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ABSTRACT

We propose four multiplicative canonical forms that exhibit
the shift structure of a given rational function. These forms
in particular allow one to represent a hypergeometric term
efficiently. Each of these representations is optimal in some
sense.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Alge-
braic algorithms

General Terms

Algorithms, Design
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1. INTRODUCTION
Let K be a field of characteristic zero. Representations of

a rational function R ∈ K(x) in the form

R(x) = F (x) · V (x + 1)

V (x)
(1)

where F, V ∈ K(x) satisfy some specific conditions, play
a substantial role in various computer algebra algorithms
operating on hypergeometric terms . Recall that a sequence
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T (n) of elements of K defined for all integers n ≥ n0 is a
hypergeometric term if there are polynomials p, q ∈ K [x]
such that q(n)T (n+1) = p(n)T (n) for all n ≥ n0. If T (n) is
eventually nonzero then the rational function p/q is unique,
and is called the certificate of T .

The main part of Gosper’s algorithm for hypergeometric
indefinite summation [5], Zeilberger’s algorithm for hyper-
geometric definite summation [5], the algorithm for finding
a minimal multiplicative decomposition of a hypergeometric
term [2], and the algorithm for finding a minimal additive
decomposition of a hypergeometric term [2] starts with the
certificate of a hypergeometric term. Each algorithm then
proceeds by representing this certificate in the form (1). Al-
gorithm Hyper [5], and the algorithm to compute the hyper-
geometric dispersion [1] use the representation of certificates
in the form (1) as an auxiliary tool.

The algorithm for finding a minimal multiplicative decom-
position of a hypergeometric term can be used to construct
an economic representation of a hypergeometric term T (n).
Using the certificate R of T (n), we can write

T (n) = c

n−1
Y

k=n0

R(k), (2)

where c is determined from some initial conditions. Let
F (x) in (1) be written as r(x)/s(x) where r, s ∈ K [x] and
gcd(r(x), s(x + k)) = 1 for all k ∈Z. Then (1) is a rational
normal form (RNF) of R(x), and F (x), V (x) are the kernel
and the shell of this RNF, respectively. By using any RNF
of R, we can rewrite (2) in the form

T (n) = c V (n)

n−1
Y

k=n0

F (k) (3)

where both the numerator and the denominator of F are of
minimal possible degrees [2].

It was shown in [2] that a rational function can have sev-
eral different RNF’s. In Sections 3–4.4, we distinguish four
rational canonical forms (RCF’s) in the set of all RNF’s.
Each of these four RCF’s minimizes the shell in one sense
or another: RCF1 and RCF2 minimize the degree of the
denominator and of the numerator of the shell, respectively.
RCF∗

1 and RCF∗
2 both minimize the sum of the degrees of the

numerator and of the denominator of the shell, and under
this condition, also minimize the degree of the denominator
and of the numerator of the shell, respectively. By using



these canonical forms in the problem of representing a hy-
pergeometric term T (n) economically, we can minimize V
in (3) (recall that F is minimized by any RNF of R). As a
consequence, we can rewrite (3) in the “optimal” form

αn V (n) Q(n), (4)

where α ∈ K , and Q(n) is a product of Gamma-function val-
ues (if K = C ) or Pochhammer symbols (i.e., rising factorial
powers) and their reciprocals. Additionally,

• Q(n) has the minimal possible number of factors,

• V (n) is a rational function which is minimal in one
sense or another, depending on the particular RCF
chosen to represent the certificate of T (n).

Economic representations of hypergeometric terms are
useful in the output routines of algorithms which return hy-
pergeometric terms, but compute their certificates first and
need to construct the terms themselves before outputting
them. Other important problems where these represen-
tations can be used to advantage include simplification of
hypergeometric terms (algorithms which accept a hyperge-
ometric term T as input, and construct a rational func-
tion R such that the output hypergeometric term is RT ;
in this case, a simplification is desirable), and investigation
of asymptotics of hypergeometric terms.

The algorithms for constructing the four RCF’s of a ra-
tional function, and the four economic representations of a
hypergeometric term have been implemented in Maple, and
are available from
http://www.scg.uwaterloo.ca/~hqle/code/RNF/RNF.html

2. PRELIMINARIES
In this section we give definitions of basic notions, and

formulate some necessary results from [2].
Throughout the paper, K is a field of characteristic zero,

Zand N respectively denote the set of integers and non-
negative integers, E denotes the shift operator acting both
on rational functions by ER(x) = R(x + 1), and on se-
quences by ET (n) = T (n + 1). For p, q ∈ K [x], we write
p⊥ q to indicate that p and q are coprime. We denote the
leading coefficient of p by lc(p). For every rational function
R ∈ K(x), its numerator num R and denominator den R are
uniquely determined by requiring that num R, den R ∈ K [x],
R = num R/den R, num R⊥ den R, and lc(den R) = 1. The
leading coefficient of R is lc(R) = lc(numR), and R is monic
if lc(R) = 1.

2.1 PNF, RNF and Their Strict Versions
A pair of polynomials (p, q) ∈ K [x]×K [x] is shift-reduced

if p⊥Ekq for all k ∈ Z. We also call a rational func-
tion R ∈ K(x) shift-reduced if the pair (num R, den R) is
shift-reduced. Irreducible polynomials p, q ∈ K [x] are shift-
equivalent if p |Ekq for some k ∈ Z. A rational function
R ∈ K(x) is shift-homogeneous if all irreducible factors of
num R and den R belong to the same shift-equivalence class.
By grouping together shift-equivalent irreducible monic fac-
tors of its numerator and denominator, every rational func-
tion R(x) ∈ K(x) can be written in the form

R(x) = z R1(x)R2(x) · · · Rk(x) (5)

where z ∈ K , k ≥ 0, each Ri is a monic shift-homogeneous
rational function, and Ri Rj is not shift-homogeneous unless

i = j or Ri = 1 or Rj = 1. We call (5) a shift-homogeneous
factorization of R.

