The TruncatedSeries Package for Solving Linear
Ordinary Differential Equations Having
Truncated Series Coefficients*

S.A. Abramoy0000-0001-7745-5132]) F, Khmelnoy[0000-0002-4602-2382] .y,
A.A. Ryabenkol0000—0001-5780~7743]

Dorodnicyn Computing Centre,
Federal Research Center “Computer Science and Control”
of the Russian Academy of Sciences,
Vavilova, 40, Moscow 119333, Russia
sergeyabramov@mail .ru, dennis_khmelnov@mail.ru, anna.ryabenko@gmail.com

Abstract. We consider linear ordinary differential equations with power
series in the role of coefficients. It is assumed that some or all of the
series are truncated. A series of the form X a;z* can also be given com-
pletely using an algorithm that computes a; from i. The equation may
contain both types of coefficients — truncated and represented algorith-
mically. Algorithms and commands that implement them in Maple as the
TruncatedSeries package are proposed, which make it possible to find
Laurent, regular and exponential-logarithmic solutions. In cases where,
due to the presence of truncated coefficients, the information about the
equation is incomplete, commands of our package find the maximum pos-
sible number of terms of those series that are involved in the solutions. If
all the coefficients of the given equation are algorithmically represented
series then the commands allow finding any specified number of initial
terms of the series involved in the solutions.

Keywords: Differential equations - Truncated power series - Algorith-
mically represented infinite formal series

1 Introduction

Power and Laurent series are important and convenient tools of representing
linear ordinary differential equations with variable coefficients as well as of rep-
resenting solutions to these equations. This is reflected in theoretical studies
(see, e.g., [17-23]) and found numerous application in computer algebra (see,
e.g., [1-6,15, 16, 24]).

Linear ordinary differential equations with coefficients in the form of trun-
cated power series have been considered by us in [7—14]. Concerning the original
differential equation we have incomplete information in this case: for a power
series, only a finite number of initial terms are known. We are interested in the

* Supported by RFBR grant, project 19-01-00032.

2 S.A. Abramov et al.

information on the solutions of the equation given in this form that is invariant
under all possible prolongations of all the truncated series that represent the
coefficients of the equation (the prolongation is a series whose initial terms co-
incide with the known initial terms of the original truncated series). First, we
have investigated what can be learned about the solutions in the field of Laurent
formal series (we call them Laurent solutions) (see [7,8]). Then a similar ques-
tion has been discussed for regular solutions in [10]. In both cases, the proposed
algorithms construct the maximum possible number of invariant initial terms of
the series involved in the solutions.

The approach that we use in the algorithms for computing Laurent and
regular solutions, has allowed us, in combination with the well-known algorithm
of Newton polygons, to construct formal exponential-logarithmic solutions of
linear ordinary differential equations having coefficients in the form of truncated
power series (see [12,13]). The series which appear in the solutions have also
only a finite number of known initial terms.

Linear ordinary differential equations with the coefficients that are either
algorithmically represented power series, or truncated power series have been
considered as well in [11]. For such a mixed case, the problem of the construc-
tion of the maximum possible number of terms of the involved in the solutions
series is algorithmically undecidable (for some such equations, the information is
sufficient for computing any number of terms of the series). This undecidability
is, so to speak, not too burdensome. If we are interested in all solutions with a
truncation degree not exceeding a given integer d then the proposed algorithm
allows to construct all of them.

All the developed algorithms are implemented by us as the TruncatedSeries
package in Maple. Some examples of the use of the package procedures have been
already presented in the preceding works [7—14], the corresponding algorithms
being presented and justified there as well. In this work, we outline the current
state of the package and present more examples to demonstrate its up to date
key capabilities. We do not repeat the descriptions and justifications of the im-
plemented algorithms. In the future we plan to extend the package possibilities,
in particularly, to the case of the systems of linear ordinary differential equations
having truncated series coefficients.

