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ABSTRACT
Algorithms for computing lower bounds on valuations (e.g.,
orders of the poles) of the components of meromorphic solu-
tions of arbitrary-order linear difference systems with poly-
nomial coefficients are considered. In addition to algorithms
based on ideas which have been already utilized in computer
algebra for treating normal first-order systems, a new algo-
rithm using tropical calculations is proposed. It is shown
that the latter algorithm is rather fast, and produces the
bounds with good accuracy.

Categories and Subject Descriptors
I.1.2 [Symbolic And Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms

General Terms
Algorithms, Theory

Keywords
Linear difference systems, valuations, meromorphic solu-
tions, tropical calculations

1. INTRODUCTION
Finding and studying the singularities of solutions of linear
difference equations and systems is a part of various algo-
rithms.

Let k be a field of characteristic 0. We consider systems of
the form

Ar(x)y(x+r)+ · · ·+A1(x)y(x+1)+A0(x)y(x) = b(x), (1)

where

• A0(x), A1(x), . . . , Ar(x) are square matrices of or-
der m with entries from k[x] (which is denoted
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as A0(x), A1(x), . . . , Ar(x) ∈ Matm(k[x])) with the
assumption that the leading and trailing matrices
Ar(x), A0(x) are nonzero,

• b(x) = (b1(x), b2(x), . . . , bm(x))T ∈ k[x]m is the right-
hand side of the system,

• y(x) = (y1(x), y2(x), . . . , ym(x))T is a column of un-
known functions.

The number r is called the order of the system.

Let the homogeneous system S′ be obtained by dropping the
right-hand side of the original system. We assume that the
equations of S′ are independent over k[x, φ], where φ is the
shift operator:

φ(y(x)) = y(x+ 1).

This means that if a linear combination of equations of S′

which has coefficients in k[x, φ] is equal to zero then all these
coefficients are equal to zero.

If k is a numeric field, i.e., k ⊆ C, then one can consider
analytical and, in particular, meromorphic solutions of the
system (1). For a meromorphic function f(x) and α ∈ C, the
valuation valx−αf(x) is defined as the lowest degree of x−α
for which the Laurent series expansion of f(x) about the
point α has a nonzero coefficient (by convention, valx−α0 =
∞). For two meromorphic functions the following relations
hold:

valx−α(f(x)g(x)) = valx−αf(x) + valx−αg(x),

valx−α(f(x) + g(x)) > min{valx−αf(x), valx−αg(x)}.
(2)

For a vector y(x) = (y1(x), y2(x), . . . , ym(x))T consist-
ing of meromorphic functions, valx−αy(x) is defined to be
minmi=1 valx−αyi(x).

There is a significant difference between the solution spaces
of linear ordinary differential and linear ordinary difference
systems: the solutions of the latter may be multiplied not
only by constants, but also by functions with the period
equal to 1. Along with a meromorphic solution y(x) the
system has also, for example, solutions (sin 2π(x + β))y(x)
and (sin 2π(x + β))−1y(x) for any β ∈ C. The singularities
of solutions of a differential system similar to (1) with equa-
tions which are independent over k[x, d

dx
] constitute a finite

set (in [6] an algorithm is proposed which constructs a finite
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superset of this set). The situation is different for difference
systems and even for scalar difference equations with polyno-
mial coefficients — it is enough to mention the gamma func-
tion, which satisfies the scalar equation y(x+1)−xy(x) = 0.
This equation is satisfied not only by y(x) = Γ(x),

valx−αy(x) =

{
−1, if α is a non-positive integer,
0, otherwise,

but also by, e.g., y(x) = sin2(2πx)Γ(x):

valx−αy(x) =

 2, if α ∈ 1
2

+ Z or α is a positive integer,
1, if α is a non− positive integer,
0, otherwise.

For this reason, before discussing the valuations of solutions
of a given scalar equation or a system, it is necessary to
formulate some initial conditions, e.g., in the form of lower
bounds on the valuations valx−αy(x + n) for some consec-
utive integer values of n (see below). Naturally, our algo-
rithms presuppose that explicit bounds on the valuations of
the desired solution are known at certain points.

If one assumes that the matrices Ar(x), A0(x) in (1) are in-
vertible in Matm(k(x)), then for an arbitrary meromorphic
solution y(x) of (1) and α ∈ C the value valx−α−ny(x) has a
lower bound for n running through Z (Proposition 1 in Sec-
tion 3.1). Consideration of the so-called embracing systems,
described in Section 2.2, allows us to avoid the assumption
of invertibility of the matrices Ar(x), A0(x).