Definition 2.1. Let R ∈ K(x). If there are z ∈ K, and
monic polynomials a, b, c ∈ K [x] such that

(i) R = z · a

b
· Ec

c
,

(ii) a⊥Ekb for all k ∈ N,

then (z, a, b, c) is a polynomial normal form (PNF) of R. If,
in addition,

(iii) a⊥ c and b⊥Ec,

then (z, a, b, c) is a strict PNF of R.

Every nonzero rational function has a unique strict PNF. For
a proof of this, and for an algorithm to compute it, see [5].
We denote the strict PNF of R ∈ K(x) \ {0} by sPNF(R).

Definition 2.2. Let R ∈ K(x). If there are z ∈ K, and
monic polynomials r, s, u, v ∈ K [x] such that

(i) R = F · EV

V
where F = z · r

s
, V =

u

v
and u⊥ v,

(ii) the pair (r, s) is shift-reduced,

then (z, r, s, u, v) is a rational normal form (RNF) of R. We
denote the set of all RNF’s of R by RNFx(R).

If in addition,

(iii) r⊥ u · Ev and s⊥Eu · v,

then (z, r, s, u, v) is a strict RNF of R. We denote the set
of all strict RNF’s of R by sRNFx(R).

Every nonzero rational function has a strict RNF. For a
proof of this, and for an algorithm to compute it, see [2].
Note that all four rational canonical forms introduced in this
paper, RCF1, RCF2, RCF∗

1 and RCF∗
2, are strict RNF’s.

Definition 2.3. The rational functions F = zr/s and
V = u/v are called, respectively, the kernel and the shell of
the RNF (z, r, s, u, v).

For notational convenience, an RNF of a rational func-
tion R is sometimes written in the short form (F, V ) instead
of in the long form (z, r, s, u, v).

We will often use the following result [5, Lemma 5.3.1]:

Lemma 2.1. Let a, b, c, A, B, C ∈ K [x] be polynomials
such that a⊥ c, b⊥Ec, and a⊥Ekb for all k ∈ N. If

a

b

Ec

c
=

A

B

EC

C

then c divides C.

2.2 Minimizing the Kernel

Theorem 2.2. Let ϕ = (z, r, s, u, v) be any RNF of R ∈
K(x) \ {0}. Then

(i) z is unique;

(ii) if R is shift-homogeneous then r = 1 or s = 1;



(iii) the degrees of the polynomials r and s are unique, and
have minimal possible values in the sense that if

R(x) =
p(x)

q(x)

EG(x)

G(x)

where p, q ∈ K [x] and G ∈ K(x), then deg r ≤ deg p
and deg s ≤ deg q;

(iv) given F = zr/s, the RNF of R is uniquely determined;

(v) ϕ−1 := (1/z, s, r, v, u) is an RNF of 1/R. If ϕ is strict
then so is ϕ−1;

(vi) if ϕ is strict then r |num R and s |den R;

(vii) the set sRNFx(R) is finite.

For a proof, see [2].

Proposition 2.3. Let R ∈ K(x) \ {0}. A strict RNF
(z, r, s, u, v) of R is uniquely determined by either u or v.

Proof: Let (z1, r1, s1, u1, v1), (z2, r2, s2, u2, v2) be two strict
RNF’s of R. This implies

z1
r1

s1

Eu1

u1

v1

Ev1
= z2

r2

s2

Eu2

u2

v2

Ev2
.

If v1 = v2 then (z1, r1, s1, u1) and (z2, r2, s2, u2) are both
strict PNF’s of R1 = R · (Ev1/v1). Similarly, if u1 = u2 then
(1/z1, s1, r1, v1) and (1/z2, s2, r2, v2) are both strict PNF’s
of R2 = (1/R) (Eu1/u1). Since the strict PNF of a rational
function is unique, we have proved the assertion. ✷

Example 2.1. Let R ∈ K(x) \ {0}. While the strict
PNF of R is unique, R can have infinitely many distinct
PNF’s. For instance, for any irreducible monic p ∈ K [x],
the four-tuple (1, p, Ep, p) is a PNF of R(x) = 1. Like-
wise, some rational functions R can have infinitely many
distinct RNF’s. For instance, for any monic p ∈ K [x]
and k ∈ N, the five-tuple (1, Ekp, 1, 1, p Ep · · · Ek−1p) is an
RNF of R(x) = p(x).

Property (iii) in Theorem 2.2 shows the minimality of the
kernel of any RNF. An interesting question is how to com-
pute an RNF not only with the minimal kernel, but also
with a minimal shell (in some sense).

3. MINIMIZING THE SHELL: deg num V

OR deg den V

3.1 Definition and Properties of RCF1 and
RCF2

Among all possible RNF’s of R we distinguish two (not
necessarily distinct) forms which are called the first and the
second rational canonical forms (RCF1 and RCF2) of R.

Definition 3.1. Let R ∈ K(x) \ {0}. A strict RNF
(z, r1, s1, u1, v1) of R is the first rational canonical form
(RCF1) of R if v1 | v for every RNF (z, r, s, u, v) of R.
A strict RNF (z, r2, s2, u2, v2) of R is the second ratio-
nal canonical form (RCF2) of R if u2 |u for every RNF
(z, r, s, u, v) of R.

