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Abstract

Let some homogeneous linear ordinary differential equation with coef-
ficients in a differential field F be given. If we know a nonzero solution ϕ,
then the order of the equation can be reduced by d’Alembert substitution
y = ϕ

∫

v dx , where v is a new unknown function. In the situation when
ϕ ∈ F , after d’Alembert substitution an equation with coefficients in F
arises again. Let the obtained equation have a nonzero solution ψ ∈ F ,
then it is possible to reduce the order of the equation again and so on,
until an equation without nonzero solutions in F is obtained.

If we can find solutions not only in F but in some larger set L as
well (L can be a field or a linear space), then we can build up a certain
subspace M (d’Alembertian subspace) of the space of all solutions of the
original equation. Thus if we have algorithms AF and AL to search for the
solutions in F and L, then by incorporating d’Alembert substitution we
can design a more general algorithm (in case L = F we will obtain a more
general algorithm than AF ). We would like, certainly, to know the kind
of solutions that can be found by the new algorithm. The construction of
the subspace M will be described in the paper.

Additionally we propose an algorithm which answers if an expression
f1
∫

f2 . . . fk−1

∫

fk dx . . . dx with one or other choice of the primitive
function of the integrand is a solution of the original equation. If the
answer is affirmative then the algorithm rewrites given expression in the
form of one of the same structure, but the new expression gives a solution
for any choice of its primitive functions of the integrands.

We consider a similar problem for the case when f1, f2, . . . need not
be in F , but f ′

1/f1, f
′

2/f2, . . . ∈ F .
Together with differential equations difference equations will be con-

sidered.

1 D’Alembertian solutions

Computer algebra algorithms that find exact solutions of homogeneous linear
ordinary differential equations have as input, in general, an equation with coef-
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ficients in some fixed differential field F :

any
(n) + · · · + a0y = 0 (an, · · · , a0 ∈ F ). (1)

These algorithms return a basis of the space of solutions which are in some fixed
set L. The set L can be a field or a linear space. Henceforth we will assume
that F and L are closed under differentiation, that F ⊂ L and, additionally,
that a ∈ F, b ∈ L imply that ab ∈ L. It is possible that L = F .

Examples of such algorithms include those which for equations with rational
coefficients find a basis of the space of algebraic solutions, or a basis of the space
of solutions which are linear combinations of functions with rational logarithmic
derivative [Bron92].

Let AL be an algorithm to search for solutions in L. Often together with
AL a simpler algorithm AF which finds solutions in F is known. For example, a
fast algorithm to search for rational solutions of equations with rational function
coefficients is known [Abr89a, Abr89b, Abr&Kva91]. In this case one tries first
to find solutions belonging to F , and to reduce the order of the equation while
keeping the coefficients in F . If a nonzero solution ϕ ∈ F of (1) is known then
the substitution

y = ϕ

∫

u dx (2)

where u is a new unknown function transforms (1) to an (n− 1)-order equation
with coefficients in F . The substitution (2) we will call d’Alembert substitu-
tion, connected with the solution ϕ (the order reducing technique based on this
substitution was essentially known to and used by d’Alembert).

Suppose that the following transformations have been applied to some equa-
tion of the form (1). The d’Alembert substitution connected with some solution
η1 ∈ F of the equation has been applied to reduce the order of the equation; then
the order of the new equation has been reduced using its solution η2 ∈ F and
so on, until the last d’Alembert substitution connected with ηr ∈ F produces
the equation

bn−rw
(n−r) + bn−r−1w

(n−r−1) + · · · + b0w = 0 (3)

(w is an unknown function) which has no nonzero solution in F . (If we start
with a basis ϕ1, . . . , ϕt of the space of solutions belonging to F , then on the first
step of reduction of order we can use η1 = ϕ1, on the second step η2 = (ϕ2/ϕ1)

′,
on the third one η3 = ((ϕ3/ϕ1)

′/(ϕ2/ϕ1)
′)′ and so on. When ϕ1, . . . , ϕt are used

up we can find for the new equation a basis of the space of solutions belonging
to F , and so on.) Let τ1, . . . , τs, s ≥ 0 be a basis of the space of solutions of the
equation (3) which are in L. Then the result of all this is that some subspace
M of the space of all solutions of the original equation Ay = 0 has been found.
This subspace is generated by

η1, η1

∫

η2 dx , . . . , η1

∫

η2 . . .