It is obvious that for any n the equation valx−α−ny(x) =
valx−αy(x + n) holds. In the rest of the paper we consider
the valuations of the form valx−αy(x+ n).

We are interested in two problems. The first problem is
the computation of a lower bound for valx−αy(x), i.e., a
global lower bound for all components of the solution y(x).
The second problem, a refinement of the first one, is the
computation of individual lower bounds on each compo-
nent: valx−αyi(x), i = 1, 2, . . . ,m. In both problems,
y(x) = (y1(x), y2(x), . . . , ym(x))T is a meromorphic solu-
tion of the system (1), and α is a fixed point in the complex
plane.

In the first problem, it is assumed that a common lower
bound for the valuations valx−αy(x+ n) for some r consec-
utive integer values of n is given. Proposition 1 in Section
3.1 that we mentioned above, shows that in some cases we
do not need to mention explicitly which values of n are used
(when we have conditions “at infinity”). This is detailed in
Remark 1.

In the second problem, it is assumed that individual lower
bounds on the valuations valx−αyi(x + n), i = 1, 2, . . . ,m,
for some r consecutive integer values of n are given.

In some interesting cases — for example, in constructing
denominator bounds for rational solutions — one can take
the a priori known valuation bounds to be equal to zero.

Note that for the scalar case, a study of the space of those
meromorphic solutions for which the valuations are non-
negative for all large-enough values of Rex, is contained
in the unpublished work [15], in the thesis [9], and in the

paper [13].

The first problem is considered separately, since a simpler
algorithm can be given for solving it. The idea of this al-
gorithm has been, to some extent, already utilized in al-
gorithms for finding rational solutions of first-order normal
difference systems of the form

y(x+ 1) = A(x)y(x) (3)

where A(x) ∈ Matm(k(x)) is an invertible matrix (see [11,
4, 5]). Concerning (3) the first problem is rather simple
in comparison with the systems of the general form. The
algorithm proposed in Section 3.2 is applicable to arbitrary-
order systems of the form (1).

As for the second problem, in Section 3.3.1 we propose an
algorithm which is applicable to arbitrary-order systems of
the form (1), and which uses the so-called tropical operations
on matrices with entries from Z ∪ {∞}.

Our complexity analysis (see Section 3.3.2) and experiments
(see Section 4) show that the proposed algorithm is rather
fast, and produces bounds of good accuracy. The idea of
using the tropical calculations to estimate the valuations of
solutions of difference equations and systems seems to be
quite natural. However we have been unable to find in the
literature any explicit mention of this.

2. PRELIMINARIES
2.1 Valuation of rational functions at irre-

ducible polynomials
The set of monic irreducible polynomials from k[x] is de-
noted as Irr(k[x]). If p(x) ∈ Irr(k[x]) and f(x) ∈ k[x], the
valuation valp(x)f(x) is defined to be the greatest n ∈ N
such that pn(x) | f(x) (valp(x)0 = ∞), and valp(x)F (x) =

valp(x)f(x) − valp(x)g(x) for F (x) = f(x)
g(x)

, f(x), g(x) ∈ k[x].

For two arbitrary nonzero rational functions r(x), s(x) and
for p(x) ∈ Irr(k[x]), the following relations hold:

valp(x)(r(x)s(x)) = valp(x)r(x) + valp(x)s(x),

valp(x)(r(x) + s(x)) > min{valp(x)r(x), valp(x)s(x)}.
(4)

If F (x) ∈ k(x) then we denote by denF (x) the denomi-
nator of F (x), i.e., a monic polynomial such that F (x) =
f(x)

denF (x)
for a polynomial f(x) ∈ k[x] which is co-prime

with denF (x). If F (x) = (F1(x), F2(x), . . . , Fm(x))T ∈
k(x)m then denF (x) = lcmm

i=1 denFi(x) and valp(x)F (x) =
minmi=1 valp(x)Fi(x), where lcm denotes the least common
multiple.

For an arbitrary matrix A(x) = (aij(x)) ∈ Matm(k(x)) we
define denA(x) = lcmm

i=1lcmm
j=1 den aij(x).