Theorem 3.1. Every R ∈ K(x)\{0} has a unique RCF1

and a unique RCF2.

Proof: By Definition 3.1, any two RCF1’s of R have the
same v, hence by Proposition 2.3 they are equal. Similarly,
any two RCF2’s of R have the same u, hence they are equal.
This proves uniqueness of RCF1 and RCF2 (and justifies our
use of the word “canonical”). Their existence is established
constructively by Algorithms RCF1 and RCF2, respectively,
in Section 3.2. ✷

We denote the unique RCF1 and RCF2 of R ∈ K(x) \ {0}
by RCF1(R) and RCF2(R), respectively.

From Definition 3.1 it follows that RCF1(R) (resp.
RCF2(R)) guarantees minimality of the denominator (resp.
of the numerator) of the shell among all RNF’s of R. Fur-
thermore, it also guarantees minimality of its numerator
(resp. of its denominator) among all those RNF’s of R that
have the same (i.e., minimal) degree of the denominator
(resp. of the numerator) as RCF1(R) (resp. RCF2(R)):

Proposition 3.2. Let RCFi(R) = (z, ri, si, ui, vi), i ∈
{1, 2}. Let (z, r, s, u, v) be an RNF of R.

(i) If deg v = deg v1 then v1 = v and u1 |u.

(ii) If deg u = deg u2 then u2 = u and v2 | v.

Proof: (i) Let deg v = deg v1. By definition of RCF1 we
have v1 | v, hence v1 = v. Then

r1

s1

Eu1

u1
=

r

s

Eu

u
.

As RCF1(R) is strict and r/s is shift-reduced, Lemma 2.1
implies that u1 |u. – The proof of (ii) is analogous. ✷

However, as shown by the next proposition, the price for
absolute minimality of the denominator (resp. of the nu-
merator) of the shell in RCF1 (resp. in RCF2) is maximality
of its numerator (resp. of its denominator) among all strict
RNF’s of R.

Proposition 3.3. Let RCFi(R) = (z, ri, si, ui, vi), i ∈
{1, 2}. If (z, r, s, u, v) is a strict RNF of R then u |u1 and
v | v2.

Proof: By definition of RCF1, there is w ∈ K [x] such that
v = v1w. Then

r1

s1

E(u1w)

(u1w)
=

r

s

Eu

u
.

As (z, r, s, u, v) is strict and r1/s1 is shift-reduced, Lemma
2.1 implies that u |u1w. From u⊥ v it follows that u⊥w,
so u |u1 as claimed. – The proof that v | v2 is analogous. ✷

Corollary 3.4. If RCF1(R) = RCF2(R) then this is the
only strict RNF of R.

Proof: Let ϕ = (z, r, s, u, v) be any strict RNF of R. Write
RCF1(R) = RCF2(R) = (z, r1, s1, u1, v1). Then v1 | v by
Definition 3.1 and v | v1 by Proposition 3.3, hence v = v1.
By Proposition 2.3, ϕ = RCF1(R) = RCF2(R). ✷

3.2 Existence and Computation of RCF1 and
RCF2

In this section we prove the existence of RCF1 and RCF2

by giving algorithms to construct them.



Algorithm RCF1

input: R ∈ K(x) \ {0}
output: RCF1(R)

(z, a, b, c) := sPNF(R);
(1, a1, b1, c1) := sPNF(b/a);
g := gcd(c, c1); (take g monic)
d := c/g; d1 := c1/g;
return (z, b1, a1, d, d1).

Algorithm RCF2

input: R ∈ K(x) \ {0}
output: RCF2(R)

(z, r, s, u, v) := RCF1(1/R);
return (1/z, s, r, v, u).

Now we proceed to prove correctness of these algorithms.

Lemma 3.5. Let (z, a, b, c) be the strict PNF of R ∈
K(x) \ {0}, and let (z, r, s, u, v) be an RNF of R such that
r⊥u and s⊥Eu. Then u | c.
Proof: We have

R = z
a

b

Ec

c
= z

r

s

E(u/v)

(u/v)
. (6)

Set

R1 =
a

b

E(cv)

(cv)
.

It follows from (6) that

R1 =
1

z

Ev

v
R =

r

s

Eu

u
.

As r⊥u, s⊥Eu and gcd(a, Ekb) = 1 for all k ∈ N, it fol-
lows from Lemma 2.1 that u | c v. Hence u | c. ✷

Lemma 3.6. Let (z, r, s, u, v) be any RNF of R ∈ K(x) \
{0}. Then there is an RNF (z, r′, s′, u′, v) of R such that
r′ ⊥u′ and s′ ⊥Eu′.

Proof: Let R be the set of all pairs of monic polynomials
(ρ, τ) such that the pair (ρ, s) is shift-reduced and ρ Eτ/τ =
r Eu/u. The set R contains (r, u), so R 6= ∅. Let (r′, u1) ∈
R be such that deg u1 is minimal among all pairs in R. Then

r′
Eu1

u1
= r

Eu

u
. (7)

Denote g = gcd(r′, u1), r2 = r′/g and u2 = u1/g. Then
deg u2 ≤ deg u1. As r2 | r′, Eg |Er′, and (r′, s) is shift-
reduced, so is (r2 Eg, s). As r2 Eg Eu2/u2 = r′ Eu1/u1 =
r Eu/u, it follows that (r2 Eg, u2) ∈ R. By definition of u1

we have deg u1 ≤ deg u2, so deg u1 = deg u2 and deg g = 0.
Hence r′ ⊥ u1.