∫

ηr dx . . . dx ,
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η1

∫

η2 . . .

∫

ηr

∫

τ1 dx dx . . . dx , . . . (4)

. . . , η1

∫

η2 . . .

∫

ηr

∫

τs dx dx . . . dx .

In these formulae each indefinite integral is understood in the sense of one unique
primitive function of the integrands. But if we understand each indefinite inte-
gral as the set of all primitive functions of the integrand then one can describe
the set M as the subspace generated by

η1

∫

η2 . . .

∫

ηr

∫

τ dx dx . . . dx , (5)

where τ is a linear combination of τ1, . . . , τs (different primitive functions and
linear combinations give rise to different solutions of the original equation).

Let the equation (3) have no nonzero solution in L. Then only 0 can be used
as τ in (5). An equivalent form for (5) in this case will be

C η1

∫

η2 . . .

∫

ηr dx . . . dx ,

where C is an arbitrary constant.
At least two questions arise here:

1. Does M depend on the choice of η1, . . . , ηr? The original equation could
have together with ϕ1 a solution ψ ∈ F linearly independent of ϕ1. The
order of the original equation could be reduced by ψ and so on.

2. If the answer to the previous question is affirmative, how can we charac-
terize M without recourse to η1, . . . , ηr?

An answer to the first question was given in [Abr91]: M is independent of
the choice of η1, . . . , ηr if (3) has no nonzero solutions in F .

It was shown in [Abr91] also that M contains all solutions placed above L. A
function y(x) is placed above the linear space L if there exists an integer k ≥ 0
such that y(k) ∈ L (we assume that y(0) = y); the least k of this kind is called
the height of the function y above L. However, M can contain solutions of other
kind as well. We show below that this subspace contains all solutions of the
form

f1

∫

f2 . . .

∫

fk dx . . . dx (6)

(f1, . . . , fk−1 ∈ F, fk ∈ L),

with some concrete choice of primitive functions of the integrands. It is possible
here that f1 is not a solution of the original equation, and so on. Note that a
solution placed above L is of the form 1

∫

1 . . . 1
∫

f dx . . . dx where f ∈ L. We

3



will call solutions that can be represented in the form (6) with some concrete
primitive functions of the integrands, d’Alembertian solutions.

If f1 in (6) is a solution of the original equation, f2 is a solution of that
equation which is obtained from the original equation by d’Alembert substitu-
tion connected with f1, and so on, then we say that the solution (6) is given
in normal form. Since M does not depend on the choice of η1, . . . , ηr, every
solution having normal form is in M .

So, we are going to show that M consists exactly of d’Alembertian solu-
tions. For this purpose we will prove that each d’Alembertian solution can be
represented in normal form.

Note that all the propositions stated here are valid also for homogeneous
linear difference equations after derivatives are replaced with differences (we
take ∆f(x) = f(x+1)− f(x)), integrals with sums etc. The expression

∑

f(x)
means the set of all functions g(x) such that ∆g(x) = f(x), this indefinite sum
can be concretized by the choice of one function with this property.

2 Equation for the derivative

Let an equation Ay = 0 of the form (1) be given. We transform it as follows. If
a0 6= 0 then divide the equation by a0 to obtain an equation of the form

hny
(n) + . . .+ h1y

′ + y = 0 (hi = ai/a0, i = 1, . . . , n) (7)

differentiate both sides of this equation and replace y′, y′′, . . . with y, y′, . . . which
gives an n-th order equation:

hny
(n) + (h′n + hn−1)y

(n−1) + . . .+

(h′2 + h1)y
′ + (h′1 + 1)y = 0.