2.2 Embracing systems
For any system S of the form (1) one can construct an l-
embracing system S̄

Ār(x)y(x+r)+ · · ·+Ā1(x)y(x+1)+Ā0(x)y(x) = b̄(x), (5)

with the leading matrix Ār(x) being invertible in
Matm(k(x)), and with the set of solutions containing all the
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solutions of the system S. Similarly, one can construct a
t-embracing system ¯̄S

¯̄Ar(x)y(x+r)+ · · ·+ ¯̄A1(x)y(x+1)+ ¯̄A0(x)y(x) = ¯̄b(x), (6)

with the trailing matrix ¯̄A0(x) being invertible in
Matm(k(x)), and with the set of solutions containing all the
solutions of the system S. All the entries of the matrices and
of the right-hand sides of (5), (6) are in k[x]. It is possible

that the matrices Ā0(x), ¯̄Ar(x) are zero, either both or one
of them.

The construction of the embracing systems can be performed
with the algorithms EG ([1]) or EG′ ([2]); the algorithm EG′

is an improved version of the algorithm EG. The resulting l-
and t-embracing systems (5), (6) might be rewritten in the
form

y(x) = B1(x)y(x− 1) + · · ·+Br(x)y(x− r) + ϕ(x), (7)

where ϕ(x) = Ā−1
r (x − r)b̄(x − r), Bi(x) = −Ā−1

r (x −
r)Ār−i(x− r), as well as in the form

y(x) = C1(x)y(x+ 1) + · · ·+ Cr(x)y(x+ r) + ψ(x), (8)

where ψ(x) = ¯̄A−1
0 (x)¯̄b(x), Ci(x) = − ¯̄A−1

0 (x) ¯̄Ai(x), i =
1, 2, . . . , r.

3. MEROMORPHIC SOLUTIONS:
LOWER BOUNDS ON VALUATIONS

In this section we suppose that k ⊆ C. If r(x) ∈ k(x), p(x) ∈
Irr(k[x]), α ∈ k̄ and p(α) = 0, then evidently valx−αr(x) =
valp(x)r(x).

3.1 On a property of valuations of meromor-
phic solutions of difference systems

Let y(x) be a meromorphic solution of (1) and α ∈ C. Then
in view of the existence of the l- and t-embracing systems,
the value valx−αy(x+n) is bounded from below when n runs
through Z. This can be formulated as the following property
of a meromorphic solution y(x):

Proposition 1. Let p(α) = 0 for p(x) ∈ Irr(k[x]). Let
Ār(x) be the leading matrix of an l-embracing system and
¯̄A0(x) be the trailing matrix of a t-embracing system for (1).

Let

V (x) = den Ā−1
r (x− r), W (x) = den ¯̄A−1

0 (x).

In this case

(i) If N0 is such that p(x) - V (x + n0)W (x + n0) for all
integers n0 > N0 then the values minn0+r−1

n=n0
valx−αy(x+ n)

are equal for all integers n0 > N0, i.e., there exists λ ∈ Z
such that

∀
n0∈Z, n0>N0

n0+r−1

min
n=n0

valx−αy(x+ n) = λ.

(ii) If N1 is such that p(x) - V (x + n1)W (x + n1) for all
integers n1 6 N1 then the values minn1

n=n1−r+1 valx−αy(x+
n) are equal for all integer n1 6 N1, i.e., there exists µ ∈ Z
such that

∀
n1∈Z, n16N1

n1+r−1

min
n=n1

valx−αy(x+ n) = µ.

Proof. Going back to the systems (7), (8), it is easy to
see that the denominators of the matrices Bi(x) and of
the vector ϕ(x) divide V (x), while the denominators of
the matrices Ci(x) and of the vector ψ(x) divide W (x),
for i = 1, 2, . . . , r. As a consequence, if the inequality
minl+r−1

n=l valx−αy(x+n) < minl+rn=l+1 valx−αy(x+n) is valid
for an integer l then p(x) | V (x+l). Similarly, if the inequal-
ity minl+r−1

n=l valx−αy(x + n) > minl+rn=l+1 valx−αy(x + n) is
valid for an integer l then p(x) | W (x). This implies the
validity of assertions (i) and (ii). 2

It follows from Proposition 1 that if the polynomial
V (x)W (x) has no root belonging to the set α+Z then values
minn0+r−1

n=n0
valx−αy(x+ n) are equal for all n0 ∈ Z.

From here on we will assume that

α, p(x), V (x), W (x), N0, N1, λ, µ

are as described above.

Below we consider problems of computing lower bounds on
the valuations of meromorphic solutions of a system of the
form (1) at a point α.