Let S denote the set of all pairs of monic polynomi-
als (σ, τ) such that the pair (r′, σ) is shift-reduced and
(1/σ) Eτ/τ = (1/s)Eu1/u1. The set S contains (s,u1),
so S 6= ∅. Let (s′, u′) ∈ S be such that deg u′ is minimal
among all pairs in S. Then

1

s′
Eu′

u′
=

1

s

Eu1

u1
. (8)

It can be shown that s′ ⊥Eu′ (the proof is analogous to the
one showing that r′ ⊥u1 given in the preceding paragraph).

Together with (8) and Lemma 2.1 this implies that u′ |u1,
and so r′ ⊥u′. Finally, from (7) and (8) we have

r′

s′
Eu′

u′
=

r′

s

Eu1

u1
=

r

s

Eu

u
,

so (z, r′, s′, u′, v) is an RNF of R with required properties. ✷

Theorem 3.7. Algorithms RCF1 and RCF2 are correct.

Proof: Let z, a, b, c, a1, b1, c1, g, d, d1 be as in Algorithm
RCF1. We claim that ϕ1 = (z, b1, a1, d, d1) is RCF1(R).
It follows from (the proof of) [2, Theorem 1] that ϕ1 is a
strict RNF of R. We need to show that if ϕ = (z, r, s, u, v)
is any RNF of R then d1 | v. By Lemma 3.6, there is an
RNF (z, r′, s′, u′, v) of R such that r′ ⊥u′ and s′ ⊥Eu′. By
Lemma 3.5, u′ | c, so c2 := c v/u′ is a polynomial and

a1

b1

Ec1

c1
=

b

a
= z

1

R

Ec

c
=

s′

r′
Ec2

c2
.

As a1 ⊥ c1, b1 ⊥Ec1 and s′/r′ is shift-reduced, Lemma 2.1
implies that c1 | c2. Let q1 = c2/c1 ∈ K [x]. Then

d1q1u
′ =

c1

g
q1u

′ =
c2

g
u′ =

c v

g
= d v.

As d1 ⊥ d, it follows that d1 | v which proves the claim.
Let ϕ2 = (1/z, s, r, v, u) be the output of Algorithm RCF2.

We claim that ϕ2 is RCF2(R). By Theorem 2.2 (v), ϕ2 is
a strict RNF of R. Let ϕ = (1/z, s′, r′, v′, u′) be any strict
RNF of R. Then by Theorem 2.2 (v), (z, r′, s′, u′, v′) is a
strict RNF of 1/R. Since (z, r, s, u, v) = RCF1(1/R), it
follows that v | v′, proving the claim. ✷

Example 3.1. Consider the rational function

R =
x(x+2)(x−4+

√
2)(x−3+

√
2)(x+2+

√
2)(x+11+

√
2)

(x−3)(x−2)2(x+6)(x+12)(x−1+
√

2)(x+1+
√

2)
.

Following Algorithm RCF1, RCF1 (z, r1, s1, u1, v1) of R is
�

1, (x − 4 +
√

2)(x − 3 +
√

2), (x − 3)(x + 6)(x + 12),

(x − 2)2(x − 1)2x (x + 1)(x − 1 +
√

2)(x +
√

2)

(x + 1 +
√

2)2(x + 2 +
√

2)(x + 3 +
√

2)(x + 4 +
√

2)

(x + 5 +
√

2)(x + 6 +
√

2)(x + 7 +
√

2)(x + 8 +
√

2)

(x + 9 +
√

2)(x + 10 +
√

2), 1
�

.

Following Algorithm RCF2, RCF2 (z, r2, s2, u2, v2) of R is
�

1, (x + 2 +
√

2)(x + 11 +
√

2), (x − 3)(x − 2)2, 1,

x (x + 1)(x + 2)2(x + 3)2(x + 4)2(x + 5)2(x + 6)

(x + 7)(x + 8)(x + 9)(x + 10)(x + 11)(x − 4 +
√

2)

(x − 3 +
√

2)2(x − 2 +
√

2)2(x − 1 +
√

2)(x +
√

2)
�

.

Notice that deg r1 = deg r2, deg s1 = deg s2, u2 |u1, v1 | v2,
as expected.

4. MINIMIZING THE SHELL: TOTAL DE

GREE

4.1 The Multiplicative Structure of the Shell
Let (5) be the shift-homogeneous factorization of a ratio-

nal function R. Then, obviously, there exists a one-to-one



correspondence between RNFx(R) and RNFx(R1) × · · · ×
RNFx(Rk):

(F, V ) ↔ ((F1, V1), . . . , (Fk, Vk))

where F = z F1 · · ·Fk and V = V1 · · ·Vk are shift-
homogeneous factorizations of F resp. V such that for
1 ≤ i ≤ k the irreducible factors of Ri, Fi and Vi are shift-
equivalent, (F,V ) is an RNF of R, and (Fi, Vi) is an RNF
of Ri for 1 ≤ i ≤ k. Therefore we can limit our attention to
a monic shift-homogeneous rational function R of the form

p(x + a1)p(x + a2) · · · p(x + am)

p(x + b1)p(x + b2) · · · p(x + bn)
(9)

where p(x) is an irreducible polynomial while a1 ≤ a2 ≤
· · · ≤ am and b1 ≤ b2 ≤ · · · ≤ bn are nonnegative integers
such that ai 6= bj for all i and j. If m = n then it follows
from Theorem 2.2 (ii) and (iv) that (9) has a unique RNF
(z, r, s, u, v) such that z = r = s = 1. Clearly, u = u1 · · ·um

and v = v1 · · · vm where

ui(x) =

�

1, ai < bi,
Qai−1

k=bi
p(x + k), ai > bi,

(10)

vi(x) =

�

Qbi−1
k=ai

p(x + k), ai < bi,

1, ai > bi.
(11)

Thus

deg u + deg v = (deg p)

m
X

k=1

|ak − bk |, (12)

deg u − deg v = (deg p)
m
X

k=1

(ak − bk).