The Maple library with the TruncatedSeries package and Maple worksheets
with examples of using its commands are available from

http://www.ccas.ru/ca/truncatedseries.

2 Short Specification of the Package

The TruncatedSeries package provides three commands LaurentSolution,
RegularSolution and FormalSolution:
> with(TruncatedSeries) ;

[FormalSolution, LaurentSolution, RegularSolution |

Calling sequence of these three commands:

The TruncatedSeries Package 3

LaurentSolution(ode, var, opts),
RegularSolution(ode, var, opts),
FormalSolution(ode, var, opts)

with parameters

ode — a homogeneous linear ordinary differential equation;
var — a dependent variable, for example y(z);
opts — a sequence of optional arguments of the form keyword=value.

The equation ode for y(x) may be given in the diff-form:

dT
dxr y

(@) + -+ a1(2) S (@) + ao(a) y(x) = 0

ar(7) dzx

or in the theta-form:

ar(2) 07y(z) + - - + a1 () O y(z) + ao(z) y(z) = 0.

where 7 is a positive integer and §y(z) = z <= y(z). The derivative 0%y(z) is

specified as theta(y(x), x, k) for k > 1. The derivative Cf;—kk y(x) is specified
using the ordinary Maple diff command.

Coefficients a,(z), ..., a1(z),ao(z) of the equation may be of two types. The
first type is an algorithmically represented power series in one of the following
forms:

— A polynomial in x over the algebraic number field.

N
— A finite power sum Z f(k) z¥ with a summation index k, a non-negative
k=ko
integer low limit of summation kg and a non-negative integer upper limit of
summation N > kq. It has to be specified by means of the Maple inert Sum
command. The coefficient f(k) of ¥ may be given by an arbitrary expression
of the index k which gives an algebraic number for all k > k.
oo

— An infinite power sum Z f(k) z* with ko, f(k) as described above.
k=ko
— A sum of a polynomial and power sums described above.

The other type of coefficients is a truncated power series in one of the following
forms:

— O('*'), where t is an integer, t > —1.
— a(z) + O(2"1), where a(z) is a polynomial in 2 over the algebraic number
field and ¢ is an integer greater than or equal to the degree of a(x).

The integer ¢ is called the truncation degree. In the presented package, all al-
gebraic numbers have to be represented as Root0f (expr, x, ’index’=i) where
expr is an irreducible polynomial in x with rational number coefficients.

The following optional arguments can be used:

4 S.A. Abramov et al.

— ’top’=d, where d is an integer;
— ’threshold’=’h’, where h is a name of a variable.

Below we present the use of the commands with optional arguments ’top’
and ’threshold’.

3 LaurentSolution

For an equation whose all coefficients are algorithmically represented power se-
ries, the LaurentSolution command determines a finite set of all integers iy such

that the equation has Laurent series solutions with the valuation ig, i.e. the equa-
o0

tion has solutions in the form Z v(i) z* where v(ig) # 0.
1=1,

If the option *top’ = dis giv[icn, the LaurentSolution command computes
the initial terms of Laurent series solutions to the degree d or greater for each
valuation 4. The LaurentSolution command returns a list [s1, sg, . ..] of trun-
cated Laurent series solutions for all found valuations. The elements of the list
involve parameters of the form _ci, _ca, ... For each element s; these parameters
can take any such values that the valuation of s; does not change.

Below is an equations whose all coefficients are algorithmically represented
power series:

> f := proc(i)
if i::’integer’ then O else ’procname’(i) end if;
end proc:
Exl := x"9xdiff(y(x), x$5)+
(x"7+Sum(k"2*x"k/2, k = 9 .. infinity))*diff(y(x), x$4)+
(2%x75+x72) *diff (y(x), x$2)+
(2%x"~10+x"4+3*x) *diff (y(x), x)+
Sum(f(k)*x"k, k = 0 .. infinity)*y(x) = 0;

Exl = 2° (;; y(x)) + <x7 + (2 sz)) (;;4 y(w)) +
(22° + 2?) (dd; y(x)) + (22" + 2" +32) (di y(a:)> +

<Z f(k) xk) y(z) =0
k=0

This equation has polynomial coefficients x?, 225 + 22. The coefficient for the
third derivative is zero. There are also two infinite sums: one with the explicitly
defined coeflicients % and the other with the coefficients defined by the Maple-
procedure f.