3.2 The first problem of computing lower
bounds

Here we consider the first of the problems formulated in the
Introduction: the problem of computing a lower bound on
valx−αy(x) assuming that

n0+r−1

min
n=n0

valx−αy(x− n) > v (9)

for some non-negative integer n0 and integer v, or, similarly,
assuming that

n1+r−1

min
n=n1

valx−αy(x+ n) > w (10)

for some non-negative integer n1 and integer w.

Theorem 1. Let y(x) be a meromorphic solution of a
system of the form (1). We distinguish two cases: the sys-
tem is homogeneous (i.e., b(x) is equal to zero identically),
and the general case.

(i) The homogeneous case. If a non-negative integer n0 and
an integer v are such that inequality (9) holds, then

valx−αy(x) > v −
n0−1∑
n=0

valp(x)V (x− n). (11)

Similarly, if a non-negative integer n1 and an integer w are
such that inequality (10) holds, then

valx−αy(x) > w −
n1−1∑
n=0

valp(x)W (x+ n). (12)

(ii) The general case. The statement (i) is correct under the
additional precondition that v, w are non-positive.
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Proof. Considering the equivalent form (7) of the system we
see that denBi(x) | V (x) for i = 1, 2, . . . , r, and denϕ(x) |
V (x). By means of the valuation properties (2), (4) it is
straightforward to prove (11) by induction from n0− 1 to 0.

In the inhomogeneous case the valuation of the last term of
the right-hand side of (7) does not depend on valuations of
y(x − 1), y(x − 2), . . . , y(x − r) which can be positive. In
general, formula (11) is not correct if v > 0. The estimate
(12) can be proved similarly for both cases. 2

Remark 1. If v 6 λ and w 6 µ then in the homogeneous
case the following inequality holds for any mutual disposition
of the point α and the roots of the polynomials W (x), V (x):

valx−αy(x) > max

v − ∑
n∈N

valp(x)V (x− n),

w −
∑
n∈N

valp(x)W (x+ n)

 (13)

(the sums on the right-hand side of the inequality are finite).
In the general case, inequality (13) is correct under the ad-
ditional precondition that v, w are non-positive.

In a straightforward manner, Theorem 1 and Remark 1 yield
an algorithm for solving the first problem of computing lower
bounds. We will refer to it as LB1 further on.

3.3 The second problem of computing lower
bounds

Here we consider the second of the problems formulated in
the Introduction: the problem of computing lower bounds
on valx−αyi(x), i = 1, 2, . . . ,m, assuming that for some non-
negative integer n0 lower bounds on the valuations

valx−αyi(x− n)

are given (separately for n = n0, n0 + 1, . . . , n0 + r − 1 and
i = 1, 2, . . . ,m), or that for some non-negative integer n1

lower bounds on the valuations

valx−αyi(x+ n)

are given (separately for n = n1, n1 + 1, . . . , n1 + r − 1 and
i = 1, 2, . . . ,m).

3.3.1 Tropical calculations
We will consider the set Z◦ = Z ∪ {∞} with operations

a� b = a+ b, a⊕ b = min{a, b }, (14)

which replace the usual operations of multiplication · and
addition +. The neutral element for � is 0, and ∞ plays
the analogous role for ⊕. Both operations are associative,
and � is distributive over ⊕.

In recent years, calculations in semi-rings of this type were
named“tropical”. In 1962 such calculations were used (with-
out any tropical terminology, and with R instead of Z) by
R. W. Floyd ([10]) for finding shortest paths between all
pairs of vertices of a graph (see also [7, Sect. 5.6, 5.8]). In

our paper we use such calculations for estimating valuations,
lowering the level of operations in the sense noted by V. I.
Arnold in [8, §2]: ‘. . . The modern term “tropical”, taken
by me to mean “exotic”, is used when one lowers the level
of the algebraic operations, transforming multiplication to
addition, and replacing addition by the lower-level “tropical
addition” operation, with respect to which the normal addi-
tion is distributive, as is normal multiplication with respect
to normal addition . . . ’

The operations (14) can be extended to matrices and vectors
with entries from Z◦, e.g., if

A = (aij)16i6m,16j6m, B = (bij)16i6m,16j6m

are matrices and whose entries belong to Z◦ then we define
C = A⊕B and D = A�B by

cij = aij ⊕ bij , dij =

m⊕
l=1

ail � blj ,

i, j = 1, 2, . . . ,m. If g = (gl)16l6m is a vector whose entries
belong to Z◦ and h = Ag then hi =

⊕m
l=1 ail � gl, i =

1, 2, . . . ,m, and so on.