Otherwise m 6= n. From now on assume that m < n (the
case m > n can be treated similarly, cf. Algorithm mshRCF∗

1

below). It follows from Theorem 2.2 (ii), (iv) and (vi) that
any strict RNF (1, 1, s, u, v) of R arises from an injection

f : {1, 2, . . . , m} → {1, 2, . . . , n} (13)

such that f(1) < f(2) < · · · < f(m), by taking s(x) =
Q

k/∈rngf p(x + bk), and (1, 1, 1, u, v) to be the unique RNF

of the rational function
Qm

k=1 p(x + ak)/p(x + bf(k)). Here
rngf = {f(1), f(2), . . . , f(m)} is the range of f . Similarly
to (12) we obtain the following theorem.

Theorem 4.1. Let R be written in the form (9), let f be
an injection of the form (13), and let (F,V ) be the corre-
sponding RNF of R. Then

deg num V + deg den V = (deg p)

m
X

k=1

|ak − bf(k)|,

deg num V − deg den V = (deg p)
m
X

k=1

(ak − bf(k)).

In general, not all RNF’s induced by injections of the form
(13) are strict.

Lemma 4.2. An injection f of the form (13) induces a
strict RNF of R iff for any j /∈ rng(f) the number of k such
that bf(k) < bj is equal to the number of k such that ak < bj .

Proof: Suppose that j /∈ rng(f), and l = max{k : f(k) < j}.
Let V1, V2 be such that

p(x + a1) · · · p(x + al)

p(x + bf(1)) · · · p(x + bf(l))
=

EV1

V1
,

p(x + al+1) · · · p(x + am)

p(x + bf(l+1)) · · · p(x + bf(m))
=

EV2

V2
.

Then (11) implies that p(x + bj) does not divide den V1 be-
cause bj > bf(l), and (10) implies that p(x + bj) divides
num EV1 iff bj ≤ al. The case of V2 is treated similarly. ✷

4.2 RNF�: Forms with Minimal Total Degree
of the Shell

Definition 4.1. An RNF (z, r, s, u, v) of R ∈ K(x) \ {0}
is an RNF∗ if deg u + deg v is minimal among all RNF’s
of R.

Proposition 4.3. Any RNF∗ is strict.

Proof: Let ϕ = (z, r, s, u, v) be a non-strict RNF of a rational
function R. Then deg gcd(r, u) ≥ 1 or deg gcd(r, Ev) ≥ 1 or
deg gcd(s, Eu) ≥ 1 or deg gcd(s, v) ≥ 1.

If deg gcd(r, u) ≥ 1, write g = gcd(r, u), r = g r′ and
u = g u′ where r′, u′ ∈ K [x]. Then (z, r′Eg, s, u′, v) is an
RNF of R. As deg u′ + deg v < deg u + deg v, ϕ is not an
RNF∗.

If deg gcd(r, Ev) ≥ 1, write g = gcd(r, Ev), r = g r′ and
Ev = g Ev′ where r′, v′ ∈ K [x]. Then (z, r′E−1g, s, u, v′) is
an RNF of R. As deg u+ deg v′ < deg u +deg v, ϕ is not an
RNF∗.

Similarly, one can show that ϕ is not an RNF∗ in the other
two cases. ✷

Thus, by Theorem 2.2 (vi), the problem of finding an
RNF∗ is equivalent to the problem of finding an injection f
of the form (13) such that the sum

m
X

k=1

|ak − bf(k)| (14)

is minimal.

Example 4.1. Consider the rational function R in Ex-
ample 3.1. R can be written as R1 · R2 where R1, R2 each
is a monic shift-homogeneous rational function:

R1 =
x (x + 2)

(x − 3)(x − 2)2(x + 6)(x + 12)
,

R2 =
(x−4+

√
2)(x−3 +

√
2)(x+2+

√
2)(x+11+

√
2)

(x − 1 +
√

2)(x + 1 +
√

2)
.

For the monic shift-homogeneous factor R1, there exist two
injections f1, f2 such that the sum

P2
k=1 |ak−bfj (k)| is min-

imal for 1 ≤ j ≤ 2.
For the injection f1:

R1 =
1

x − 3
· x

x − 2
· x + 2

x − 2
· 1

x + 6
· 1

x + 12
,

the corresponding RNF∗ (z, r1, s1, u1, v1) is

(1, 1, (x − 3)(x + 6)(x + 12), (x − 2)2(x − 1)2x (x + 1), 1).



For the injection f2:

R1 =
1

x − 3
· x

x − 2
· 1

x − 2
· x + 2

x + 6
· 1

x + 12
,

the corresponding RNF∗ (z, r2, s2, u2, v2) is
�

1, 1, (x − 3)(x − 2)(x + 12), (x − 1)(x − 2),

(x + 2)(x + 3)(x + 4)(x + 5)
�

.

For the monic shift-homogeneous factor R2, there exists one
injection f such that the sum

P2
k=1 |ak − bf(k)| is minimal:

R2 = (x−4+
√

2)· x − 3 +
√

2

x − 1 +
√

2
· x + 2 +

√
2

x + 1 +
√

2
·(x+11+

√
2),

and the corresponding RNF∗ (z3, r3, s3, u3, v3) is
�

1, (x − 4 +
√

2)(x + 11 +
√

2), 1, (x + 1 +
√

2),

(x − 2 +
√

2)(x − 3 +
√

2)
�

.

