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RATIONAL SOLUTIONS OF LINEAR DIFFERENTIAL AND DIFFERENCE EQUATIONS 
WITH POLYNOMIAL COEFFICIENTS* 

S.A. ABRAMOV 

Linear differential and difference equations whose coefficients and 
right-hand sides are polynomials are considered. The problem of 
constructing all rational solutions of an equation is solved. 

Introduction. 
The quest for algorithms for solving differential equations is one of the major problems 

of computer algebra. No less important is the solution of difference equations, but the 
algorithmic theory of such equations is less well developed. In this paper we consider 
linear differential and difference of equations of arbitrary order with polynomial 
coefficients. The equations are allowed to be inhomogeneous, but then the right-hand side is 
also assumed to be a polynomial. We shall present a procedure for constructing all the 
rational solutions of an equation. 

As far as differential equations of this type are concerned, the study of this problem 
goes back to the nineteenth century. The algorithm proposed here does not involve 
factorization of the polynomials into irreducible factors; in particular, there is no need to 
determine all the roots of algebraic equations. In addition, quite wide assumptions will be 
made concerning the field to which the coefficients of the polynomials belong. As to 
difference equations, it seems that problems of this kind have been considered hitherto only 
for linear equations with polynomial coefficients of special forms. 

In a previous paper /i/, we considered difference equations with constant coefficients 
and rational right-hand sides. In this paper we extend the approach proposed in /i/. As 
before, the fields of the coefficients will be what we call "adequate fields". 

Definition. An adequate field is a field K of characteristic 0 with an algorithm 
for determining the integer roots of equations p(x)= O, where p(x)~K[x]. By an integer root 
we mean a root nl, where n~Z, and 1 is the unit of the field K. 

The field Q of rational numbers is clearly an adequate field. It is readily seen that a 
simple algebraic extension K(0) (algebraic or transcendental) of an adequate field K is 
itself adequate. Hence it follows, in particular, that the following fields are adequate: the 
field Q(~-|) of rational complex numbers, the field Q(t, ..... t~) of rational functions 
over Q in arbitrarily many variables, the field of algebraic functions over Q in arbitrarily 
many variables t,,...,t., and so on. 

Throughout t the sequel, K will denote an arbitrary adequate field. 
We will adopt the following convention. If p(x)~K[x] is a coefficient in an equation, 

then the statement that p(z)~0, will mean that p(x) is not zero as an element of the ring 
of polynomials in ~, i.e., at least one of its coefficients does not vanish. The statement 
that a polynomial is equal to zero should be understood in a similar spirit 

We mention that algorithms to determine polynomial solutions of equations of the above 
type were considered in /2/, and in fact the algorithms presented below will be based on these 
purely polynomial algorithms. The cases of differential and difference equations will be 
discussed separately. 

I. Ratic~al solutions of differential e~uations. 
Consider the equation 

n 

>~, a, (x) Fc,, (x) = b (x), (I) 

where ao(x),...,an(x), b(x)~K[x]. Temporarily, replace the original coefficient field K by its 
closure K. Let F(z)~K(x) be a solution of (i). Expanding the function F(x) in the 
field ~(x) as a sum of partial fractions, one can show, first, that every root ~K of 
the denominator of F(z) (more precisely, of the denominator of its irreducible form) is 
also a root of the polynomial an(X); and, second, the exponent of the p0wer of the factor 
x--~ in the denominator of the irreducible form of F(z) is the absolute value of a certain 
negative integer root of an algebraic equation, known in the theory of differential equations 
as the defining equation /3/. The defining equation is found as follows. Express the 
coefficients ao(z) .... ,a,(z) in (i) as 

a,(x)=(x-~)~'h,(x), ~=0, I ..... n, (2) 

where h,(x) is a polynomial indivisible by z--~ if a,(x)~0; if a,(x)=O then ~,=~," h,(x)=0. 
Let the polynomial d(r) be the coefficient of the lowest power of x--~ in the expression 
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n 

y r(r--t) ( r -v+t )h , (~)  (z-~) . . . . .  . - ,  t (3) 

then d(r)=O is the defining equation. 
We note at once that by Taylor's formula 

h,(~) =a?"  (~ ) /a , ! ,  

and so (3) can be rewritten as 

n (~v) 
Z r ( r  -- t ) . . .  (r --  v ,+ l ) ~ ( z  _ ~.)=v-'. 
% , - - ~ )  