Let p(x) ∈ Irr(k[x]) be fixed. For an arbitrary function
f(x) ∈ k(x) we consider the double-sided sequence

f◦(n) = valp(x)f(x+ n), n = 0,±1,±2, . . .

of elements of Z◦. Similarly, for an arbitrary matrix A(x) ∈
Matm(k(x)) we consider the matrix A◦(n) whose entries are
sequences of the mentioned form. The same for rational
function vectors.

If we know the values of the components of y(x + α + n)
for some r consecutive values of n then we can try to use,
e.g., the system (7) for computing the values of the com-
ponents for some other values of n. However, in this way
we can be faced with some obstacles since Bi(x), ϕ(x) can
have poles in α+Z. The following theorem shows that using
in a similar way the tropical calculations, we encounter no
problems when computing lower bounds on the valuations
of the components of y(x+ α+ n).

Theorem 2. Let the components of vectors

v(n) = (v1(n), v2(n), . . . , vm(n))T ,

w(n) = (w1(n), w2(n), . . . , wm(n))T

be sequences of elements of Z◦, and let y(x) be a meromor-
phic solution of (7). In this case:

(i) If an integer n0 is such that valx−αyi(x− n) > vi(n) for
n = n0, n0 + 1, . . . , n0 + r − 1, i = 1, 2, . . . ,m, and for all
n < n0 the sequence v(n) is defined by

v(n) = B◦1 (n)�v(n+1)⊕· · ·⊕B◦r (n)�v(n+r)⊕ϕ◦(n) (15)

then

valx−αyi(x− n) > vi(n), i = 1, 2, . . . ,m,

for all n = n0 − l, l = 1, 2, . . .

(ii) If an integer n1 is such that valx−αyi(x + n) > wi(n)
for n = n1, n1 + 1, . . . , n1 + r − 1, i = 1, 2, . . . ,m, and for
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all n < n1 the sequence v(n) is defined by

w(n) = C◦1 (n)�w(n+1)⊕· · ·⊕C◦r (n)�w(n+r)⊕ψ◦(n) (16)

then

valx−αyi(x+ n) > wi(n), i = 1, 2, . . . ,m,

for all n = n1 − l, l = 1, 2, . . .

Proof. If we substitute x−n for x into (7), it relates y(x−
(n+1)), . . . , y(x−(n+r)) and y(x−n) and gives a possibility
to compute y(x−n) if y(x− (n+ 1)), . . . , y(x− (n+ r)) are
already known, in the same way (15) relates the bounds
on the valuations of y(x − (n + 1)), . . . , y(x − (n + r)) and
the valuation of y(x − n) and, hence, gives a possibility to
compute v(n) if v(n + 1), . . . , v(n + r) are already known.
Similarly, if we substitute x + n for x into (8), it relates
y(x+ (n+ 1)), . . . , y(x+ (n+ r)) and y(x+ n) and gives a
possibility to compute y(x+ n) if y(x+ (n+ 1)), . . . , y(x+
(n + r)) are already known, in the same way (16) relates
the bounds on the valuations of y(x + (n + 1)), . . . , y(x +
(n + r)) and the valuation of y(x + n) and, hence, gives a
possibility to compute w(n) if w(n + 1), . . . , w(n + r) are
already known. By means of the valuation properties (2),
(4) and the definition of the operations �,⊕ both (i) and
(ii) can be proven by induction on l. 2

Thus, if we know lower bounds on

valx−αyi(x− n), i = 1, 2, . . . ,m, (17)

for n = n0, n0 +1, . . . , n0 +r−1 then using (15) we can step
by step compute lower bounds on (17) for n = n0 − 1, n0 −
2, . . .

Similarly, if we know lower bounds on

valx−αyi(x+ n), i = 1, 2, . . . ,m, (18)

for n = n1, n1 +1, . . . , n1−r+1 then using (16) we can step
by step compute lower bounds on (18) for n = n1 − 1, n1 −
2, . . . This is an algorithm for solving the second problem of
computing lower bounds. We will refer to it as LB2

T further
on. Note that if −n0 < 0 < n1 then we can compute two
lower bounds on valx−αyi(x), and take the minimal one,
i = 1, 2, . . . ,m.

Remark 2. Let the matrices B◦1 (n), B◦2 (n), . . . , B◦r (n)
and ϕ◦(n) be zero for some n ∈ Z. Then all the components
of the vector B◦1 (n)�v(n−1)⊕· · ·⊕B◦r (n)�v(n−r)⊕ϕ◦(n)
have the same value which is equal to the minimum of all the
components of the vector (v(n− 1), v(n− 2), . . . , v(n− r))T .
A similar assertion holds for C◦1 (n)�w(n+1)⊕· · ·⊕C◦r (n)�
w(n+ r)⊕ ψ◦(n).