As the result, the two RNF∗’s (z, r∗1 , s∗1, u∗
1, v∗

1) and
(z, r∗2 , s∗2, u∗

2, v∗
2) respectively of R are

�

1, (x − 4 +
√

2)(x + 11 +
√

2), (x − 3)(x + 6)(x + 12),

(x − 2)2(x − 1)2x (x + 1)(x + 1 +
√

2), (x − 3 +
√

2)

(x − 2 +
√

2)
�

, and

�

1, (x − 4 +
√

2)(x + 11 +
√

2), (x − 3)(x − 2)(x + 12),

(x − 1)(x − 2)(x + 1 +
√

2),

(x + 2)(x + 3)(x + 4)(x + 5)(x − 3 +
√

2)(x − 2 +
√

2)
�

.

Note that the total degree of the shell in both RNF∗’s is 9,
while it is 19 for RCF1(R), and 23 for RCF2(R) (see Ex-
ample 3.1).

4.3 Reduction to a Linear Programming
Problem

The problem of computing an injection f such that the
sum in (14) is minimal can be reduced to a well-known com-
binatorial problem which can be solved by linear program-
ming techniques. This is the Minimum Weighted Bipartite
Matching Problem (MWBM): Given a complete bipartite
graph Km,n (where m ≤ n) with rational weights on the
edges, find a matching (i.e., a set of pairwise nonadjacent
edges) of size m which has minimum total weight. It is well
known [4] that MWBM can be solved efficiently (in time
polynomial in max{m, n}, i.e., avoiding exhaustive search).

To reduce the problem of constructing an RNF∗ to
MWBM (which is also known as the Assignment Prob-
lem), construct a complete bipartite graph with vertex sets
{u1, u2, . . . , um} and {v1, v2, . . . , vn} where all the uj ’s and
vk’s are pairwise distinct, and let the weight on the edge con-
necting uj with vk be |aj − bk |. This special case of MWBM
can be solved even in linear time [3]. If the injection f given
by the solution to MWBM is not monotonically increasing
we replace it by the unique monotonically increasing injec-
tion having the same range as f . Note that this will not
increase the weight of the corresponding matching.

4.4 Definition and Properties of RCF�

1
and

RCF�

2

There may exist several RNF∗’s (z, r, s, u, v) of R ∈ K(x)\
{0}. Among all such forms, we can again distinguish two
forms which minimize deg v resp. deg u (i.e., maximize or
minimize deg u − deg v, respectively). We denote them by
RCF∗

1 and RCF∗
2, respectively.

Remark 4.1. If ϕ is an RCF∗
1 of 1/R then, clearly, ϕ−1

is an RCF∗
2 of R.

Theorem 4.4. Every R ∈ K(x)\{0} has a unique RCF∗
1

and a unique RCF∗
2 .

Proof: Existence of RCF∗
1 and RCF∗

2 follows from the exis-
tence of RNF’s.

Let us prove, for example, uniqueness of RCF∗
1. Unique-

ness of RCF∗
2 will then follow from Remark 4.1. Suppose

that R is of the form (9), and that there are two injec-
tions f , f ′ which induce two different RCF∗

1’s of R. Let
l, 1 ≤ l ≤ m, be the least such that f(l) 6= f ′(l). W.l.g.
assume that f(l) > f ′(l), and hence bf(l) > bf ′(l).

(a) (al − bf(l))(al − bf ′(l)) > 0.

(a1) al − bf(l) < 0 and al − bf ′(l) < 0. The injection
f ′′ such that if k 6= l then f ′′(k) = f(k) while
f ′′(l) = f ′(l) produces a smaller sum (14) than
the one produced by f .

(a2) al − bf(l) > 0 and al − bf ′(l) > 0. This case is
similar to (a1).

(b) (al −bf(l))(al −bf ′(l)) < 0. Since bf(l) > bf ′(l), we have
al − bf(l) < 0 and al − bf ′(l) > 0. Consider two cases:

(b1) |al − bf(l)| 6= |al − bf ′(l)|. Similarly to (a), it is
possible to decrease the sum produced by f .

(b2) |al − bf(l)| = |al − bf ′(l)|. By changing f as de-
scribed in (a), we get f ′′ which does not change
the sum, but decreases deg v. ✷

Example 4.2. For the rational function R in Exam-
ple 4.1, the computed RNF∗ (z, r∗1 , s∗1, u

∗
1, v

∗
1) is the RCF∗

1

of R, and the computed RNF∗ (z, r∗2 , s∗2, u
∗
2, v

∗
2) is the RCF∗

2

of R (deg u∗
1 = 7, deg v∗

1 = 2, deg u∗
2 = 3, deg v∗

2 = 6).

4.5 Computation of RCF�

1
and RCF�

2

Suppose again that m < n in (14). Computation of
RCF∗

1(R) is a special choice of an injection f or, equiva-
lently, of m factors p(x+ bf(1))p(x+ bf(2)) · · · p(x+ bf(m)) of
the denominator of (9). If we wish to obtain RCF∗

1(R) then
we should find an RNF∗ that maximizes the sum

Pm
k=1(ak−

bf(k)) or, equivalently, minimizes the sum bf(1) + · · ·+ bf(m).
For this purpose, we add n−m new vertices um+1, . . . , un to
the vertex set {u1, . . . , um}, and connect each of them with
each of v1, . . . , vn. Set N = b1 + · · ·+ bn + 1. Let the weight
wjk of the edge [uj , vk] be equal to |aj − bk | if j ≤ m, and
to 1− bk/N otherwise. When MWBM is solved, any vertex
uj , j ≤ m, is connected with a unique vertex vk. This gives
an injection f of the form (13).