For the equation Ex1 we obtain the list of two elements of solutions with the
truncation degree 3 which is set by the option ’top’:

The TruncatedSeries Package 5

> LaurentSolution(Ex1l, y(x), ’top’ = 3);

_C1 130 x_cq

P I

The truncation degree of the result may be d1 which is greater than d if it

is needed to compute initial terms up to the degree d1 to determine if Laurent

solutions with valuation iy exist. Below we obtain the list of two elements of

Laurent solutions with the truncation degree 0. This is needed to determine if
there are Laurent solutions with the valuation —2 and with the valuation 0:

+90 _c1z® — 32423 ¢cq + O(a:4), _Co + O(ax4)

> LaurentSolution(Exl, y(x), ’top’ = -1);
_C1
[F + _co+ O(x), _ca+ O(x)}
The same result will be obtained if the option ’top’ = 4 is not given:

> LaurentSolution(Ex1l, y(x));
-C1
[ﬁ + _co+ O(x), _ca+ O(x)}

For an equation whose all coefficients are truncated series, the LaurentSolu-
tion command investigates what can be learned from the equation about its
Laurent solutions. The command constructs the maximum possible number of
initial terms of solutions which are defined uniquely by known terms of coeffi-
cients of the given equation. The maximum truncation degree may be different in
the solutions with different valuations, that is why the LaurentSolution com-
mand forms the solution for each valuation separately. The greatest truncation
degree of Laurent solutions is called the threshold of the given equation.

For example, the equation whose all coefficients are truncated power series
with various truncation degrees:

> Ex2 := 0(x"9)*diff(y(x), x$5)+
(x"7+81/2%x79+50*%x~10+0(x~11)) *diff (y(x), x$4)+
0(x~7)*diff (y(x), x$3)+
(2%x75+x72+0(x"7)) *diff (y(x), x$2)+
(x~4+3*x+0(x"5)) *xdiff (y(x), x)+
0(x"6)*y(x) = 0;

Ez2 := O(a”) ((iz y(x)) + <x7 + &;9 +502' + O(a:“)> <(f; y(x))
06 (25 0(0)) + 207+ +06) (25 0(0)) +

d
(z* +32+0(a?)) <dx y(x)) +0(2%) y(z) =0
We know only several initial terms of all coefficients. The coefficients of % y(z),

% y(z) and y(z) are O(2?), O(«7) and O(2°), and we don’t know if they are
zero or not. For Ex2 we obtain:

6 S.A. Abramov et al.

> LaurentSolution(Ex2, y(x));

_C1 n 130x_cq
T it
2 2 3

+0(a?), e2+0(2")
The first element of the returned list has the valuation —2. The maximum possi-
ble number of initial terms for it is equal to 4, the truncation degree is equal to
1. The second one has the valuation 0 and the maximum possible number of the
initial terms is equal to 6, the truncation degree is equal to 5. So, the threshold
for Ex2 is equal to 5.

If the option *top’ = d is given, then the LaurentSolution command han-
dles d in the same way as described for equations whose all coefficients are
algorithmically represented power series.