3.3.2 Complexity Analysis
We now give a complexity analysis of LB1 and LB2

T.

For the sake of simplicity we assume that the given system
is homogeneous and its leading and trailing matrices are in-
vertible (if it is not the case then both algorithms use the
same embracing systems construction approach and this step
makes no difference for the complexity of the algorithms).

Additionally we assume that all matrix entries are polyno-
mials (i.e., the denominators are cleared) and that the upper
bound on their degrees is d. In our analysis, the complexity
is the number of field operations in k(x) in the worst case.
Both in LB1 and LB2

T, the degrees of the polynomials in-
volved are bounded by md.

Let

q = deg p(x), s = n0 + n1

and let the complexity of m × m matrix multiplication be
Θ(mω) with 2 < ω 6 3 (we quote the definition of Θ from
[14]: f(n) = Θ(g(n)) if there exist positive constants C,C′

and n0 such that Cf(n) 6 g(n) 6 C′f(n) for all n > n0).
The valuations at p(x) are computed by iterative divisions.

The complexity of computing V (x) and W (x) is Θ(mω).
Since deg V (x) and degW (x) are bounded by md, it fol-
lows that the computations using (11) require no more than
md
q

+ n0 divisions — it is obvious that the summands on
the right-hand side of the inequality may be considered as
the valuations of the same polynomial V (x) at consecutive
points and, hence, on the one hand the sum of the valuations
is not greater than md

q
, and on the other hand, each sum-

mand requires at least one division even if the valuation at
this point is zero. We do not take into account the complex-
ity of the summation itself since the complexity of integer
addition is negligible compared to the complexity of opera-
tions in k(x). Similarly, the computations using (12) require
no more than md

q
+ n1 divisions. The total complexity of

LB1 for fixed p(x) is therefore

Θ(mω +md+ s). (19)

The complexity of computing (7) and (8) is Θ(rmω). The
resulting degrees of the numerator and denominator of each
of the matrix entries are bounded by md. It follows that
computations using (15) require no more than 2m2r(md

q
+

n0) divisions – the factor 2 stems from the fact that in order
to compute the valuation of a rational function we compute
the valuations of its numerator and denominator. Again we
do not take into account the complexity of integer addition
and multiplication. Similarly, the computations using (16)
require no more than 2m2r(md

q
+ n1) divisions. The total

complexity of LB2
T for fixed p(x) is therefore

Θ(rmω + rm3d+ rm2s). (20)

It is natural to assume d > 1 which, together with ω 6 3,
implies that the complexity of LB2

T is

Θ(rm3d+ rm2s). (21)

We know that the degrees of all involved polynomials are
bounded by md. This fact may be easily used to rewrite
the complexity estimates (19), (20), (21) as the worst-case
estimates of the numbers of operations in k. Here linearity
of both kinds of estimates in r and s is of prime importance.

3.3.3 Operating on matrices with entries from k(x)
If M(x) ∈ Matm(k(x)) and 1 6 i 6 m then the minimum of
the valuations of the i-th row entries of a matrix M(x) will

be denoted by val
(i)
x−αM(x).
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The algorithm of M. van Hoeij ([12]) for finding denominator
bounds for rational solutions of a system of the form (3) is
based on the following observation. If a rational solution
y(x) is such that valx−αy(x − n0) = 0 for a non-negative
integer n0, then for any 1 6 i 6 m we have

valx−αyi(x) >

val
(i)
x−α (A(x− 1)A(x− 2) . . . A(x− n0)) . (22)

Similarly, if valx−αy(x+ n1) = 0 for a non-negative integer
n1, then for any 1 6 i 6 m we have

valx−αyi(x) >

val
(i)
x−α

(
A−1(x)A−1(x+ 1) . . . A−1(x+ n1 − 1)

)
. (23)

Denominator bounds computed using the formulas (22), (23)
are in some sense optimal ([12, Thm 1]).

This algorithm can be considered as an algorithm for solv-
ing the second problem of computing lower bounds for the
specific case of normal first-order systems and zero a-priori
known bounds. We will refer to it as LB2

M further on.
(The computational complexity of this approach is quite
high since the entries of the matrix product “swell” quickly
when the number of factors grows.)

In our experiments with systems of the form (3) the algo-
rithms LB2

M and LB2
T always produce the same bounds.