If originally a0 = 0, then the equation has the form any
(n) + · · · + a1y

′ = 0,
and we can directly replace y′, y′′, . . . with y, y′, . . .. This gives an equation of
order n− 1:

any
(n−1) + · · · + a2y

′ + a1y = 0.

This transformation will be called passage to the equation for the derivative.
The equation for the derivative will be denoted by A[1]y = 0.

In [Abr91] the following lemma was proved.

Lemma 1 Let Ay = 0 be the equation (1) and ψ some solution of the equation
A[1]y = 0. Then Ay = 0 has a solution ϕ such that ϕ′ = ψ. If the coefficient of
y in the equation Ay = 0 is 0 then

ϕ =

∫

ψ dx
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(any primitive function can be taken), otherwise the solution ϕ is unique:

ϕ = −
n−1
∑

i=0

hi+1ψ
(i), (8)

where h1, . . . , hn are determined by formula (7).

We remark that the right-hand side of (8) is a primitive function of ψ and can
be rewritten as

∫

ψ dx ; here the indefinite integral is this particular primitive
function.

This lemma allows us to define the transformation of an equation connected
with a nonzero function f . This transformation is a generalization of d’Alembert
substitution. In the case when f is a solution of the equation under consider-
ation, the transformation connected with f is simply d’Alembert substitution
connected with f . Otherwise, the substitution y = fu where u is a new unknown
function, transforms an equation Ay = 0 of the form (1) to another equation
Bu = 0, which we further transform to B[1]u = 0. One can construct a solution
of the form f

∫

ψ dx of the equation Ay = 0 for a solution ψ of the transformed
equation. If f is a solution of Ay = 0 then a primitive function can be chosen
arbitrarily, otherwise the choice is unique, according to Lemma 1.

In the transformed equation we will use the same letter for the unknown
function as in the original equation (the letter y).

In [Abr91] it has been shown that if an equation of the form (1) has a
solution placed above L at positive height then the equation has to have a
nonzero polynomial solution.

Here we prove the following lemma.

Lemma 2 Let the equation Ay = 0 of the form (1) have a d’Alembertian so-
lution y /∈ L of the form (6) with some concrete primitive functions of the
integrands. Then there exists an l < k such that

1. a special choice of primitive functions in

f1

∫

f2 . . .

∫

fl dx . . . dx (9)

gives a solution of the original equation;

2. all the functions

fl−1

∫

fl dx , fl−2

∫

fl−1

∫

fl dx dx , (10)

. . . , f1

∫

f2 . . .

∫

fl dx . . . dx

are in F for this choice of primitive functions.
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Proof. We can apply to Ay = 0 the transformation connected with f1, then
apply to the obtained equation the transformation connected with f2, and so on.
We claim that eventually we will obtain an equation of order (n−1). Assume the
contrary. After transformation connected with fk−1, an equation with solution
fk will arise. Since the order of any intermediate equation is n, then, in the
case when f1, f2, . . . are fixed, the original equation has a unique solution of
the form (6). This solution may be obtained from fk by using step by step
formula (8) and multiplication by fk−1, fk−2, . . . , f1. But these operations do
not take us out of L. Therefore the solution considered is in L, a contradiction.

Let an equation of order (n− 1) arise first as a result of the transformation
connected with fl. This means that fl is a solution of the previous equation. But
all earlier equations are of order n. Therefore there exists a unique solution of
the form (9) of the original equation, and one can obtain it by using step by step
formula (8) and multiplication by fl−1, fl−2, . . . , f1. Thus all the functions (10),
including the solution (9) itself, are in F .

The author has to remark that the idea of search for “companion” solu-
tions in F of general d’Alembertian solution was suggested (after reading a
preliminary version of [Abr91]) by M.Petkovšek. More, Lemma 2 has been
proved by M.Petkovšek for the case of nested indefinite hypergeometric sums
(cf. [Pet92b]).

