . . . , F (mi)(q), . . . , F (q + d − 1), . . . , F (mi)(q + d − 1))T.

Additionally one can construct matrices (rows) S1, . . . , Sl, whose sizes are,
respectively, 1 × dm1, . . . , 1 × dml such that if conditions (10) are satisfied,
then the values F (p1), . . . , F (pl) are, respectively, equal to

S1f1, . . . , Slfl. (11)

Considering all classes of the roots of ad(x) we obtain necessary and
sufficient conditions of the analyticity of F (x). For the case where F (x) is
analytic we obtain also an algorithm to compute F (x) at the problem points,
i.e. at the points that are of the form either t−d, where aq(t) = 0, t−d ≥ B,
or s, where a0(s) = 0, s ≤ A (the direct use of equation (5) does not work
to compute F (x) at those points).
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We can consider continuous differentiability (say, r times) of F (x) in-
stead of analyticity. Then we will use expressions of the form

∑r+ml

ν=0 aνεν +
o(εr+ml) instead of series (7), and the conditions formulated in Theorem 2
become necessary and sufficient conditions for a function F (x) (r+ml times
continuously differentiable on (A,B)) to be at least r times continuously
differentiable at all points of the set p+

1 = {p1, p1 + 1, . . .}. If r = 0, we get
conditions for continuity.

Example 3. Let

L = 2(x − 2)(x − 3)E2 − (3x + 7)(x − 3)E + (x + 3)(x + 1).

Let F (x) be a solution of L, so LF (x) = 0. Assume that F (x) is at least
twice continuously differentiable at x = 0 and x = 1. Then we can write

F (0 + ε) = a00 + a01ε + a02ε
2 + o(ε2),

F (1 + ε) = a10 + a11ε + a12ε
2 + o(ε2).

Using the transformed equation we can now calculate similar expansions at
x = 2, 3, . . . and at x = −1,−2, . . . However, although we have the values of
F,F ′, F ′′ at 0 and 1 (i.e. we have the εν terms for ν = 0, 1, 2 at x = 0, 1) we
can not compute as many terms at other points, because each time we divide
by ε we will lose some terms. In the expansions given below, we will only
give those terms for which we know in advance that they can be expressed
in terms of aiν , i = 0, 1, ν = 0, 1, 2.

F (2 + ε) = −
1

4
a00 −

7

4
a10 +

(

−
13

24
a00 −

13

8
a10 −

1

4
a01 −

7

4
a11

)

ε

+

(

−
71

144
a00 −

13

24
a01 −

13

16
a10 −

1

4
a02 −

13

8
a11 −

7

4
a12

)

ε2

+ o(ε2),

F (3 + ε) =
27

4
a10 +

5

4
a00 +

(

15 a10 +
27

4
a11 +

13

3
a00 +

5

4
a01

)

ε

+

(

27

4
a12 +

13

3
a01 + 20 a10 +

5

4
a02 + 15 a11 +

137

18
a00

)

ε2

+ o(ε2),

F (4 + ε) =

(

123

4
a10 +

25

4
a00

)

ε−1 +
1205

16
a10 +

123

4
a11 +

1109

48
a00 +

25

4
a01

+

(

123

4
a12 +

1109

48
a01 +

3415

32
a10 +

25

4
a02 +

1205

16
a11 +

12397

288
a00

)

ε

7



+ o(ε),

F (5 + ε) =
165 a10 + 35 a00

ε
+

2159

8
a10 + 165 a11 +

2423

24
a00 + 35 a01 + o(1).

Using the transformed equation in the opposite direction we find

F (−1 + ε) =
−8 a00 − 12 a10

ε
+ 13 a10 − 8 a01 − 12 a11

+

(

3

2
a00 −

15

2
a10 − 8 a02 + 13 a11 − 12 a12

)

ε + o(ε),

F (−2 + ε) =
−40 a00 − 60 a10

ε
− 40 a01 − 72 a00 − 60 a11 − 103 a10

+

(

−60 a12 +
241

2
a10 − 72 a01 −

53

2
a00 − 103 a11 − 40 a02

)

ε

+ o(ε),

F (−3 + ε) =
540 a10 + 120 a00

ε
− 1773 a10 − 404 a00 + 120 a01 + 540 a11

+ o(1).

Note that computing truncated power series at each point in this way is
used in [2] for computing hypergeometric solutions.

Because we only started with coefficients up to ε2, after a division by ε

the coefficients of ε2 can no longer be determined. Two divisions by ε were
needed to reach x = −3 and x = 5, that is why the coefficient of ε1 is not
given at those points.

Divisions by ε take place at the following points: x = 4, x = 5, x = −1,
x = −3. If we want F (x) to be continuous at those points then we get the
following linear conditions:

123

4
a10 +

25

4
a00 = 165 a10 +35 a00 = −8 a00−12 a10 = −40 a00−60 a10 = 0.

After Gaussian elimination one finds that this system is equivalent to a00 =
a10 = 0. So it turns out that there are no conditions on aiν when ν = 1
or ν = 2. In general such conditions do occur. We conclude: If F (x) is
twice continuously differentiable at x = 0 and x = 1, and LF (x) = 0,
then F is continuous at all integers iff F (0) = F (1) = 0. In that case, the
values of F (x) at integer points can be expressed in terms of the aiν by
substituting ε = 0 in the expansions given above. The substitution gives,
e.g., F (−3) = 120F ′(0) + 540F ′(1). If, in addition, F (x) is continuous on
some interval of length > 2 then F (x) will be continuous on R.
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Example 4. Let
L = x2E2 + (1 + x2)E − x

and let F (x) be a solution of L. Assume again that F (x) is at least two
times continuously differentiable at x = 0 and x = 1, and write

F (0 + ε) = a00 + a01ε + a02ε
2 + o(ε2),

F (1 + ε) = a10 + a11ε + a12ε
2 + o(ε2).

We calculate:

F (2 + ε) = −
a10

ε2
+

−a11 + a00

ε
− a10 − a12 + a01 + o(1).

One sees that if F is analytic at 0 and 1 then F is analytic at all integer
points iff F (1) = 0 and F ′(1) = F (0). In that case, e.g., one gets F (2) =
F ′(0)−F ′′(1). It is easy to verify that (x−1)cos (πx) is an analytic solution,
and that it satisfies this condition.
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