Lemma 4.5. The algorithm described above constructs an
injection f such that the sum (14) is minimal. Additionally,
among all injections that minimize this sum, the constructed
injection minimizes the sum bf(1) + · · · + bf(m).



Proof: It is easy to see that if we set

wστ = 1 − ετ , ετ ≥ 0, σ = m + 1, . . . , n, τ = 1, . . . , n,

and ε1+· · ·+εn < 1, then any solution of MWBM minimizes
the sum of the corresponding integer weights (and, thereby,
gives us an RNF∗(R)), and under this condition, maximizes
the sum of those ετ for which the solution of MWBM con-
tains an edge [uσ, vτ ] with σ > m. This means that if we
define εk as bk/N then we obtain an injection f that gives an
RNF∗ with minimal (bf(1) + · · ·+ bf(m))/N or, equivalently,
with minimal bf(1) + · · · + bf(m). ✷

Theorem 4.6. The algorithm described above constructs
an injection f which induces RCF∗

1 of (9).

Proof: The claim follows immediately from Lemma 4.5. ✷

Note that in the case m > n we have to maximize the sum
af(1) + · · ·+ af(n) where f is an injection from {1, . . . , n} to
{1, . . . , m}. To attain this goal, set wjk to |aj − bk| if k ≤ n,
and aj/M otherwise, where M = a1 + · · · + am + 1.

We conclude this section by giving detailed descriptions
of the algorithms to compute RCF∗

1 and RCF∗
2. First,

we present Algorithm mshRCF∗
1 for computing RCF∗

1 of
a monic shift-homogeneous rational function R of the
form (9). Let MWBM(m, w) be an algorithm for solving
the Minimum Weighted Bipartite Matching Problem on the
balanced complete bipartite graph Km,m with the m × m
weight matrix w. The output of MWBM(m, w) is the injec-
tion f such that the sum (14) is minimal. Then Algorithm
mshRCF∗

1 can be described as follows.

Algorithm mshRCF�

1

input: a monic shift-homogeneous rational function R of
the form (9)
output: RCF∗

1(R)

if m < n then
N := b1 + · · · + bn + 1;
for s from 1 to n do

for r from 1 to m do
wrs := |ar − bs|;

od;
for r from m + 1 to n do

wrs := 1 − bs/N ;
od;

od;
f := MWBM(n, w);
(1, 1, 1, u, v) := RCF1

�

Qm
k=1 p(x+ak)/p(x+bf(k))

�

;
return (1, 1,

Q

k∈{1,...,n}\rng(f) p(x + bk), u, v).

else
M := a1 + · · · + am + 1;
for r from 1 to m do

for s from 1 to n do
wrs := |ar − bs|;

od;
for s from n + 1 to m do

wrs := ar/M ;
od;

od;
f := MWBM(m, w);
(1, 1, 1, u, v) := RCF1

�

Qn
k=1 p(x+af(k))/p(x+bk)

�

;
return (1,

Q

k∈{1,...,m}\rng(f) p(x + ak), 1, u, v).

fi.

For R ∈ K(x), let the output of the function SHF(R) be
the shift-homogeneous factorization in the form (5) of R.
The following algorithms compute RCF∗

1 and RCF∗
2 of R,

respectively.

Algorithm RCF�

1

input: R ∈ K(x) \ {0}
output: RCF∗

1(R)

(z, R1, R2, . . . , Rk) := SHF(R);
for i from 1 to k do

(1, ri, si, ui, vi) := mshRCF∗
1(Ri);

od;

return
�

z,
Qk

i=1 ri,
Qk

i=1 si,
Qk

i=1 ui,
Qk

i=1 vi

�

.

Algorithm RCF�

2

input: R ∈ K(x) \ {0}
output: RCF∗

2(R)

(z, r, s, u, v) := RCF∗
1(1/R);

return (1/z, s, r, v, u).

5. REPRESENTING HYPERGEOMETRIC

TERMS EFFICIENTLY
A hypergeometric term T (n) is usually represented as

αnP (n), (15)

where α ∈ K and P (n) is a product of Gamma-function
values (if K = C ), or Pochhammer symbols (i.e., rising fac-
torial powers) and their reciprocals. Such representation can
be simplified: we can replace (15) by

αnV (n)Q(n), (16)

where V (n) is a rational function, and Q(n) is a product
that looks like P (n), but has the minimal possible number
of factors. This can be achieved by using any RNF of the
certificate of T (n) (V (n) is the shell of this RNF). If we use
any of the rational canonical forms of the certificate of T
as discussed in Sections 3 and 4, then we can additionally
minimize V (n) in one sense or another.

5.1 Efficient Multiplicative Decompositions
using RCF’s and RCF�’s

Definition 5.1. Let T (n) be a hypergeometric term. A
multiplicative decomposition of T is a triple (F, W, n0)
where F, W ∈ K(x) and n0 ∈ Zare such that for all in-
tegers n ≥ n0:

(i) T is defined at n, F has neither a pole nor a zero at
n, W has no pole at n,

(ii) T (n) can be written as

T (n) = W (n)
n−1
Y

k=n0

F (k). (17)

This decomposition is minimal if for any multiplicative
decomposition (G, W1, n1) of T we have deg num F ≤
deg num G and deg den F ≤ deg den G.



