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Let w be a natural number and let µ(w) be the maximal
number of divisions that the Euclidean algorithm,

a0 = q1a1 + a2 ,

a1 = q2a2 + a3 ,

· · · (1)

ak−2 = qk−1ak−1 + ak ,

ak−1 = qkak ,

needs for a given input (a0, a1), where a0 > a1 = w. Lamé’s
theorem [2, 1] (this theorem was proved earlier by Finck in
1841 [1]) implies the asymptotic estimate

µ(w) = O(log w), (2)

and log w cannot be replaced by any function h(w) such
that h(w) = o(log w), since, if F0, F1, . . . is the Fibonacci
sequence, for a0 = Fk+2, w = a1 = Fk+1 the number of
divisions is equal to k. The difference between the latter
number and logφ w, where φ =

(

1 +
√

5
)

/2, is a bounded
value. One of the results related to the average case behavior
of the Euclidean algorithm is by Heilbronn [4, 1]:

1

ϕ(v)

∑

1≤w≤v

gcd(v,w)=1

E(v,w) ∼ 12 ln 2

π2
ln v ,

where E(v,w) is the number of division steps performed
by the Euclidean algorithm on the input (v, w). From this
asymptotic equality it follows that for some constant C the
inequality

µ(w) >
12 ln 2

π2
ln w + C (3)

holds. Using the standard notation f(n) = Θ(g(n)), which
is defined for functions f(n), g(n) with positive values by
f(n) = Θ(g(n)) if and only if

∃c1, c2, n0 > 0 , ∀n > n0 , c1g(n) ≤ f(n) ≤ c2g(n) ,

we therefore have

Theorem 1 µ(w) = Θ(log w).

This article was formally reviewed following the procedures described
in this Bulletin, 32(2), issue 124, 1998, pp 5–6.

We now prove the following main theorem.

Theorem 2 For a constant c,

µ(w) >
1

2
logφ w + c , (4)

where φ =
(

1 +
√

5
)

/2.

Notice that (12 ln 2)/π2 < 1/(2 ln φ), and (4) is stronger
than (3) for all large enough w. Additionally, the proof of
Theorem 2, which will be given, is elementary and thereby
we get an elementary proof of Theorem 1.

We start with a lemma on Fibonacci numbers.

Lemma 1 For any 0 < d <
√

5 the inequality

∣

∣

∣

Fn+1

Fn

− φ
∣

∣

∣
<

1

dF 2
n

(5)

holds for all large enough n.

Proof. An easy induction shows that

Fn+1

Fn

− φ =
(−1)n+1

Fnφn

for n = 1, 2, . . . Set φ̃ = (1 −
√

5)/2; |φ̃| < 1. Since

Fn = (φn − φ̃n)/
√

5 ,

we have
φn =

√
5Fn + φ̃n

and
Fn+1

Fn

− φ =
(−1)n+1

(√
5 + φ̃n

Fn

)

F 2
n

.

The claim follows.
Define v = ⌊φw⌋. This yields

∣

∣

∣

v

w
− φ

∣

∣

∣
≤ 1

w
. (6)

Fix d such that 2 < d <
√

5 and choose positive g such that
1

g
+ 1

d
< 1

2
. Set

n = max{m : w ≥ gF 2
m} . (7)

(Note that the value of n depends on w.) Since

1

w2
≤ 1

gF 2
n

,

1
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we have from (5), (6) for all large enough w

∣

∣

∣

Fn+1

Fn

− v

w

∣

∣

∣
<

1

2F 2
n

.

By a well-known theorem (cf., for example, [3], Theorem
184), Fn+1/Fn is a convergent to v/w in the sense of Hardy
& Wright [3], Section 10.2, i.e., if a0 = v, a1 = w in (1),
then for some integer l, such that 1 ≤ l ≤ k, the equality

Fn+1/Fn = q1 + 1/(q2 + 1/(q3 + . . . + 1/(ql−1 + 1/ql) . . .))

holds. But this equality implies l = n (and, additionally,
q1 = · · · = qn = 1). Hence the continued fraction for v/w is
at least of length n, and so µ(w) ≥ n − 1. However, by (7),
n > 1

2
logφ w + c for some constant c. Theorem 2 is proved.

Conjecture: µ(w) ∼ logφ w.

This Conjecture is based on numerical experiments.

In conclusion we make a remark on the input size of the
Euclidean algorithm. Using the value a1 as the size of the
input (a0, a1) is preferable to a0 because a0 can be much
bigger than a1, but the number of division steps for (a0, a1)
is the same as that for (a′

0, a1), where a′

0 = a1 + a2.
The value a0/a1 contains full information on the number

of divisions, but if we use a0/a1 as the input size, then for
inputs with bounded sizes we can get an unbounded number
of divisions. As a consequence, no upper bound of the form
f(a0/a1) for the number of division can be obtained, if f
is a continuous function. Asymptotic estimates of the form
O(f(a0/a1)), Θ(f(a0/a1)) with continuous f do not exist
either. For example, an upper bound of the form f(a0/a1)
does not exist since limn→∞

un+1

un

= φ, and therefore f can-

not be bounded in any neighborhood of φ.
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