
XXX Simpozijum o operacionim istra�zivanjima
SYM-OP-IS 2003

Hotel PLA�ZA, Herceg-Novi, 30.09.�03.10.2003
pp. 15�17.

APPLICATIONS OF THEOREMS OF ALTERNATIVE
TO NUMERICAL METHODS

Yu.G. Evtushenko
Dorodnicyn Computing Centre of Russian Academy of Sciences, Vavilov str. 40,

Moscow, 119991, Russia, e-mail: evt@ccas.ru
Revised version 22 March 2004

Abstract: New theorems of alternative are proved for systems of linear equalities and inequali-
ties, which makes it possible to develop several e�cient numerical methods. These methods are
used to �nd normal solutions to systems of linear equations and inequalities, to construct sepa-
rating hyperplanes, to simplify computations arising in the steepest descent methods, to propose
new methods for solving LP problem.
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1. INTRODUCTION
Theorems of the alternative (TA) lie at the heart of mathematical programming. TA were used
to derive necessary optimality conditions for LP and NLP problems and for various other pure
theoretical investigations. We show that TA give us an opportunity to construct new numerical
methods for solving linear systems with equalities and inequalities, to simplify computations
arising in the steepest descent method, to propose new methods for solving LP problem, to
construct the separating plane and etc. With original linear system we associate an alternative
system such that one and only one of these systems is consistent. Moreover, an alternative
system is such that the dimension of its variable equals to the total amount of equalities and
inequalities (except constraints on the signs of variables) in the original system. If the original
system is solvable, then numerical method for solving this system consists of minimization of
the residual of the alternative inconsistent system. From the results of this minimization we
determine a normal solution of the original system. Since the dimensions of the variables in
original and alternative systems are di�erent, the passage from the original consistent system
to the minimization problem for the residual of the alternative inconsistent system may be
very reasonable. This reduction may lead to the minimization problem with respect to variable
of lower dimension and makes it possible to determine easy a normal solution of the original
system. Proposed technique does not need an a priori assumption regarding the consistency of
the original system.
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2. BASIC THEOREMS
Let an m× n matrix A be given in the form

A =

[
A11 A12

A21 A22

]
,

where A11, A12, A21, and A22 are rectangular matrices of dimensions m1×n1, m1×n2, m2×n1,
and m2 × n2, respectively. Let vectors x ∈ Rn, z, b, u ∈ Rm be represented in partitioned form
as x> = [x>1 , x>2 ], z> = [z>1 , z>2 ], u> = [u>1 , u>2 ], and b> = [b>1 , b>2 ], where x1 ∈ Rn1 , x2 ∈ Rn2 ,
n = n1 +n2, z1, u1, b1 ∈ Rm1 , z2, u2, b2 ∈ Rm2 , and m = m1 +m2. Let us introduce the auxiliary
sets

Πx = {[x1, x2] : x1 ∈ Rn1
+ , x2 ∈ Rn2},

Πu = {[u1, u2] : u1 ∈ Rm1
+ , u2 ∈ Rm2};

a vector w ∈ Rn+1 represented as w> = [w>
1 , w>

2 , w3], where w1 ∈ Rn1 , w2 ∈ Rn2 , and w3 ∈ R1;
and the auxiliary set

Πw = {[w1, w2, w3] : w1 ∈ Rn1
+ , w2 ∈ Rn2 , w3 ∈ R1}.

Consider the system of linear equalities and inequalities

A11x1 + A12x2 ≥ b1, A21x1 + A22x2 = b2, x1 ≥ 0n1 . (1)

We de�ne the system adjoint to (1) as

A>
11z1 + A>

21z2 ≤ 0n1 , A>
12z1 + A>

22z2 = 0n2 , z1 ≥ 0m1 , (2)

and the system alternative to (1) as

A>
11u1 + A>

21u2 ≤ 0n1 , A>
12u1 + A>

22u2 = 0n2 , b>1 u1 + b>2 u2 = ρ, u1 ≥ 0m1 . (3)

Here, ρ > 0 is an arbitrary �xed positive number.
The system adjoint to (3) has the form

A11w1 + A12w2 − b1w3 ≥ 0m1 , A21w1 + A22w2 − b2w3 = 0m2 , w1 ≥ 0n1 . (4)

We denote the solution sets of (1), (2), (3), and (4) by X, Z, U , and W , respectively. Unlike
(1) and (3), systems (2) and (4) always have solutions, because 0m ∈ Z and 0n+1 ∈ W .