Taking into account some optimality of the algorithm LB2
M

mentioned above, it is not excluded that examples could
exist where LB2

M gives more accurate bounds than LB2
T.

However anyway, this would be achieved at the cost of a
significant increase in the computation time.

Remark 3. Tropical conversion of the algorithm of van
Hoeij (formulas (22), (23)) leads to tropical products

(A−1)◦(n)� (A−1)◦(n+ 1)� · · · � (A−1)◦(n+ n0 − 1),

and

A◦(n− 1)�A◦(n− 2)� · · · �A◦(n− n1)

instead of products of matrices with entries from k(x). Con-
siderations similar to those of Section 3.3.2 show that the
complexity of this version is linear on s:

Θ(mω +m3d+m2s).

It coincides with the complexity of LB2
T for first-order sys-

tems (r = 1).

4. IMPLEMENTATION & EXPERIMENTS
We implemented in Maple ([16]) the algorithms LB1 and
LB2

T. To construct the embracing systems we used the im-
plementation of algorithm EG′ described in [3] 1. The imple-
mentation of algorithm LB1 is similar to the implementation
of algorithm A′U from [4] for constructing universal denomi-
nators. For the purpose of comparison, the algorithm LB2

M

1It is available at http://www.ccas.ru/ca/doku.php/eg. The
extended version of the implementation is available as
the procedure MatrixTriangularization from the package
LinearFunctionPackage in Maple — the extension includes
so called vertical shifts which make the use of this version
less straightforward.

is also implemented. The latter implementation is partially
based on our implementation of the version of van Hoeij’s
algorithm from [5].

Experiment 1.

We use the first-order system given on the help page of
the procedure RationalSolutions from the package Lin-

earFunctionalSystems in Maple:

{(x+ 3)(x+ 6)(x+ 1)(x+ 5)xy1(x+ 1)−
−(x− 1)(x+ 2)(x+ 3)(x+ 6)(x+ 1)y1(x)−

−x(x6 + 11x5 + 41x4 + 65x3 + 50x2 − 36)y2(x)+

+6(x+ 2)(x+ 3)(x+ 6)(x+ 1)xy4(x) = 0,

(x+ 6)(x+ 2)y2(x+ 1)− x2y2(x) = 0,

(x+ 6)(x+ 1)(x+ 5)xy3(x+ 1)+

+(x+ 6)(x+ 1)(x− 1)y1(x)− (24)

−x(x5 + 7x4 + 11x3 + 4x2 − 5x+ 6)y2(x)−
−y3(x)(x+ 6)(x+ 1)(x+ 5)x+

+3(x+ 6)(x+ 1)x(x+ 3)y4(x) = 0,

(x+ 6)y4(x+ 1) + x2y2(x)−
−(x+ 6)y4(x) = 0}

For this system, W (x) = (x − 1)(x + 2)(x + 3)(x + 6)(x +
1)(x+ 5)x2, V (x) = (x+ 1)(x+ 2)(x+ 5)x(x+ 4)(x− 1).

Let λ = 0, µ = 0 for the solutions to be found. LB1 al-
lows us to compute with the help of inequality (13) that, for
example:

valx−4y(x) > 0,

valx−1y(x) > −1, (25)

valx+4y(x) > −2,

valx+8y(x) > 0.

If λ = 0, µ = −1 instead then

valx−4y(x) > 0,

valx−1y(x) > −1, (26)

valx+4y(x) > −3,

valx+8y(x) > −1.

If it is known that valx+4y(x+10) > 0 and valx+4y(x−10) >
0 then by applying LB2

T one can find

valx+4y1(x) > −2,

valx+4y2(x) > −1, (27)

valx+4y3(x) > −2,

valx+4y4(x) > −1.

The same result is found by applying LB2
M as well. As it

has been expected, these bounds are more accurate than the
bound produced by LB1. However the computation of the
bound with LB1 took only 0.093 seconds, with LB2

T it took
0.405 seconds, and with LB2

M it took 0.967 seconds2.