O) 

The defining equation can be used to derive an upper bound for the power to which x--~ 
occurs in the denominator of a rational solution of the differential Eq. (I): the absolute 
value of the least non-positive integer root of the defining equation is such a bound. The 
essential point here is that it is not necessary to go from K to K; all we need is to con- 
sider successive simple algebraic extensions of the type K(~), uj(~)=0, where u,(x), u,(x) ..... 
eK[x] are the irreducible factors in K[z] of a,(x). Nevertheless, there is a simpler 
algorithm for deriving upper bounds for these multiplicities, not requiring factorization of 
the polynomial. Before describing this algorithm, we note that we shall sometimes speak of 
roots of equations u(x)=0, u(x) ~K[zl. These roots may be elements of either K itself or of 
some extension (such as ~). The consideration of these roots is necessary only to prove that 
the algorithm is correct; the algorithm itself does not involve construction of these ex- 
tensions. 

First, simple operations take us from a~(z) to a polynomial a,'(x) which has the 
same irreducible factors but is square-free: if u,P,(x)u2~,(z) ... is the factorization of 
an(x), then .u,(z)az(x)... is that of a.'(x). 

Let Eq. (1) have a solution F(z)~K(x). Let u(x) be an irreducible factor in K[x] of 
a.(x). Suppose that u(x) factors into linear factors x--~,, x--~2 .... in K[z]. Then u(x) 
occurs in the denominator of the irreducible form of F(z) to the same power as each of 
x--~,, x--~,,..., provided that F(x) is considered as a solution of Eq.(1) over K(x). Now 
the tuple of numbers a0, .... a~ defined in (2) is:the same for all ~,,~,, .... We have 

a,(x)=u(z)~,'i(z), ~ '=0 ,  1 . . . . .  n, (5) 
where f~.(z)~K[z], and h(x) is divisible by u(x) only if this polynomial is zero. 

Thus, with any irreducible polynomial u(x)~K[x] we can associate a tuple a0,...,(z,, 
which we shall call the multi-exponent of u(x) in Eq. (i). A polynomial which is the product 
of several irreducible polynomials having the same multi-exponents will be called a balanced 
polynomial relative to Eq. (I). 

Using the operation of finding the greatest common divisor (LCM) of polynomials, with 
no need to appeal to factorization, we can express art'(x) as a product of balanced poly- 
nomials relative to (i). Together with these polynomials we obtain their multi-exponents. 
The procedure is easily obtained from the simpler procedure which, given a square-free poly- 
nomial ](x)~K[z] and an arbitrarY non-zero p(x)eK[x], produces a representation of ](x) 
in K[z] as a product v,(x)...Vo(X) such that 

p (x) =p (~) v, (z )~ ' . . .  Vo (z) ~o, 

where l~(x) is prime to ](x) and the non-negative integers ~j ..... g0 are pairwise distinct. 
We describe this last-mentioned procedure, which returns an output in the form of a sequence 
of pairs (v,(z), ~,) .... (Vo(Z),8o) with 0~gi<...<go. 

We first find g(x)=.LCM (](x), p(x)). If degg(z)=0, the application of the procedure 
ends and the output is a sequence consisting of a single pair (/(x), 0). Suppose, then, that 

degg(z)>0. Let ](x)=[(x)g(z), p(x)~(z)g(z) ~, where ~>0. and p(x) is not divisible by 
g(x); we may assume that either ](x)~1 . or deg](x)>0. We now apply our procedure recur- 
sively to the polynomials g(x) and p(x). Suppose the outcome is (w,(x), ~,) .... , (wa(z), ~,). 

If ]iz)=|, then the output for input data ](x), p(x) will be (w,(z), ~t-F~) ..... (wp(x), ~,~-~); 
otherwise it will be (/(x), 0), (w,(z), ~,+~) .... (wp(x), ~p+~). 