> LaurentSolution(Ex2, y(x), ’top’ = 3, ’threshold’ = ’h’);

_C1 _ 130x_cq1

_Co 3 + O(IQ), _co + O(:L'4)

e
Using the option ’threshold’=’h’ we can obtain the information whether the
given d is greater than the threshold of the ode. If it isn’t then h is set equal to
FAIL:

> h;

FAIL

Otherwise, h is set equal to the threshold. Below h is set equal to 5:

> LaurentSolution(Ex2, y(x), ’top’ = 8, ’threshold’ = ’h’);
’h’ = h;

For an equation whose coefficients are of both types, in general, it’s im-
possible to determine the greatest degree of truncated Laurent solutions. The
threshold may be a finite number or infinity. Then if the option ’top’ is not
given, the LaurentSolution command computes exactly as many initial terms
of the solutions as needed to find a set of all valuations of the Laurent solutions
of the given equation. For the equation

> Ex3 := 0(x"9)*diff(y(x), x$5)+
(x"7+Sum((1/2)*k"2*x"k, k = 9 .. infinity))*diff(y(x), x$4)+
(2%x75+x72) *diff (y(x), x$2)+(x"4+3*x+0(x"5))*diff(y(x), x)+
Sum(f(k)*x"k, k = 0 .. infinity)*y(x) = 0;

The TruncatedSeries Package 7

Ez8 := O(2°) (;; y(x)) + (ﬂ n (i k?k)) (;; y(:c)> +

k=9

2

(lﬁ+xg<iﬂwm>+(#+3x+0@ﬂ)Cin0+
(Z £ (k) w’“> y() =0
k=0

we obtain

> LaurentSolution(Ex3, y(x));

[% + -2+ 0(z), —co+ O(x)}

If the option ’top’ = d is given, then the LaurentSolution command tries
to compute all Laurent solutions to the truncation degree d. For Ex3 it’s only
possible for the solutions having valuation 0 (see the second element of the
returned list):

> LaurentSolution(Ex3, y(x), ’top’ = 4);

_c1 7 130x_cq

_Ca 3 + O(mQ), _co + O(xS)

2
If the threshold of the equation is greater than or equal to d and the option
>threshold’="h’ is given, then h is set equal to FAIL:

> LaurentSolution(Ex3, y(x), ’top’ = 4, ’threshold’ = ’h’):
h;

FAIL

In fact, the threshold of Ex3 is equal to co. This equation has the solution
y(x) = _co, where _co is an arbitrary constant. The trailing coefficient of Ex3

is i f(k)z* and the LaurentSolution command can check any finite number
of]i/:a(l)ues of f(k):
> {seq(f(k), k = 0 .. 100)};
{0}
but there is no algorithm to check that f(k) = 0 for all integer k > 0.

If the given equation has no nonzero Laurent solution (the set of valuations
of Laurent solutions is empty), then the LaurentSolution command returns the
empty list:

> LaurentSolution(x"2*diff(y(x), x)+y(x), y(x));

8 S.A. Abramov et al.

[]

And it returns FAIL if the known terms of the coefficients of the given equation
are not sufficient to find a set of valuations of Laurent solutions:

> LaurentSolution(0(x)*diff(y(x), x)+y(x), y(x));

FAIL

4 RegularSolution

For an equation with power series coefficients a formal regular solution is a finite
sum of expressions in this form:

m oo
z E E vp(i) 2 | Infz
k=0 \i=ir,o
where A is an algebraic number, m is a non-negative integer, o0, ..., im,0 are

integers and v (ix,0) # 0 for k =0,1,...,m.

Same as for the case of Laurent solutions, the definition of the threshold
of the equation is introduced. For the ’top’ and ’threshold’ options, the
RegularSolution command works in the same way as the LaurentSolution
command.