2For all the experiments: Maple 13, Windows XP, Pentium
4 1.7 GHz, 1.5 GB RAM.
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Let us mention the interesting fact that in the case when
the problem of bounding the valuation is an auxiliary task
for solving another problem, it can happen that the bounds
obtained with LB2

T (or LB2
M), although more accurate than

the bounds obtained with LB1, save no computation time,
or even lead to additional costs when used on the further
steps in solving the main problem. For example, our ex-
periments which use the valuation bounding as an auxiliary
task for computing rational solutions of systems of the form
(1), show that this phenomenon occurs for the system (24).
This is related to the fact that the more accurate bounds for
denominators of the desired rational solutions, obtained by
means of LB2

T (or LB2
M), in this case yield a system whose

polynomial solutions take longer to find on the next step
than those of the system resulting by using the less accurate
bounds obtained with LB1. Nevertheless, in most cases the
more accurate bounds lead to shorter overall running times,
which is why efficient computation of more accurate bounds
is of practical value for this problem as well.

Experiment 2.

Let us consider an example of a system of higher order. For
that we modify system (24) from experiment 1 by shifting
some of the equations (x → x + 1 in the first and second
equations, x → x + 4 in the fourth equation). For this
system, W (x) = (x−1)(x+3)(x+1)(x+5)(x+6)(x+2)x2,
V (x) = (x+ 2)x(x+ 4)(x− 1)(x+ 5)(x+ 1).

Let λ = 0, µ = 0 for the solutions to be found. By means
of LB1 and inequality (13) we find that, for example, the
bounds (25) are valid. If instead λ = 0, µ = −1 for the
solutions to be found, we find that the bounds (26) are valid.

If we know that

valx+4yi(x+ 10 + k) > 0, valx+4yi(x− 10− k) > 0 (28)

for i = 1, . . . , 4, k = 0, . . . , 4, then we can compute with
LB2

T that the bounds (27) are valid. As it has been ex-
pected, the bounds are more accurate than the bound pro-
duced by LB1. However the computation of the bound with
LB1 took only 0.125 seconds while computation with LB2

T

took 0.515 seconds (LB2
M is not applicable in this case since

it works with first-order systems only).

All the results coincide with the analogous results for the
original first-order system. Taking into account the way the
considered system was constructed this is quite expected,
since the solutions of the system obtained after the shifts
coincide with those of the original system.

Let us find bounds on the valuations of the solutions satis-
fying conditions which are different from (28). If we know
that

valx+4yi(x+ 10 + k) > 1, valx+4yi(x− 10− k) > 1 (29)

for i = 1, . . . , 4, k = 0, . . . , 4, then we can find with LB2
T

the following bounds:

valx+4y1(x) > −1,

valx+4y2(x) > 0, (30)

valx+4y3(x) > −1,

valx+4y4(x) > 0.

For conditions that differ from (29) only in a single compo-
nent in a single point: valx+4y2(x − 10) > 0, we find with
LB2

T the following bounds:

valx+4y1(x) > −2,

valx+4y2(x) > 0,

valx+4y3(x) > −2,

valx+4y4(x) > −1.

If, in addition, valx+4y2(x + 10) > 0 (thus, the difference
from (29) is in one component in two points), then we find
out with LB2

T that the bounds (27) are valid again.

Experiment 3.

We generate systems of order r > 1 containing five equa-
tions, whose coefficients are polynomials with random in-
teger roots from [−9, 9]. The zero a-priori known bounds
are given in the points 20, 21, . . . , 20 + r − 1 and −20− r +
1,−20− r + 2, . . . ,−20.

As in Experiment 2, the bounds are found with LB1 and
LB2

T. When the order of the systems generated in this way
grows, the chance to obtain non-zero valuation bounds de-
creases. When the bounds are non-zero, algorithm LB2

T

turns out to produce more accurate results than algorithm
LB1, in accord with the previous experiments.

In the table below we list the total time taken by each of
the algorithms to compute bounds at the points −2 and −4
for 10 generated systems of each of the orders r = 2, 6, 10.

r=2 r=6 r=10

LB1 8.766 12.155 13.954
LB2

T 56.294 181.676 288.379

As expected, computation time of algorithm LB2
T on sys-

tems of order r grows linearly with r, provided that all the
other size-related parameters are fixed.

It seems rather natural that in all the examples considered
in experiments 1 – 3, computation times of algorithm LB2

T

(which produces more accurate bounds) are greater than the
corresponding computation times of algorithm LB1 (which
is faster). To take advantage of the strengths of both al-
gorithms, we can apply the following strategy: In the first
step, we compute bounds with LB1. If the obtained bounds
are sufficiently accurate for our purpose, we stop. Other-
wise, these bounds are refined with LB2

T in the second step.
For example, if LB1 gives the bound 0 for the valuation
at x = 0, then the solution to be found has no pole there.
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If this information is sufficient for our purpose, the costly
application of LB2

T in the second step can be avoided.
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