To obtain a representation of a.'(x) as a product of balanced factors relative to (I) 
and to evaluate its multi-exponents, we first apply the above procedure to a~'(x) and ar,(x), 
where a~,(z) is the first non-zero polynomial among a0(x) .... ,a,(x). Having obtained the 
corresponding sequence of pairs (vt(x), ~j) .... , (v,(z), ~,), we can then apply the procedure to 
v,(x) and a~(z) ..... v,(x) and a~,(z), where a~j(x) is the second non-zero polynomial among 
a.(x) ..... a.(x). Continuing in this way up to the penultimate non-zero polynomial among a0(x), 
...,a~(x) (the last is an(x), which remains unused), we obtain the required representation. 
The multi-exponent of each factor will have i,--| first components equal to ~, then comes 
one of the numbers ~, .... , ~,, and then, up to the component with index /2--I, the symbol r 
and so on. 

Suppose, now, that we have constructed a representation of a~'(z) as a product 



a. ' (x )=ct (x ) . . . c . (x ) ,  r e > l ,  (6) 

o f  b a l a n c e d  p o l y n o m i l a l s  w i t h  r e s p e c t  t o  (1) and  e v a l u a t e d  t h e i r  m u l t i - e x p o n e n t s .  We c o n s i d e r  
c,(x) . . . . .  r one  by  o n e .  L e t  c(z)  be  one  o f  t h e s e  p o l y n o m i a l s  and  ~ , . . . , ~ .  i t s  m u l t l -  
e x p o n e n t .  C o n s i d e r  t h e  d i f f e r e n c e s  g+--v, v=O, l , . . . , n ,  and  c h o o s e  t h e  v a l u e s  o f  v f o r  w h i c h  
~,--v is a minimum. Let these values be v,,...,vA, 0~v,<...<vh~n. We now use (4) to obtain 
the defining equation. We do not know the value .of ~, and instead use a variable, e.g., x: 

~(~ - I).. (:- ~, + I) "+'''~ !~ (x) 

(Zv,l 
t~v,.} 

( r - - v ~ +  1) - -  a v ' "  (x) = 0 .  

- - + . . . + r ( r - - t ) . . .  (7) 

This gives the defining equation as an equality d(~ x)=0, d(r, x)~ K[G x]. Write d(~ x) as 
~(z), including r in the coefficients: a(z)~K[r][x]. If there is an integer ~ such that 
we can choose a root ~ of the equation c(x)=0 (we recall that r is one of the 
factors on the right of (6)) such that d(~,~)=0, then .~ itself must be a root of the 
equation u(r)=0, where u(r). is the resultant of the polynomials ~(x} and c(x). Therefore, 
determining the least negative root of the equation u(r)=0, u(r)~K[r], and taking its 
absolute value, we obtain an upper bound for the power to which c(x) occurs in the denominator 
of the rational solution F(x) of Eq.(1). 

To prove that this derivation of upper bounds for the exponents is fully rigorous, we 
must still show that the resultant u(r) does not vanish identically. Indeed, if this were 
the case, d(r, x) and r would have a non-trivial common multiple - a polynomial in x of 
degree greater than zero. But any irreducible factor in K[x] of c(z) occurs in a,i(x ) 

to the power u,l,i~|, 2,... k.~ Therefore, the polynomial a (~ (x) is prime to c(z). At the v wl 

same time, any element of the ring K[r, x] admits +of a unique representation in terms of 
the polynomials I, r,r(r--l),r(r--1)(r--2) .... with coefficients in K[x]. Thus a polynomial 
d(sx) of the form (7) and the polynomial c(z) cannot possibly have a non-trivial common 
multiple. 