Below, we obtain the truncated regular solutions with A = 0 (the truncation
degree is 4) and A = % (the truncation degree is 1). The threshold is computed,
it is equal to 4:

> Sol := RegularSolution((-3+x+0(x"2))*theta(y(x), x, 2)+
(1+x+0(x"2)) *theta(y(x), x, 1)+
(x"4+0(x75))*y(x), y(x), ’threshold’ = ’h’);
’h’ = h;
4

T _c P Tr-c
Sol := |_c1 + 441 +0(2%) +21/? (,CQ+ 92 +O(9:2))]

h=4

Note that if the result Sol is combined in one series, for example using the series
command, then the number of the initial terms is less then the maximum possible
4

-C1

one (the term i is lost):

> series(Sol[1], x, infinity);
4/3
o1+ o xt/P + % + O(m7/3>

Below is an equation which has regular solutions with In z:

The TruncatedSeries Package 9

> RegularSolution((4+x+0(x"2))*theta(y(x), x, 2)+
0(x~2)*theta(y(x), x, 1)+
(x"3+0(x74))*y(x), y(x), ’threshold’ = ’h’);
’h’ = h;

3 3

_co+ O(zZ) + In(x) (cl — I376€1 + O(;l:4)), o — m?;gQ + O(x4) ,

3

0(2%) + In(x) (cl - O(x4))]

h=3

The first element of the returned list is the truncated regular solutions with
A = 0 and m = 1, having two series with the valuation 0 and the truncation
degrees 1 and 3. The second one is the truncated regular solutions with A = 0
and m = 0, having one series with the valuation 0 and the truncation degree 3.
The third one has the logarithm-free part with the valuation which is greater
than 1. The threshold is computed, it is equal to 3.

If the equation has at least one completely given coefficient (below it is the
coefficient of §(y(z),z,1) which is equal to 0) then we can use the command
with different values of d in the option *top’ = d to obtain the threshold.

Below we obtain that h is equal to FAIL if *top’ = 2:

> Ex4 := (4+x+0(x"2))*theta(y(x), x, 2)+(x"3+0(x"4))*y(x):
RegularSolution(Ex4, y(x), ’top’ = 2, ’threshold’ = ’h’);
’h’ = h;

[-c2 + O(2®) +In(z) (c1 4+ O(2?)),
-2+ 0(2?),0(2®) + In(z) (-c1 + O(2?))]
h = FAIL
and we obtain that the threshold is equal to 3 if *top’ = 4:

> RegularSolution(Ex4, y(x), ’top’ = 4, ’threshold’ = ’h’);
‘h = h;

_ca z3_c
[cz—i—x?’ (_37(324_5741) +O(z") + In(z) (cl— 361 +O(m4)>,
3 3 3
T2 O(z"), a?5,401 + O(z") + In(z) (01 — x3,661 + O(x4))]

36
h=3

The following equation has no nonzero formal regular solution (the set of
possible A of regular solutions is empty), the result is the empty list:

10 S.A. Abramov et al.

> RegularSolution(x*theta(y(x), x, 2)+y(x), y(x));

[]

For the following one, the known terms of the coefficients are not sufficient
to determine the set of A, the result is FAIL:

> RegularSolution(x*theta(y(x), x, 2)+
0(1)*theta(y(x), x, D+yx), y&x));

FAIL

5 FormalSolution

A formal exponential-logarithmic solution has the form

m o0

Q@) g Z Z vp (i) /9 | In®

k=0 \i=iro

where ¢ is a positive integer, Q(z) is a polynomial in z~1/%, X is an algebraic
number, m is a non-negative integer, i, ..., im,0 are integers and vy, (ik,o) #0
for £ = 0,1,...,m. Laurent and regular solutions are special cases of formal
exponential-logarithmic solutions.

To construct all formal solutions for an equation with completely given coefli-
cients, the DEtools [formal_sol] command can be used. For an equation whose
coefficients may be truncated series the FormalSolution command of the pre-
sented TruncatedSeries package computes the maximum possible terms of the
exponent Q(z). If Q(z) is obtained completely, the FormalSolution command
then computes A\ and initial terms of series which are components of solutions
(if they are invariant to all possible prolongations of the given equation).