3 D’Alembertian subspace

We start with a technical lemma.

Lemma 3 Let the expression (6) with k ≥ 3, nonzero f1, f2, and some specific
choice of primitive functions of the integrands, be a solution of the equation (1).
Let a function h be such that h′ = f2. Then the given solution can be rewritten
as

(h f1)

∫

(1/h)′
∫

(−h f3)

∫

f4 . . .

. . .

∫

fk dx . . . dx dx dx . (11)

Proof. For any v and nonzero u1, u2

((v/u1)
′/(u2/u1)

′)′ = −
u2

u1
((v/u2)

′/(u1/u2)
′)′ (12)

(this equality was used in [Abr91]). One can take v being equal to the given
solution of the form (6), u1 = f1, u2 = f1h. Two successive transformations of
the original equation connected with u1 and (u2/u1)

′ give an equation D1y = 0
which has a solution

f3

∫

f4 . . .

∫

fk dx . . . dx .

6



Therefore two successive transformations of the original equation, connected
with u2 and (u1/u2)

′, give an equation D2y = 0 which has a solution

(−
u2

u1
)f3

∫

f4 . . .

∫

fk dx . . . dx .

Since u2/u1 = h we see that the equation D2y = 0 has a solution of the form

(−hf3)

∫

f4 . . .

∫

fk dx . . . dx .

Using the equality (u1/u2)
′ = (1/h)′ one can obtain now the form (11) for the

given solution of the original equation.
This lemma can be easily generalized.

Lemma 4 Let k ≥ 3, 1 < l < k. Let the expression (6) with nonzero fl−1, fl
and some specific choice of primitive functions of the integrands be a solution of
the equation (1). Let a function h be such that h′ = fl. Then the given solution
can be rewritten in the form

f1

∫

. . .

∫

fl−2

∫

(h fl−1)

∫

(1/h)′
∫

(−h fl+1)

∫

fl+2 . . .

∫

fk dx . . . dx dx dx dx dx . . . dx (13)

The proof is the same as for Lemma 3.
We remark that if h ∈ F then, obviously, h fl−1, (1/h)′, −h fl+1 ∈ F also.
Now we are ready to prove that all d’Alembertian solutions are in M . It is

enough to show that any solution (6) has a normal form.
We may suppose that f1, . . . , fk in (6) are nonzero.
The proof is by induction on k. For k = 1 the solution is in L and therefore

has a normal form. For k = 2 either the solution is in L or f1 is a solution of the
original equation. Let k ≥ 3 and assume that the solution (6) is not in L. By
Lemma 2, the original equation has solution (9) such that all the functions (10)
are in F . In particular,

∫

fldx ∈ F . Let h ∈ F be such that h′ = fl, then
Lemma 4 can be used. But according to (10),

∫

fl−1h dx =
∫

fl−1

∫

fl dx dx

is in F . Therefore there exists a function h̃ ∈ F such that h̃′ = h fl−1 and
Lemma 4 can be used again, and so on. Finally we will have expressed the
given solution in the form

ψ

∫

g1

∫

. . . gk−2

∫

gk−1 dx . . . dx dx , (14)

where g1, . . . , gk−2 ∈ F, gk−1 ∈ L and ψ is a solution of the original equa-
tion (1) belonging to F . We can execute d’Alembertian substitution connected
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with ψ. This transforms (1) into a new equation By = 0, which has solu-
tion g1

∫

. . . gk−2

∫

gk−1 dx . . . dx . By inductive hypothesis this solution can be
rewritten in the normal form

ξ1

∫

. . . ξp−1

∫

ξp dx . . . dx . (15)

Then

ψ

∫

ξ1 . . . ξp−1

∫

ξp dx . . . dx . (16)

is a normal form for (14).
For the case when the given solution (6) is not in L, we describe briefly

an algorithm to construct g1, . . . , gk−1. Let si = fi
∫

. . .
∫

fl dx . . . dx , i =
1, . . . , l− 1, be the functions belonging to (10). Let hi = si/fi, i = 1, . . . , l− 1.
Then we can compute g1, g2, . . . , gk−1 by the following algorithm:

1. for i = k − 1, k − 2, . . . , l do gi := fi+1;

2. for i = l − 1, l− 2, . . . , 1 do
gi := (1/hi)

′; gi+1 := −higi+1

But we can see that

g1 = (1/h1)
′ = −h′1/h

2
1 = −s2/h

2
1,

gi = −hi−1(1/hi)
′ = (hi−1si+1)/h

2
i ,

i = 2, . . . , l − 1.

Thus the following form of this algorithm

1. for i = k − 1, k − 2, . . . , l + 1 do gi := fi+1;

2. gl := −hl−1fl+1;

3. for i = l − 1, l− 2, . . . , 2 do gi := (hi−1si+1)/h
2
i ;

4. g1 := −s2/h
2
1

will be more efficient.
Thus we have proved the following theorem.

Theorem 1 D’Alembertian subspace M of the space of all solutions of Eq.(1)
contains all d’Alembertian solutions and only them.

Let us consider the proof given above in more detail. It is obvious that any
primitive function of the integrand (15) multiplied by ψ is a solution of the
original equation. The same is true of all other primitive functions involved
in (16). The unique choice of primitive functions gives normal form of (6),
other choices give normal forms of other solutions. It means that having a
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d’Alembertian solution (6) not belonging to L, we obtain a subspace of M of
dimension more than 1.

Thus we possess an algorithm to build up the subspace M . This algorithm
uses the algorithms AF and AL. Furthermore, we possess an algorithm which
without using AF or AL allows us to obtain some subspace of d’Alembert ian
solutions provided that we have one such solution not belonging to L . The
dimension of this space is more than 1.

Example. Let F and L be equal to the rational function field. One solution
of the equation

x3y′′′ − x2y′′ + 2xy′ − 2y = 0 (17)

is y = x lnx. This solution can be written as

∫ ∫

1

x
dx dx , (18)

if we consider
∫

1
x
dx = lnx+ 1,

∫

(lnx+ 1) dx = x lnx.
If we execute the transformation of Eq.(17) connected with function 1 we

obtain xy′′′ + 2y′′ = 0. The next transformation gives xy′′ + 2y′ = 0, the order
of this equation is equal to 2. By Lemma 2 some special choice of a primitive
functions of the integrand 1 gives a solution of the original equation. To find
this solution we use (8) (here h0, . . . , h3 are coefficients of the original equation,
divided by -2; thus h1 = −x). We obtain −(−x), i.e. x. If we apply to (17)
d’Alembert substitution connected with this solution we obtain

xy′′ + 2y′ = 0. (19)

This equation has the solution of the form g1
∫

g2 dx . We have f1 = f2 = 1, f3 =
1/x. We can construct g1, g2 step by step; l = 2, h1 = s1 = x, h2 = s2 = 1,
and we execute g2 := −h1f3; g1 := −s2/h

2
1. Thus g1 = −1/x2, g2 = −1.

So Eq.(19) has the solution

(−
1

x2
)

∫

(−1) dx . (20)

Since −1/x2 is not a solution of Eq.(19), (20) is in the rational function field
and

∫

(−1) dx can be evaluated by (8). The evaluation gives −x. Thus instead
of (18) we obtain

x

∫

1

x
dx .

Any choice of a primitive function in the expression gives a solution of (17)
(we have the space {C1x lnx+ C2x}).

Remark that when we are evaluating the external integral in (18) we can
not choose a primitive function of the integrand arbitrarily. Let us return on
the short time to the proof of the Theorem 1. We noted that if an (n− 1)-order
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equation arises the first time after the transformation connected with fl then fl
is a solution of the previous equation (i.e. of the equation which is the result of
the transformation, connected with fl−1, or, if l = 1, of the original equation).
Together with fl this previous equation, which will be denote as K y = 0, has,
obviously, the solution

fl

∫

fl+1 . . .