If the equation u(r)=0 has no negative integer roots, then the denominator of the 
rational Solution F(x) of Eq.(1) need not hayed factor r But if such negative integer 
roots exist then, finding the absolute value of the least such root, we obtain an upper bound 
for the exponent of the power to which c(x) occurs in the denominator of F(z). Let us 
suppose that such non-negative integers T,,...,T,. have been determined for the polynomials 
ci(x),...~c~(x) on the right of (6). Then, if Eq.(1) has a rational solution F(x) the 
denominator of the irreducible form of F(z) divides c,(z)',...c~(z)'-. But this means that 
the rational solution may be found in the form 

c, (x)',... c. (x) "- ' 
~(x) ~x[x]. (8) 

Substituting (8) for F(z) in Eq.(1), we obtain an equation for y(x) with polynomial coef- 
ficients. This equation can be dealt with using the algorithm of /2/. 

The implementation of our algorithm may be summarized as follows, i) Free the polynomial 
an(z) of squares (i.e., construct an'(z)). 2) Express art'(x) as a product c,(x)...cm(x) 
of balanced polynomials relative to (i) and evaluate the corresponding multi-exponents. 3) 
For each c+(x),i=l, 2,...,m, find a polynomial ~,(x) with coefficients in K[r], equal to 
the l~ft-hand side of Eq.(7) (the tuple v,,...,v~ is determined from the multi-exponent of 
c+(z)). 4) For each i=|, 2 ..... m, evaluate the resultant u+(x) of ~(x) and c,(x), find 
T+ (~+=0 if u+(r) has no negative integer, roots, otherwise T, is the absolute value of 
the least integer root). 5) Substitute (8), with unknown polynomial g(z) for F(I) in Eq. 
(i). 6) Use the algorithm of /2/ to investigate and determine polynomial solutions y(x) of 
the equation. 

This completes our description of the algorithm for determining rational solutions of 
the differential Eq.(1). It remains to observe that, in order to find the least negative P 
such that d(~ x) and c(z) have a common divisor - a polynomial in x of degree greater 
than one - one can use Sylvester's form of the resultant. Collins /4/ has proposed an economi- 
cal modular algorithm for constructing resultants. However, one can avoid explicit con- 
struction of the resultant. If d(5 z) and c(z) are considered as polynomials in x whe3e 
coefficients are rational functions in r and Euclid's algorithm is used, the required negative 
integer must be a root of one of the equations obtained by equating the leading coefficients 
of the polynomials occurring in the sequence of remainders to zero. 

A situation requiring the determination of integers P such that given polynomials ](~ x), 
g(~ x) have a non-trivial common multiple h(x) occurs in the following sections as well. 
Any of the above methods may be used. 

2. Rat ional  so lu t i ons  o f  d i f f e r e n c e  equations.  



10 

In this section it will be convenient to use a recurrent notation for difference equations: 

n 

a,(z)F(z+~)~b(z), (9) 
v--O 

where a,(x),...,a,(x), b(x)~K[x]. The case of constant coefficients was discussed in /i/; the 
algorithm of this section essentially relies on use of the quantity Dis F(z) introduced in 
/I/. We will present all the necessary definitions here, generalizing some of the definitions 
of /1/. 

Let $(x), t(x)~K[x]. In some cases one can choose a non-negative integer P such that 
$(zq-r) and t(z) have a non-trivial common multiple (i.e., a multiple which is a polynomial 
of degree greater than zero). It follows from the uniqueness of factorization into irreducible 
polynomials in K[z] that the set of such p is at most finite. Define 

dis(s(z), t(x))=max {rlr~Z, r>O, deg LCM (s(x+r), t(z))>t}. 

It should be stressed from the start that " dis " is not defined for all s(x), t(x); for 
example, it remains undefined for s(z)=z, t(x)=z'-l-l. Nevertheless, dis(s(x), s(x)) is always 
defined when degs(x)>0; thus dis(x, z)=0, dis(z(zq-|), z(xq-1))=l and so on.. Given $(x) and 
t(z), the value of dis(s(z), t(z)) can be evaluated, e.g., as the largest non-negative 
integer root of the equation' d(r)=0, where d(r) is the resultant of the polynomials s(xq-r) 
and t(z), considered as polynomials in z over K[r]. 

Now let F(x)EK(x). and suppose that the irreducible form of the rational function F(z) 
is l(z)/s(z) and degs(z)>0. Define 

Dis F(z) =dis(s(x), s(z) ). 