For the following equation, the given initial terms are only sufficient to obtain
the one term of the exponent Q(x). The unknown part of solutions is denoted

by y1(z):

> Ex5 := (x73 + 0(x"4))*diff(y(x), x)+(2 + 0(x))*xy(x):
FormalSolution(%, y(x));

le””ymx)] (1)

The following equation is a prolongation of Ex5 (extra new known terms are
added to the series coefficients). We obtain the second term of the exponent
Q(z). The notation y,eq(x) in the result means that the exponential part of
formal solutions is obtained completely:

> (x74+x73+0(x75)) *diff (y(x), x)+(2+x+0(x"2))*y(x):
FormalSolution(%, y(x));

The TruncatedSeries Package 11

11
11
|ffz ! yreg(x)‘| (2)
Another prolongation of Ex5 leads to another result:

> (x73+(1/2)*x74+0(x"5)) *diff (y(x), x)+(2+x+0(x"2)) *y(x):
FormalSolution(%, y(x));

[Yreg <m>] (3)

Both (2) and (3) are prolongations of (1). It shows that (1) presents the maxi-
mum possible information about the solution which is invariant to all possible
prolongations of Ex5.

Again and again, increasing the number of known terms in Ex5 we obtain
more information about solutions:

> (x"5+x74+x73+0(x76)) *diff (y(x), x)+(-x"2+x+2+0(x"3))*y(x):
FormalSolution(%, y(x));

L1
[ex T 2% (Ley + O(x))

> (x75+x74+x73+(3/2) *x76+0(x"7)) *diff (y(x), %)+
(—x"2+x+2+0(x74)) *y (x) :
FormalSolution(%, y(x));

1

lefz o (cer + O(ﬁ))]

> (x75+x74+x73+(3/2) *x"6+(1/4) *x~7+0(x"8)) xdiff (y(x), x)+
(=x~2+x+2+0(x"5)) *y (x) :
FormalSolution(%, y(x));

1 1
el 3 ¢y
[e 22 (Cl . 621$ n O(JES)>‘|

The result of the FormalSolution command may contain the following ex-
pressions: yreg(ml/q), Yirr(p) (), Yirr(x), yi(2), where y, x are given via the second
parameter of the command, ¢ and i are positive integers, p is a rational number.

As mentioned above, the notation y,.,(z'/?) in the result means that the ex-
ponent Q(x) (together with the number ¢) is obtained completely but the alge-
braic number A is not invariant to all possible prolongations of the given equation
(see (2) and (3) where ¢ is equal to 1).

If the result has a term in the form

te (@) Yirr(p) (l‘)

12 S.A. Abramov et al.

then it means that all prolongations of the given equation have formal solutions
with the exponential

Q) = Q@) + = + Qal) (W

where Q1 (z) and p are invariant to all possible prolongations (and the command
computes them) but b # 0 is not invariant.
If the result has a term in the form

te @ Yirr (37)

then it means that all prolongations of the given equation have formal solutions
with the exponential (4) but p is not invariant as well as b # 0.
If the result has a term in the form

1@ y;(x)

where ¢ is an integer it means that there are prolongation of the given equation
having solutions with the exponent (4) and b # 0, and there are other ones
having solutions with the exponent (4) and b = 0 and Q2(z) = 0.

If different terms with the same expressions yreg (z1/9), or Yirr(p) (), OF Yirr ()
appear in the result, then such expressions are additionally indexed as follows:
yreg,l(xl/q)v yreg,Q(xl/q)y etc.

