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1. INTRODUCTION

In this paper, we give a detailed description of the
way used to obtain a mathematical result. This result is
formulated in Section 7 in Theorem 1. The computer
algebra system Maple [1] plays an important role in
obtaining this result.

In particular, this paper demonstrates some capabil-
ities of computer algebra systems that may be useful for
theoretical studies.

2. EXPERIMENTS, CONJECTURES,
AND PROVES

The viewpoint that mathematics is an experimental
science deserves attention. The difference between
mathematics and physics is that physical experiments
cost millions of dollars while mathematical experi-
ments cost only several dollars (see [2]).

The use of modern computer algebra systems for
solving mathematical problems often opens possibili-
ties for an experiment: using available mathematical
theories and a computer algebra system, it turns out to
be possible to obtain an exact solution of a problem for
small values of the initial data, for example, for small
values of parameters. If one is lucky, an examination of
such solutions can lead to a conjecture about the solu-
tion in the case of arbitrary admissible initial data.
Moreover, a computer algebra system can be helpful in
verifying and, maybe, even proving the conjecture.
This computer technology can be helpful in mathemat-
ical studies.

In this paper, we discuss an example of using this
technology. We describe the use of Maple to first find
and then prove a new formula for the integral of the
Bessel function 

 

J

 

n

 

(

 

z

 

) for odd positive integers 

 

n

 

. The
same computer-algebraic technique is used to show that
no similar formula for even positive integers holds.

3. PRELIMINARY OBSERVATION

The preliminary observation is that the Bessel func-
tion 

 

J

 

1

 

(

 

z

 

) satisfies the relation

(1)

Rewriting it in the form

(2)

we can prove it on the basis of the differential equation
for 

 

J

 

1

 

(

 

z

 

)

(3)

Indeed, removing the parentheses on the left-hand
side of (2) and multiplying by –

 

z

 

2

 

, we obtain the left-
hand side of (3). An attempt to obtain a similar result

for (

 

z

 

)

 

dz

 

 fails; the situation in the general case is

even more unclear: For which positive integer 

 

n

 

, can
one obtain a representation for an antiderivative of 

 

J

 

n
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z

 

)
in the form of a linear combination of 

 

J

 

n
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z

 

) and its
derivatives over 

 

�
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z

 

)? (Recall that 
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) satisfies the
equation 
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) = 0.)

4. INTEGRATION BY MEANS
OF DIFFERENTIATION

In [3], the following general problem was consid-
ered. Let
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where 
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 =  and 
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) are polynomials

or rational functions. We want to know whether an
operator 

 

R

 

 

 

∈
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 exists such that

for any function 

 

y

 

(

 

z

 

) for which 

 

L

 

 is the minimal annihi-
lator operator in the ring 

 

�

 

(

 

z

 

)[

 

D

 

]. If it does exist (such
an operator is called an integrating operator), we want
to construct it.

It was proved in [3] that the operator 

 

R

 

 exists if and
only if the equation

has a rational solution (that is, a solution belonging to
the field of rational functions 

 

�

 

(

 

z

 

)). Here, 

 

L

 

* is the
adjoint operator of 

 

L:

It was also proved that, if r(z) is a rational solution to
the equation L*(y) = 1, then D divides the operator 1 –
r(z)L on the left to produce the left quotient R:

(4)

In [3], the corresponding algorithm was called the
accurate integration algorithm. It could also be called
the integration through differentiation algorithm.

Let us denote the minimal annihilator operator for
J1(z) in �(z)[D] by L1. We have

The equation (y) = 1 has the unique rational solution

, which can be verified using Maple(this issue is dis-

cussed in Section 5 in more detail).

Furthermore, we have

1 If K is a field and t is a variable, then K(t) denotes the field of
rational functions of t with the coefficients in K. Similarly, if A is
a ring (maybe, a field), then A(t) denotes the ring of polynomials
in t with the coefficients in A. Similarly, �(z)[D] is the ring of lin-
ear differential operators whose coefficients are rational functions
of z with complex coefficients. Respectively, �[z][D] or, which is
the same, �[z, D] is the ring of linear differential operators whose
coefficients are polynomials in z with complex coefficients.

which implies R = –D – .

The equality dz = –f '(z) – f(z) + C holds not

only for J1(z) but also for any other solution f(z) to the
equation L(y) = 0, where L = z2D2 + zD + (z2 – 1). In the
theory of special functions, the Bessel function of the
second kind Y1(z) is considered along with J1(z). The
function Y1(z) can be integrated using the formula

Below, we do not specifically discuss the Bessel func-
tions of the second kind Yn(z); however, all the facts that
will be established for Jn(z) are also valid for Yn(z).

In the example considered above, the equation
(z) = 1 had a unique solution in �(z). It was shown

in [3] that, if L is a minimal annihilator operator, the
equation L*(y) = 1 either has no rational solutions, or
has a unique rational solution, or the set of its rational
solutions has the form {r0 + Ch |C ∈ �}, where r0 and
h are fixed rational functions. In the latter case, all the
antiderivatives can be obtained using the method under
examination.

It turns out that no integrating operator can be con-
structed for J2(z). In this case,

and the equation (y) = 1 has no rational solutions.

5. EXPERIMENT LEADS TO A CONJECTURE

The Bessel function of the first kind Jn(z) satisfies
the equation Ln(y) = 0, where Ln = z2D2 + zD + (z2 – n2),
n = 1, 2, …. We know that J1(z) has an antiderivative

that is a linear combination of (z) and J1(z) over �(z).
For J2(z), no such antiderivative exists. This is related to

the fact that the equation (y) = 1 has a rational solu-

tion, while (y) = 1 has no such solutions.