Thus, Dis F(x) is defined for all rational functions which are not polynomials. 
The role of Dis F(x) for difference equations is analogous to that of the maximum order 

of poles of functions for differential equations. 
Assuming that Eq. (9) has a solution F(x)~K(x) which is not a polynomial, we can find 

an upper bound for DisF(x). It turns out that DisF(x)<~dis(ao(z). a.(z))--,. In fact, let 
DisF(z)=m>~O and let the irreducible form of F(x) be t(x)/s(x). Let p,(z), pz(x) be irreduc- 
ible factors in K of s(x) such that p,(z-l-m)=p,(z). Then the decomposition of F(z) as a 
sum of partial fractions contains fractions with denominators ps(z)' and p,(x) j, where 4 and 
j are natural numbers. At the same time, the decomposition of F(x-l-n) contains a fraction 
with denominator pa(x-l-n)J=p,(z-l-m-l-n) s. Thus F(z) gives a partial fraction with denominator ps(z)' 
and F(xq-n) a fraction with denominator p,(x-l-m-l-n) s. The decompositions of F(zq-1),... ,/P(zq-n-|) 
do not contain partial fractions with denominatorsip,(x) ~ orfps(z+raq-n), since DisF(x)=m: for 
example, if the decomposition of F(x+|) contained a partial fracs with denominator p,(z) i, 
then together with a fraction with denominator pi(x-}-m) i the function F(z) would contain 
a fraction with denominator pt(x--1) k, and this is possible only if DisF(z)~m+1. Thus, for 
the sum on the left of (9) to be a polynomial, it is necessary that a,(z) contain a factor 
pi(x) (with exponent greater than or equal to i) and a,(z) a factor p1(zq-nq-m) (with 
exponent greater than or equal to j). Hence the value of dis(a0(z), an(z)) must be defined, 
and moreover dls(a,(z), a~(z))>-n+m, as claimed. 

It follows that if dis(a,(z),a.(x)) is undefined, then Eq.(9) cannot have rational solutions 
which are not polynomials. In that case the problem is completely solved by the algorithm 
of /2/. The situation is similar when dis(a0(z), a.(z))<n. Throughout the sequel we shall 
assume that dis(ao(x), an(z))>n. 

We claim that for any natural h we can construct an equations 

~, l,(z)F(z+vh)=g(z) (I0) 
v--o  

(where l,(z),...,].(z), g(z)GK[z], m~n), which has exactly the same solutions as (9). 
We first note that, using (9), we can express F(x+k), where k is an arbitrary natural 

number, as 

.-t 

Z v,~(z)F(z+v)+w~(z), (11) 

where vo~(z),...,v._,.~(x), w,(x)~K(x). Indeed, if k~n-l, then F(x+k) itself is such an 
expression, and then u,a(z) =6~ (the Kronecker delta), wA(z)=0. If k=n, then by (9) 

n-! 

~-a ~ , (z)  . . . . .  b (z )  
F(x+n)=- /,--7--r . �9 �9 (i2) 

We proceed by induction: suppose that F(x+k-|), where k>n, can be expressed as 
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n - i  

F (x+k- t) = Z v,.~-, (x) F ( x + v )  + w l - ,  (x ) ,  
v - - o  

then we must find an expression 
n 

F (x+k) = Z v._,.~-, (z) F (z+v) +,v~- (z+ 1) 
v - - I  

and this is done by substituting the right-hand side of (12) for F(x-Fn) on the right of 
this inequality; this gives an expression for F(:c-{-k) in terms of F(z-Fn-1), F(z+n-2) ..... 
F(x). Throughout, the coefficients u.~(z) and the free term wA(z) will be represented 
by rational functions, each with denominator a,(x) ~-". It is not hard to write out recurrent 
relations expressing the numerators of v.,(z) and w~(z) in terms of the numerators of 
u,.k-,(z) and wk-,(z), %'=0, t ..... n. 