For example,

> Ex6 := (x"5 + 0(x"6))*diff(y(x), x$3) +
(=3*x7"3 + 0(x"4))*diff(y(x), x$2) +
0(x)*diff(y(x), x) + (2 + 0(x))*y(x) = O:
FormalSolution(Ex6, y(x));

[yl (l‘) + yirr(x) + yirr(l)(x)]

The given initial terms are only sufficient to obtain the following information:

— all prolongations of Ex6 have a three-dimensional linear space of formal
exponential-logarithmic solutions;

— the first term yq(x) of the result means that there are prolongations of Ex6
that have a one-dimensional space of regular solutions, and there are pro-
longations that do not have regular solutions;

— the second term y;,.-(x) means that all prolongations of Ex6 have such irreg-
ular solutions that the exponent Q(x) has no invariant terms;

— the last term y;,,(1)(2) means that all prolongations of Ex6 have at least
a one-dimensional space of irregular solutions with an exponent (4), where
Q1(x) =0 and p =1 but b is not invariant.

Below are two prolongations of Ex6 confirming the above:

> (x75 + 0(x76))*diff(y(x), x$3) +
(=3%x73 + 0(x"4))*diff(y(x), x$2) +
(2%x + 0(x"2))*diff(y(x), x) + (1 + 0(x))*y(x) = 0:
FormalSolution(%, y(x));

The TruncatedSeries Package 13

2 _1

1+ O0O(z p z
17() +e Yreg,1 (l‘) +e Yreg,2 (.’L‘)

Jz

> (x5 + 0(x76))*diff(y(x), x$3) +
(=3*%x73 + 0(x"4))*diff(y(x), x$2) +
0(x~2)*diff(y(x), x) + (1 + 0(x))*y(x) = O:

FormalSolution(%, y(x));

__2Ro00tOf (3-Z>—1,index=1)

NG
€ ’ Yreg,1 (\/E) +
. 2Ro0tOf (3_Z%—1,index=2) 3
Tz _3
’ Yreg,2 (\/5) +e * yreg,?)(x)

e

The following equation is also a prolongation of Ex6. It contains enough
information to construct the exponential parts of the solutions completely. The

solution involves series in fractional powers of x:
> (x°5 + x76 + 0(x"7))*diff (y(x), x$3) +
(-3*x"3 - x4 + 0(x"5))*diff(y(x), x$2) +
(1 +x +0Ex"2)*y(x) = 0:
FormalSolution(%, y(x));

__ 2Ro00tOf (3-Z>—1,indeax=1)
NS
229/36 e+

[§]

191 RootOf (3-2° = 1,index = 1) -c1/T 82679 1w N O(x3/2) N
432 1119744

_ 2RootOf (3_2%—1,index=2)
o VT £29/36 <02 i
191 RootOf (3-Z° — 1,index = 2) _ca\/x 82679 cox N O(xg/z)
432 1119744
3

e Tgl7/ (Les+ O ()

References

1. Abramov, S., Barkatou, M.: Computable infinite power series in the role of coef-
ficients of linear differential systems. Lecture Notes in Computer Science 8660,

1-12 (2014). https://doi.org/10.1007/978-3-319-10515-4_1

14

10.

11.

12.

13.

14.

15.

16.

S.A. Abramov et al.

. Abramov, S., Barkatou, M., Khmelnov, D.: On full rank differential systems with

power series coefficients. Journal of Symbolic Computation 68(1), 120-137 (2015).
https://doi.org/https://doi.org/10.1016/j.jsc.2014.08.010

Abramov, S., Barkatou, M., Pfliigel, E.: Higher-order linear differential systems
with truncated coefficients. Lecture Notes in Computer Science 6885, 10-24 (2011).
https://doi.org/10.1007/978-3-642-23568-9_2

Abramov, S., Bronstein, M., Petkovsek, M.: On polynomial solutions of
linear operator equations. In: Proceedings ISSAC’95. pp. 290-296 (1995).
https://doi.org/10.1145/220346.220384

Abramov, S., Khmelnov, D.: Regular solutions of linear differential systems with
power series coefficients. Programming and Computer Software 40(2), 98-106
(2014). https://doi.org/10.1134/50361768814020029

Abramov, S., Khmelnov, D., Ryabenko, A.: Procedures for searching local so-
lutions of linear differential systems with infinite power series in the role
of coefficients. Programming and Computer Software 42(2), 55-64 (2016).
https://doi.org/10.1134/S036176881602002X