∫

fk dx . . . dx , (21)

where primitive functions are chosen in the same manner as in the solution (6).
But if the equation K y = 0 has both these solutions then a primitive function
connected with the external sign of the integral in (21) can be chosen arbitrarily.
Any choice of a primitive function gives a solution of K y = 0. Therefore the
expression of the form (6) which describes a not belonging to L solution of the
original equation has the following property: a primitive function connected
with the integral sign which is situated before can be chosen arbitrarily.

In above example a primitive function, connected with the internal integral
sign, can be chosen arbitrarily. But the primitive function connected with the
external internal sign has to be chosen by one unique way. The way provides a
solution of Eq.(17).

4 Using solutions with logarithmic derivative in

F

We denote by Ld(F ) the set of all functions ϕ such that ϕ′/ϕ ∈ F . Let Eq.(1)
have a solution η ∈ Ld(F ). It is easy to see that d’Alembert substitution gives in
this case an equation whose coefficients are in F . Thus if we possess an algorithm
which allows for equations with coefficients in F to find solution in Ld(F ), then
we can construct an analogue of the d’Alembertian subspace. The new subspace
consists of all solutions of the form (6), but f1, . . . , fk−1 ∈ Ld(F ), fk ∈ L now.
An expression describing this space (like (5)) can be constructed by means of
solutions from Ld(F ) and d’Alembert substitutions. Since for any f, f1, f2 ∈
Ld(F ) we have f1f2, f1/f2 ∈ Ld(F ), f ′ ∈ Ld(F )

⋃

{0}, we can prove that the
subspace does not depend on the choice of solutions from Ld(F ), and the proof
will be the same as the proof in [Abr91] for the case of solutions belonging to
F .

For example, the space of solutions of the equation y′′ + 2y′ − 3y = 0, i.e.
the space {C1e

x+C2e
−3x} can be described both by ex

∫

e−4x
∫

0 dx dx and by
e−3x

∫

e4x
∫

0 dx dx (we mentioned above that such expressions can be rewritten
as C ex

∫

e−4x dx and C e−3x
∫

e4x dx , where C is an arbitrary constant).
We can construct the normal form for any solution of the kind considered.

Lemma 2 still holds if we suppose that either L = F or a ∈ Ld(F ), b ∈ L
imply ab ∈ L. The old proof remains valid due to the following. Let in (8)
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h1, . . . , hn ∈ F and ψ ∈ Ld(F ), then ϕ ∈ Ld(F ). If ψ ∈ L, then ϕ ∈ L because
ψ(k) ∈ L for k = 1, 2, . . ..

5 Connection with factorization of differential

operators

It is known that any nonzero solution ψ of differential equation of the form (1)
corresponds to the right-hand factor

d

dx
−
ψ′

ψ
(22)

of the operator A. Thus

A = P ◦

(

d

dx
−
ψ′

ψ

)

(23)

where P is an (n− 1)-order operator ([Schl, Sch89]). If we execute d’Alembert
substitution connected with ψ, and obtain an equation By = 0, then A = B ◦C
where C is equal to

1

ψ

(

d

dx
−
ψ′

ψ

)

. (24)

Indeed, A ◦ψ = B ◦ d
dx

for some operator B (the left-hand side of this operator
is to be understood as the composition of the operators A and ψ, and not as
the result of applying A to ψ). We have

A = B ◦
d

dx
◦

1

ψ
= B ◦

(

1

ψ

d

dx
+

(

1

ψ

)

′

)

=

= B ◦

(

1

ψ

d

dx
−
ψ′

ψ2

)

= B ◦

(

1

ψ

(

d

dx
−
ψ′

ψ

))

.

It is easy to see that P on the right-hand side of (23) is equal to B ◦ 1
ψ

.