Now, considering expressions of type (ii) for F(z+vh), ~;=0, I,..., and introducing the 
notation 

F(z-t-"vh) =u ,o(z )F(z )+. . .  +u . . . . .  ( z )F(z+(n- - t )h)+u, , (x ) ,  
�9 v=O, t, . . . ,  

we readily see that of the rows u.=(u.=(x),...,u,~(z)), v=0, | .... , at most /I are linearly 
independent over K(x). Therefore there exist a non-negative integer m~n and A0(z),..., 
A,n(x)~-K(z),A.t(x)~O, such that Aa(x)u0~-...+A~(z)u~=0. But this means that 

.a.(=)F(=+,=h)+... +.4,(=)F(=)=A,.(~)u..(x)+... 
+A,(x),,,. (z). 

Multiplying the last equality by a common denominator of the right-hand side and the 
coefficients, we obtain the required Eq.(10) with polynomial coefficients. 

If we let h be a number which is certainly larger than DisF(x), say dis(a0(x), a.(z))-n+|, 
then for any non-negative integer ra the rational functions F(x), F(x-Fh),... ,F(z+mh), in their 
irreducible forms, will have relatively prime denominators. Therefore, the sum on the left 
of Eq. (i0) can be a polynomial provided only that each of the products ],(x)F(x-Fvh), v=0, I, 
.... m, is a polynomial. Let the irreducible form of F(x) be t(x)/s(z). Then s(z) divides 
],(z), s(z-Fh) divides ],(x) ..... s(z+mh) divides ].(z), i.e., $(x) divides any of the 
polynomials ],(x--vh), v=0, I ..... m, and therefore it divides the LCM (It(z), It(z-h) ..... ](z- 
mh)). Hence, it Eq. (9) has a rational solution other than a polynomial, this solution can 
be expressed as (an irreducible fraction) 

y(z)  
u :s  ( l , (x) ,  ], ( x -h )  . . . . .  ]., (x-rnh)  ) ' 

y(z)~K[z]. (t3) 

Substituting (13) for F(x) into (9) we obtain an equation with polynomial coefficients for 
the polynomial y(x). This equation can be dealt with using the algorithm of (2). 

Thus, the implementation of our algorithm may be described as follows. I) Evaluate dis 
(a,(z), a,(z)). 2) if dis(de(z), a,(z)) is undefined or less than h, then (9) cannot have 
rational solutions that are not polynomials and therefore can be solved by the algorithm of 
/2/. 3) Evaluate h=dis(a0(x), a,(z))-n+|, to obtain a strict upper bound for DisF(x) (here 
and below we assume that h>0). 4) Construct Eq.(10), which is satisfied by any solution of 
Eq.(9). 5) Starting from the polynomials ~(x),...,].(x) - the coefficients of Eq.(10) - con- 
struct the polynomiall(z)=LCM ~(z), ],(z--h) ..... ],(z-mh)), which is divisible by the denomi- 
nator of any rational solution of Eq.(9). 6) Substitute y(z)/l(z), where y(z) is an unknown 
polynomial, for F(z) into (9) (to obtain an equation with polynomial coefficients and poly- 
nomial right-hand side for y(z))). 7) Apply the algorithm of /2/ to this equation. 

Conclusion 
The novelty of the first algorithm, compared with the usual technique for constructing 

solutions (including what are known as normal solutions /3/) of linear differential equations, 
is contained in steps 2-4 of our description, i.e., it consists in the rapid combination of 
several factors of the polynomial a(z) into a product and examination of the latter together 
with a single defining equation. In principle, in the case of a homogeneous equation the 
algorithm may be made suitable for determining solutions of the form q,(z)',...q,'-(z)R(z), 
where B(z) is a rational function, qt(z)...q.(z) are certain factors of a,(z) and each 
r,,...,r, is a non-integral root of some defining equation. The computations that this 
requires are much more complicated: if any irreducible factors p,(z) and p,(z) of a,(x) 
have the same multi-exponent, they can nevertheless be combined into a single factor only if 
the difference between any two roots of the defining equation is an integer. But if no appeal 
is made to such cmbinations, it becomes necessary to check a large number of different cases. 

�9 In addition, B(z) may be a rational function over some extension of the field K (e.g., 
over K(r,,...,r,)), and the construction of R(x) will involve computations in that field. 
Therefore, although the construction of solutions of this type is possible, the main idea that 
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makes our algorithm for determining rational solutions at all economical turns out to be 
almost useless. 