Abramov, S., Khmelnov, D., Ryabenko, A.: Laurent solutions of linear ordinary
differential equations with coefficients in the form of truncated power series. In:
COMPUTER ALGEBRA, Moscow, June 17-21, 2019, International Conference
Materials. pp. 75-82 (2019)

Abramov, S., Khmelnov, D., Ryabenko, A.: Linear ordinary differential equations
and truncated series. Computational Mathematics and Mathematical Physics 59,
1649-1659 (2019). https://doi.org/10.1134/S0965542519100026

Abramov, S., Khmelnov, D., Ryabenko, A.: Procedures for searching Laurent and
regular solutions of linear differential equations with the coefficients in the form of
truncated power series. Programming and Computer Software 46(2), 67-75 (2020).
https://doi.org/10.1134/S0361768820020024

Abramov, S., Khmelnov, D., Ryabenko, A.: Regular solutions of linear ordinary
differential equations and truncated series. Computational Mathematics and Math-
ematical Physics 60, 1-14 (2020). https://doi.org/10.1134/S0965542520010029
Abramov, S., Khmelnov, D., Ryabenko, A.: Truncated and infinite power series in
the role of coefficients of linear ordinary differential equations. Lecture Notes in
Computer Science 12291, 6376 (2020). https://doi.org/10.1007/978-3-030-60026-
64

Abramov, S., Khmelnov, D., Ryabenko, A.. Truncated series and formal
exponential-logarithmic solutions of linear ordinary differential equations. Com-
putational Mathematics and Mathematical Physics 60, 1609-1620 (2020).
https://doi.org/10.1134/S0965542520100024

Abramov, S., Khmelnov, D., Ryabenko, A.: Truncated series (in Russian).
In: Differential equations and related questions of mathematics, works of
the XII Prioksky scientific conference, June 19-20, 2020. pp. 8-19 (2020),
http://kolomnamath.ru/download /Kolomna_Sbornik_2020.pdf

Abramov, S., Khmelnov, D., Ryabenko, A.: Procedures for constructing truncated
solutions of linear differential equations with infinite and truncated power series
in the role of coefficients. Programming and Computer Software 47(2), 144-152
(2021). https://doi.org/10.1134/S036176882102002X

Abramov, S., Petkovsek, M.: Special power series solutions of linear differential
equations. In: Proceedings FPSAC96. pp. 1-8 (1996)

Barkatou, M.: Rational Newton algorithm for computing formal solutions of linear
differential equations. Lecture Notes in Computer Science 358, 183-195 (1989).
https://doi.org/https://doi.org/10.1007/3-540-51084-2_17

17.

18.

19.

20.

21.

22.

23.

24.

The TruncatedSeries Package 15

Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. Krieger
(1984)

Frobenius, G.: Uber die Integration der linearen Differentialgleichungen durch
Reihen. Journal fir die reine und angewandte Mathematik 76, 214-235 (1873).
https://doi.org/10.1515/crll.1873.76.214

Heffter, L.: Einleitung in die Theorie der linearen Differentialgleichungen mit einer
unabhéngigen Variablen. BG Teubner, Leipzig (1894)

Ince, E.: Ordinary Differential Equations. London, New York, Bombay: Longmans
(1926)

Kamke, E.: Differentialgleichungen. Losungsmethoden und Losungen 1.
Gewohnliche Differentialgleichungen. Leipzig (1942)

Malgrange, B.: Sur la réduction formelle des équations différentielles a singularités
irrégulieres. Université Scientifique et Médicale de Grenoble (1979)

Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen, Bd. 1.
Teubner, Leipzig (1895)

Singer, M.F.: Formal solutions of differential equations. Journal of Symbolic Com-
putation 10(1), 59-94 (1990). https://doi.org/10.1016/S0747-7171(08)80037-5