Ëåììà 1. System (1) and (3) are not solvable simultaneously.

Theorem 3 below imply that there always is a solution to precisely one system, (1) or (3).
Therefore, these systems are alternative. The system alternative to (3) reduces to original
system (1).

Let pen (x,X) denote the penalty for the violation of the condition x ∈ X calculated at a
point x ∈ Πx. The quantity pen (u, U) is introduced by analogy. The penalties are calculated
as the Euclidean norms of residual vectors for systems (1) and (3):

pen(x,X) =
[
‖(b1 − A11x1 − A12x2)+‖2 + ‖b2 − A21x1 − A22x2‖2

]1/2
,

pen(u, U) =
[
‖(A>

11u1 + A>
21u2)+‖2 + ‖A>

12u1 + A>
22u2‖2 + (ρ− b>1 u1 − b>2 u2)

2
]1/2

.

Here, a+ is nonnegative part of the vector a: i.e., the i-th component of the vector a+ is equal
to that of the vector a if the latter is nonnegative and is zero otherwise.
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To �nd out whether a system is solvable and, if it is, to solve it, we apply methods of
unconstrained minimization to either of the following problems:

I1 = min
x∈Πx

[pen (x,X)]2 /2, (5)

I2 = min
u∈Πu

[pen (u, U)]2 /2. (6)

In the strict sense, (5) and (6) are not unconstrained minimization problems, since they
contain constraints on the signs of the components of the vectors x1 and u1. However, since
most unconstrained minimization methods can easily be modi�ed to allow for constraints on
the signs of variables, we will keep this term for problems (5) and (6). Problems (5) and (6)
are always solvable, since quadratic objective functions de�ned on nonempty feasible sets Πx

and Πu are bounded from below by zero.

Id
1 = max

z∈Z

{
b>z − ‖z‖2

2

}
, (7)

Id
2 = max

w∈W

{
ρw3 − ‖w‖2

2

}
. (8)

Unlike systems (1) and (3), which may be consistent or inconsistent, problems (5) � (8)
always have solutions. Moreover, problems (7) and (8) have unique solutions, since feasible sets
Z and W in these problems are nonempty, and strictly concave quadratic objective functions
are bounded from above. Problems (5) and (6) are dual to problems (7) and (8), respectively.

The projection of a point a onto a nonempty closed set X is a point x∗ ∈ X nearest to a,
i.e., the point that minimizes the function

J = min
x∈X

‖a− x‖ = ‖a− x∗‖.

We write x∗ = pr (a,X) and denote the distance from a point a to a set X as dist (a,X) =
= ‖a− x∗‖.

Òåîðåìà 1. Any solution x∗ of problem (5) determines a unique solution z∗> = [z∗>1 , z∗>2 ]
of problem (7) as

z∗1 = (b1 − A11x
∗
1 − A12x

∗
2)+, z∗2 = b2 − A21x

∗
1 − A22x

∗
2 (9)

and it holds that

‖z∗‖2 = b>z∗, (10)
z∗⊥Ax∗, z∗⊥(b− z∗), (11)
z∗ = pr(b, Z), ‖z∗‖ = pen (x∗, X), ‖b− z∗‖ = dist (b, Z), (12)
[pen (x∗, X)]2 + [dist (b, Z)]2 = ‖b‖2. (13)

Relation (10) follows from equality of optimal values of the objective functions for the primal
(7) and dual (5) problems. By virtue of (9), this equality is expressed in the terms of only z∗,
which is a solution of problem (7).

Let Â = [−A, b] be an m×(n+1) matrix and r ∈ Rn+1 be a vector of the form r> = [0>[ n], ρ].
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Òåîðåìà 2. Let u∗> =
[
u∗1
>, u∗2

>]
be an arbitrary solution of problem (6). Then, a solution

w∗> =
[
w∗

1
>, w∗

2
>, w∗

3

]
of problem (6) can be expressed in terms of u∗ as

w∗
1 = (A>

11u
∗
1 + A>

21u
∗
2)+, w∗

2 = A>
12u

∗
1 + A>

22u
∗
2, w∗

3 = ρ− b>1 u∗1 − b>2 u∗2 (14)

and satis�es the following conditions:
‖w∗‖2 = ρw∗

3,

w∗⊥Â>u∗, w∗⊥(r − w∗),

w∗ = pr (r,W ), ‖w∗‖ = pen (u∗, U), ‖r − w∗‖ = dist (r,W ),

[pen (u∗, U)]2 + [dist (r,W )]2 = ‖r‖2,

‖w∗‖ ≤ ρ, 0 ≤ w∗
3 ≤ ρ, ‖w∗

1‖2 + ‖w∗
2‖2 ≤ ρ2

4
.