If the initial equation is inhomogeneous, a knowledge of any particular solution makes 
it possible to deal instead with the corresponding homogeneous equation. In the case of a 
homogeneous equation, any known rational solution B(x) can be used to lower the order of 
the equation, again obtaining a homogeneous linear equation with polynomial coefficients. 
Therefore, apart from the fact that every rational solution is interesting pep se (simply as 
a known solution of the equation),it is particularly valuable in the case of linear differen- 
tial and difference equations because it enables one to continue the search for other solutions 
with simpler equations of the same sort, i.e., again considering linear equations with poly- 
nomial coefficients. 

We recall that the reduction in the order of the equation is achieved by the substitution 
y(x)=H(x), z(x), where B(x) is a known solution of the n-th order equatio n and z(x)' is 
a hew unknown function. This substitution yields an equation not involving z(x), and there- 
fore the equation for l(x):z'(x)correspondingly for t(x)=Az(x)) is of order n--l. In the case of 
a difference equation it is essential here that ~(R(z)z(z)) can be expressed as a linear 
combination of Ahz(x) ..... ~z(x), z(x) with known functions as coefficients, such that the 
coefficient of z(x) is AhR(x), for example, A(H(x)z(x))=R(x+l)~z(z)+(~B(z))z(x). 

Order-reduction may lead to an equation for which solutions can be identified from tables 
(for example, the handbook /3/ contains information about the solutions of a considerable 
number of differential equations of low orders with polynomial coefficients). On the other 
hand, if the operation results in a differential equation of second order, it may be possible 
to use Kovacic's algorithm /5/, for which ready-made programs are available /6/. This 
algorithm produces all Liouville solutions of the equation (though ina form rather inconvenient 
for practical use). We nevertheless reiterate that Kovacic's algorithm is applicable only 
to homogeneous linear differential equations of second order with polynomial coefficients. 

Of course, if the function z'(x) (correspondingly, ~z(x)) is rational, then z(x) 
may not be rational, and therefore the order-reduction procedure may sometimes enable one to 
obtain, using the algorithms of this paper, non-rational solutions as well. A simple example: 
the equation 

z~y"-xy'+y=O (i4) 

has the polynomial solution y=x. Transforming to a new unknown function z such that y=zx, 
we obtain the equation 

xSz~+xiz'=O; 

after this we cancel out ~ and introduce the function t=z'. This gives the equation 

zt'+t=O. 

Applying our algorithm for determining rational solutions, we obtain t=i[x, which gives z'=J/x, 
y=zx. Ordinary integration now gives the new solution y=x]n x. Thus, using our algorithm 
for rational solutions and integrating, we have obtained two linearly independent solutions 
of Eq.(14): x and xlnx. 

Thus, the algorithms proposed above may become a useful component of any computer-algebra 
system for solving linear differential or difference equations with polynomial coefficients. 

REFERENCES 

i. ABRAMOV S.A., Solution of linear finite-difference equations with constant coefficients in 
the field of rational functions. Zh. vychisl. Mat. mat. Fiz., 14, 4, 1067-1070, 1974. 

2. ABRAMOV S.A., Problems of computer algebra connected with the determination of polynomial 
solutions of linear differential and difference equations. Vestnik Moskov. Gos. Univ., 
Ser. 15, Vychisl. Mat. i Kibernetika, 3, 56-60, 1989. 

3. KAMKE E., Handbook of Ordinary Differential Equations, Nauka, Moscow, 1971. 
4. COLLINS G.E., The calculation of multivariate polynomial resultants. J. ACM, 18, 515-532, 

1971. 
5. KOVACIC J.J., An algorithm for solving second-order linear homogeneous differential 

equations. J. Symbolic Computing, 2, 3-43, 1986. 
6. ZHARKOV A.YU., An implementation of Kovacic's algorithm for solving ordinary differential 

equation in FORMAC. Report EII-87-455, Dubna, Joint Institute for Nuclear Research, 1987. 

Translated by D.L. 