It is easy to verify that

Thus, we have the question: For what n does the equa-
tion (y) = 1 have a solution?
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Let us check the first several values of n using Maple:

> M := z^2*diff(y(z), z, z)+3*z*diff(y(z), z)+
> (z^2+1–n^2)*y(z)=1:
> DEtools[ratsols](eval(M,n = 1), y(z));

For the given nonhomogeneous differential equation,
the procedure ratsol in the package DEtools produces a
list consisting of two items. The first item contains the
list consisting of the basis of rational solutions to the
corresponding homogeneous equation; the second item
contains a particular rational solution to the given non-
homogeneous equation. We see that, for n = 1, the
homogeneous equation has no rational solutions, while

 is a particular solution to the nonhomogeneous

equation. For n = 2, there are no rational solutions:
> DEtools[ratsols](eval(M, n = 2), y(z));

[[ ]]

For n = 1, 2, these results were mentioned in Section 4.
Continuing the calculations, we obtain
> DEtools[ratsols](eval(M, n = 3), y(z));

> DEtools[ratsols](eval(M, n = 4), y(z));

[[ ]]
> DEtools[ratsols](eval(M, n = 5), y(z));

> DEtools[ratsols](eval(M, n = 6), y(z));

[[ ]]
> DEtools[ratsols](eval(M, n = 7), y(z));

> DEtools[ratsols](eval(M, n = 8), y(z));

[[ ]]

The first eight values of n suggest the following con-
jecture: The equation (y) = 1 has a rational solution
for odd n and has no such solutions for even n.

6. PROOF OF THE CONJECTURE
Unfortunately, Maple cannot directly find out for

which n the equation (y) = 1 has a rational solution.

It is easily seen from the form of (y) = 1 that this

equation has no polynomial solutions for any n (if p(z) ∈
�(z)\{0} and d = degp(z), then (p(z)) is a polyno-
mial of degree d + 2); if there exists a solution in
�(z)\�[z], then its denominator is zm, where m ∈ � (0
is the only singular point of the operator ).

Let us expand the solution to (y) = 1 into a series
at the point z = ∞ (here, n is a parameter):
> Ser := Slode[FPseries](M, y(z), v(k),

> z=infinity);

The procedure FPseries in the package Slode constructs
a solution to the given differential equation with poly-
nomial coefficients in the form of a formal power series
at the given point.2 The solution is represented in the
form of a special structure FPStruct. The first element
of this structure is the solution in the form of a series for
which the first several coefficients are calculated (here,
the first three coefficients are found) and the remaining
ones are denoted by v(k). The second element of the
structure is the recurrence that can be used to find any
number of the series coefficients. By default, the mini-
mal number of coefficients is calculated that are suffi-
cient for finding all the other coefficients using the
recurrence (the order of the recurrence and the integer
roots of its leading coefficient are taken into account).
Several more coefficients can be calculated; for exam-
ple, all the coefficients of z–k (k ≤ 7). To this end, we sup-
ply FPSeries with the additional parameter terms = 7:
> Ser := Slode[FPseries](M, y(z), v(k),

> z=infinity, terms=7);

2 In Maple, up to version 11 inclusive, the procedure FPseries con-
structs solutions only to homogeneous equations. We used an
extended version of Slode that can deal with nonhomogeneous
equations having rational right-hand sides.
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We see that v(k) = 0 for odd k. Therefore, it is rea-
sonable to exclude the odd values of k. Moreover, to
facilitate the verification of the conjecture formulated
in Section 5, we factorize the lowest term of the recur-
rence:
> S:=indets(Ser, 'Sum'(anything, any-
thing))[];

> S=Sum(eval(op(1,S), [v(k)=v(2*k),
k=2*k],

> k=4..infinity);

> Ser := eval(op(2,Ser), %));

> map(factor,eval(op(2,Ser), k=2*k));

The resulting solution Ser can be a rational function
with the denominator zm (m ∈ �) if and only if the low-
est term of the recurrence for v(k) vanishes for a certain
integer k0 > 0. Therefore, if n is odd, then a rational

solution exists, and k0 =  in this case. If n is even,

there are no rational solutions.

7. THE MAIN RESULT

For odd n, we have
> 1/z^2+(–1+n^2)/z^4+(–9+n^2)*(–
1+n^2)/z^6+s

> Sum(v(2*k)/z^(2*k),k=4..(n+1)/2),

> v(2*k)–(n^2–2*k–3)^2)*v(2*k–2);

This rational solution can be written in the form
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Now, using (4), we find the integrating operator for
Jn(z) for odd n. It is easily verified that, if r(z) ∈ �(z),
then

(5)

where f ∈ �(z). If n is odd and r is the solution rn to the
equation (y) = 1, then f = 0; otherwise, the right-
hand side of (5) would not be divisible by D on the left.

Therefore, for odd n, we have

The result obtained using the computer algebra sys-
tem can be formulated in the form of the following the-
orem.

Theorem. For odd positive integers n, we have

For even positive integers n, no antiderivative of Jn(z)
can be represented as a linear combination over �(z)
of Jn(z) and its derivatives.

It is not difficult to rewrite the proof of this theorem
without describing the experiments and without men-
tioning Maple.

The formula given in the Theorem is not included in
the available reference books on special functions; in
particular, it is not included in [4].

To integrate Jn(z) for odd positive integers n, Maple
uses the following formulas presented in [4]:

> int(BesselJ(1, z), z);

–BesselJ(0, z)

> int(BesselJ(3, z), z);

1 – BesselJ(0, z) – 2BesselJ(2, z)

and so on.
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