Let T (n) be a hypergeometric term with the certificate
R ∈ K(x). Let n0 ∈ Zbe such that T (n) is defined for
all integers n ≥ n0, and R has neither a pole nor a zero
at n. It is easy to check that the triple (R, T (n0), n0) is a
multiplicative decomposition of T . Let (F,V ) be an RNF
of R. Set W (n) = V (n)T (n0)/V (n0). Then it follows from
Definition 5.1 and Theorem 2.2 that the multiplicative de-
composition (F,W, n0) is minimal.

Let (F, V ) be one of the four RCF’s of R as discussed
in Sections 3 and 4, and the hypergeometric term T (n) be
written in the form (17). Then in addition to the property
that the numerator and the denominator of the kernel F
are of minimal possible degrees, the shell V is also minimal
in some sense. That is, if we use RCF1, then den V is of
minimal degree; if we use RCF2, then num V is of minimal
degree; if we use RCF∗

1 or RCF∗
2, then deg num V +deg den V

is minimal, and under this condition, deg den V is minimal
for RCF∗

1, and deg num V is minimal for RCF∗
2. In this

case the representation of T (n) of the form (17) is called
an efficient multiplicative decomposition of T , denoted by
EMD(T ).

For a hypergeometric term T (n), let R be the certificate of
T , denoted by cer(T ). Set RCF[3] := RCF∗

1, and RCF[4] :=
RCF∗

2. The following is a description of the algorithm to
construct an efficient multiplicative decomposition of T (n).

Algorithm EMD[i]
input: a hypergeometric term T (n), i ∈ {1, 2, 3, 4}
output: an efficient multiplicative decomposition

W (n)
Qn−1

k=n0
F (k) of T (n) where:

If i = 1 then deg den W is minimal.
If i = 2 then deg num W is minimal.
If i = 3 then deg num W + deg den W is minimal, and
deg den W is minimal. If i = 4 then deg num W +deg den W
is minimal, and deg num W is minimal;

R := cer(T );
(F, V ) := RCF[i](R);
let n0 ∈Zbe such that T (n) is defined for all integers

n ≥ n0, and R has neither a pole nor a zero at n;
W := V (n)T (n0)/V (n0);
return W (n)

Qn−1
k=n0

F (k).

5.2 Gammafunction Values and Pochham
mer Symbols

Using Pochhammer symbol we can write

n−1
Y

k=n0

(k − c) = (n0 − c)n−n0

for any c ∈ K , n0 ∈Z. If K = C , then similarly

n−1
Y

k=n0

(k − c) =
Γ(n − c)

Γ(n0 − c)
.

Conversely, each expression

(−c)n, or Γ(n − c) (18)

can be represented in the form δ
Qn−1

k=n0
(k − c), where δ is

a constant. Suppose that a hypergeometric term T (n) is
represented in an efficient multiplicative decomposition pro-
posed in Section 5.1 as αnV (n)

Qn−1
k=n0

F (n) where α ∈ K ,

and F (n) is a monic rational function. If we factorize the

numerator and the denominator of F over some extension
of K into linear factors, then by the above reasoning we can
represent T (n) in the form (16) with minimized V (n) and
with Q(n) having the minimal possible number of factors of
the form (18). Such a form is called an efficient representa-
tion of T .

Example 5.1. Consider the hypergeometric term T (n):

24

n−1
Y

k=1

1

2

�

3 k2+6k+4
�

(2 k+3) (4 k+5) (k+1) (4k+3)

k (4 k−1) (2 k−1) (4 k−3) (2 k+5) (k+2) (3 k2+1)

A multiplicative decomposition T (n) = T (n0)
Qn−1

k=n0
R(k)

where the product is expressed in terms of a product of
Gamma-function values in (18) is:

T1 = 1536
√

π

�

1

4

�n
p

q
(19)

where

p = Γ

�

n +
3

4

�

Γ(n + 1)Γ

�

n +
5

4

�

Γ

�

n +
3

2

�

×

Γ

�

n + 1−
√

3

3
i

�

Γ

�

n + 1 +

√
3

3
i

�

,

q = Γ

�

n − 3

4

�

Γ

�

n − 1

2

�

Γ

�

n − 1

4

�

Γ(n) Γ(n + 2) ×

Γ

�

n +
5

2

�

Γ

�

n −
√

3

3
i

�

Γ

�

n +

√
3

3
i

�

.

The four efficient representations of the hypergeometric term
T1 in (19) based on the four RCF’s of its certificate are:

1536
√

π

�

1

4

�n
�

n2+ 1
3

� �

n− 3
4

� �

n− 1
2

� �

n− 1
4

�

n
�

n+ 1
4

� �

n+ 1
2

�

Γ(n + 2) Γ
�

n + 5
2

� ,

1536
√

π

�

1

4

�n
�

n2 + 1
3

� �

n − 3
4

� �

n − 1
4

� �

n + 1
4

�

(n + 1)
�

n + 3
2

�

Γ
�

n − 1
2

�

Γ(n)
,

1536
√

π

�

1

4

�n
�

n2 + 1
3

� �

n − 3
4

� �

n − 1
4

�

n
�

n + 1
4

�

�

n + 3
2

�

Γ
�

n − 1
2

�

Γ(n + 2)
,

1536
√

π

�

1

4

�n
�

n2 + 1
3

� �

n − 3
4

� �

n − 1
4

� �

n + 1
4

�

(n + 1)
�

n + 3
2

�

Γ
�

n − 1
2

�

Γ(n)
.
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