(15)

Relation (15) follows from the equality of the optimal value of the objective functions for
the primal (8) and dual (6) problems. By virtue of (14), this equality is expressed in terms of
only w∗, which is a solution to problem (8).

Òåîðåìà 3. Let x∗ and u∗ be arbitrary solutions of problems (5) and (6), respectively,
and let minimum residual vectors z∗ and w∗ be calculated by (9) and (14). Then, the following
assertions are valid:

i. systems (1) and (3) are alternative; i.e., only one of them is solvable;

ii. if system (1) is inconsistent, then the normal solution ũ∗ of system (3) and the minimum
residual vector z∗ of system (1) are collinear, and

ũ∗ =
ρz∗

‖z∗‖2
, z∗ =

ρũ∗

‖ũ∗‖2
;

iii. if system (3) is inconsistent, then the components of the normal solution x̃∗> = [x̃∗>1 , x̃∗>2 ]
of system (1) are

x̃∗1 =
w∗

1

w∗
3

, x̃∗2 =
w∗

2

w∗
3

.

Thus, Theorem 3 reduces the problem of solvability of system (1) or (3) to minimizing the
residual of either system. If the norm of the minimum residual is nonzero, then this system is
inconsistent, and, based on that residual, the normal solution of the consistent system can be
found by simple formulas.

3. THE PROBLEM OF SEPARATING HYPERPLANES
Let us represent A, b, u, and z in the form

A =

[
A1

A2

]
, b =

[
b1

b2

]
, u =

[
u1

u2

]
, z =

[
z1

z2

]
,

where A1 and A2 are k× n and `× n matrices, respectively; b1, u1, z1 ∈ Rk; b2, u2, z2 ∈ R`; and
k + ` = m. Assuming that the set X consists of the nonempty sets

X1 = {x ∈ Rn : A1x ≥ b1}, X2 = {x ∈ Rn : A2x ≥ b2}
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such that X1 ∩X2 = ∅, we consider the problem of �nding a hyperplane that strictly separates
X1 and X2. Let α ∈ [0, 1] be a scalar parameter.

Òåîðåìà 4. Let X1 6= ∅, X2 6= ∅, and X = X1 ∩X2 = ∅, x∗ be a solution of the problem

min
x∈Rn

1

2

[
‖b1 − A1x)+‖2 + ‖b2 − A2x)+‖2

]
, (16)

the components of the minimum residual vector z∗ = (b − Ax∗)+ are z∗1 = (b1 − A1x
∗)+ and

z∗2 = (b2 − A2x
∗)+. Then the family of parallel hyperplanes separating X1 and X2 can be

described by two equivalent equations

(z∗1)
>(A1x− b1) + α‖z∗‖2 = 0, (z∗2)

>(b2 − A2x) + (α− 1)‖z∗‖2 = 0,

when 0 < α < 1, these hyperplanes strictly separate X1 and X2.

The proof of Theorem 4 is similar to that of Eremin's theorem [1, Theorem 10.1], which is
based on the Farkas lemma. The separating hyperplane in Eremin's theorem is described by
the following equivalent equations:

(u∗1)
>(A1x− b1) +

ρ

2
= 0, (u∗2)

>(b2 − A2x)− ρ

2
= 0,

where u∗1, u∗2 is an arbitrary solution of system

A>
1 u1 + A>

2 u2 = 0n, b>1 u1 + b>2 u2 = ρ > 0, u1 ≥ 0k, u2 ≥ 0`. (17)

By Theorem 4, to �nd a separating hyperplane, one must solve the problem (16) of un-
constrained minimization of the residual of the inconsistent system in Rn, whereas Eremin's
theorem implies that one must solve the consistent system (17) in m unknowns. Since n, m
our approach is more preferable.

These theorems and various close results are given in [2, 3].
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