Example. x + a is a solution of the equation y′′ = 0 for any constant a.
The operator d2/dx2 has the right-hand factor d/dx− 1/(x+ a):

d2

dx2
=

(

d

dx
+

1

x+ a

)

◦

(

d

dx
−

1

x+ a

)

(since a is arbitrary, the last equality gives a good example of a non-unique
factorization of operators). D’Alembert substitution connected with x+ a gives
(x+ a)y′ + 2y = 0. It is easy to see that in accordance with the above

(x + a)
d

dx
+ 2 =

(

d

dx
+

1

x+ a

)

◦ (x + a).
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6 D’Alembert substitutions and nonhomogeneous

equation

Let a nonhomogeneous linear equation be given, then we can consider the cor-
responding homogeneous equation of the form (1). If we can find some linearly
independent solutions ϕ1, . . . , ϕk, then it is possible by d’Alembert substitu-
tions to reduce the order of the original nonhomogeneous equation by k (the
right-hand side of the equation is not changed). Repeating this operation as
long as possible we will obtain either an equation of order zero by = d where b
and d are known functions, or an equation of order m > 0

bmy
(m) + · · · + b0y = d (25)

such that we are not able to find any solution of the corresponding homogeneous
equation. In the first case we obtain from d/b the general solution of the original
equation, in the second case we build up a formula allowing to express the general
solution of the original equation via the general solution of (25). Neither case
requires solving systems of linear algebraic equations (as does the method of
variation of constants).

Example. (x2 − 1)y′′ + 4xy′ + 2y = sinx. The corresponding homogeneous
equation has solutions x/(x2 − 1) and 1/(x2 − 1). D’Alembert substitution
connected with the first solution gives the equation xy′ + 2y = sinx. Its homo-
geneous equation has to have the solution ((1/(x2−1))/(x/(x2−1)))′ = −1/x2.
D’Alembert substitution gives (−1/x)y = sinx, i.e. y = −x sinx. The general
solution of the original equation is

y =
x

x2 − 1

∫

1

x2

∫

x sinxdx dx =

−
sinx

x2 − 1
+
C1x+ C2

x2 − 1
.

Example. x3y(iv)−(x4−6x2)y′′′−(2x3+3x2)y′′+(6x2−12)y′+18y = sinx.
The corresponding homogeneous equation has the solution 1/x2. D’Alembert
substitution and multiplication by −x give x2y′′′− (x3 +2x)y′′ +(4x2− 3x)y′−
(4x−12)y = −x sinx. Its homogeneous equation has the solution x4. D’Alembert
substitution and multiplication by 1/x4 give

x2y′′ − (x3 − 10x)y′ − (4x2 + 3x− 20)y = −
sinx

x3
. (26)

Let us suppose that we can find no solution of Eq.(26) and of its homogeneous
equation. Then we write the general solution of the original equation in the form

y =
1

x2

∫

x4

∫

ξ dx dx ,

where ξ is a general solution of Eq. (26).
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7 Difference equations

It has been remarked in the paper that all our propositions are valid for differ-
ence equations as well. Little change is needed in the theory. The factor in the
right-hand side of (12) is equal to (−u2(x+ 1)/u1(x+ 1)). The analogue of the
right-hand side factor in (24) is

1

ψ(x+ 1)

(

∆ −
∆ψ(x)

ψ(x)

)

.

There is complete analogy between functions with rational logarithmic deriva-
tive and hypergeometric functions, i.e. functions f(x) such that f(x + 1)/f(x)
(or ∆f(x)/f(x)) is a rational function. The Section 4 is valid for difference
equations and hypergeometric functions as well.

When some linear difference equations with rational function coefficients is
given we can use d’Alembert substitutions based on the algorithm to search
for rational ([Abr89a, Abr89b]) and hypergeometric ([Pet90, Pet92a]) solutions
(both algorithms were implemented by B.Salvy in Maple).

The author would like to thank M.Bronstein, M.Petkovšek and B.Salvy for
discussions connected with the subject of this paper.
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