
Dynamics of non-homogeneous systems. Proceedings of ISA RAS, 1997, pp. 193�210.

Evtushenko Yu.G.
Computing Centre of Russian Academy of Sciences
Moscow, Russia

FAST AUTOMATIC DIFFERENTIATION
Revised version 31 May 2003

1. Introduction
Many publications have been devoted to the technique of fast automatic di�erentiation

(FAD), used for di�erentiating multivariate functions. We refer to the proceedings of the �rst
SIAMWorkshop on the Automatic Di�erentiation of Algorithms which was held in Brekenridge,
Colorado, in 1991 (see [9]). An overview of the history and the state of the art of automatic
di�erentiation and related techniques is given by Iri in [11]. In many cases, FAD is far superior
to symbolic di�erentiation or to divided di�erences approximation.

Having studied literature on FAD, we realized that this approach was very similar to one
we used for solving discrete optimal control problems with delay. We looked for more general
expressions that would include the FAD formulas as a special case, but that could also be
used for gradient calculations in systems that arise from discrete approximation of continuous
systems governed by di�erential equations. Our preliminary results in this �eld were published
in [1], [4] � [7]. This paper extends the FAD approach further to complex processes described
by explicit and implicit expressions. We then apply the approach to optimization of a control
system governed by a partial di�erential equation. The mathematical model of the control
system is approximated by a corresponding optimal parameter selection problem which, in turn,
can be viewed as a mathematical programming problem and hence can be solved by existing
optimization algorithms. Using the generalized FAD expressions, we derive the exact gradient of
the objective functional. Once this is accomplished, e�cient gradient type algorithms for solving
mathematical programming problems can be easily applied (see [6, 7]) to solving the parameter
selection problem. These gradient algorithms usually require signi�cantly fewer iterations and
function evaluations than derivative-free methods which only use function values. The described
approach enables us to �nd formulas for exact gradients in various complex problems and to
use them in numerous minimization algorithms.

In Section 2 we present general expressions, from which we obtain the so-called �forward� and
�reverse� di�erentiation expressions as a special case. We introduce the auxiliary function and
use a canonical form which turns out to be very convenient for the representation of �reverse�
expressions.

In Section 3 we consider the algebraic complexity of computing a function of several variables
and its partial derivatives with respect to all the variables. If FAD is used, then the ratio of the
computer time for calculating all partial derivatives of an elementary function to the time for
calculating the underlying function value is bounded above by 3. In Section 4 the di�erentiation
expressions are applied to the rounding error estimation.

In Section 5 we derive the expressions for the gradient of a function de�ned by the solution
of an initial value problem for ordinary di�erential equation. We discretize the problem and,
applying the expressions from Section 2, we obtain the gradient by using forward and reverse

1



computations. Going from the discrete to continuous case, we obtain the gradient expressions
well-known in the theory of ordinary di�erential equations. Similar results for optimal control
problems are given in Section 6, where we describe a general approach to approximating the
in�nite-dimensional optimization problem by a �nite-dimensional nonlinear program. We show
that the reverse computation of the gradient corresponds to integrating the adjoint system of
equations that appears in Pontryagin's maximum principle.

Our approach permits us to develop a new methodology for calculating the gradient in
various systems described by partial di�erential equations. In Section 7 we derive the exact
gradient based on the general expressions given in Section 2. We show how to apply this
technique in the case of parabolic equation. Gradient for continuous parabolic systems was
obtained in [20, 21, 22] based on calculus of variations. This classic approach has a drawback
� it is not clear how the continuous state and adjoint equations should be discretized

The di�culties in integrating the initial and adjoint equations independently are described
in numerous papers. For example, in [15] the authors write, �it is di�cult to pass from the
continuous to the discrete formulation, especially for nonlinear advection terms. This has led
many researches to use methods working exclusively from the discrete equations of the model...
It can be noticed that the problems to �nd the �good� gradient arise from some of the nonlinear
terms of the equation�. In paper [15] a special �matrix approach� was proposed to overcome
these di�culties.

In our approach we start with a chosen discretization scheme for original state equation and
derive the exact gradient expressions. Thus we automatically generate a unique discretization
scheme for the adjoint equation. This technique appears to be very e�cient, universal, and it
could be used for numerous complex systems.

2. General expressions
There are many ways to derive the method of FAD. Among these the shortest and most

general way is based on the well-known implicit function theorem. Suppose the mappings
Φ : Rn × Rr → Rn and W : Rn × Rr → R1 are di�erentiable. Let z ∈ Rn and u ∈ Rr satisfy
the following nonlinear system of n scalar algebraic equations:

Φ(z, u) = 0n, (1)
where 0s is the s-dimensional null-vector.

We will use the following notations. For f : Rn → Rm, let f>x denote the (n ×m)-matrix,
which ij-th element is equal to ∂f j/∂xi, and mean the �rst derivative of the vector-row f> over
the vector-column x. When m = 1, the transposition sign in the vector-column fx is omitted.

We assume that the matrix Φ>
z (z, u) is nonsingular. According to the implicit function

theorem, this system de�nes a continuous function z = z(u) which is di�erentiable and whose
derivative dz>/du, denoted by N(u) ∈ Rn×r, satis�es the following linear algebraic system:

Φ>
u (z(u), u) + N(u)Φ>

z (z(u), u) = 0rn, (2)
where 0αβ is the α× β rectangular null-matrix, N is a rectangular matrix of dimension r × n:

N(u) = −Φ>
u (z(u), u)[Φ>

z (z(u), u)]−1. (3)
As a rule, z and u are referred to as dependent and independent variables, respectively. The

composite function Ω(u) = W (z(u), u) is di�erentiable and the gradient with respect to the
independent variable u (the reduced gradient) is equal to

dΩ(u)

du
= Wu(z(u), u) + N(u)Wz(z(u), u). (4)

2



We introduce the Lagrange function L(z, u, p) = W (z, u) + Φ>(z, u)p with the Lagrange
multiplier p ∈ Rn, which is required to satisfy the linear algebraic system:

Lz(z, u, p) = Wz(z, u) + Φ>
z (z, u)p = 0n. (5)

Then equation (4) can be rewritten in the form

dΩ(u)

du
= Wu(z(u), u) + Φ>

u (z(u), u)p = Lu(z(u), u, p). (6)

Expressions (4) and (6) are mathematically equivalent, but from the computational point of
view there is a crucial di�erence. A slight variation in the way the function is di�erentiated
will result in a drastic change in the e�ciency of computation. In the �rst case we use the
auxiliary matrix N ; in the second case we use an additional Lagrange vector p. We shall show
that expression (4) corresponds to the so-called �forward� (or �contravariant�, or �bottom-up�)
di�erentiation, and formula (6) � to the �reverse� (or �covariant�, or �backward�, or �top-down�)
di�erentiation.

As we will show below, (2) � (6) can be viewed as a basis for a number of expressions for
calculating the gradient in various systems. In multi-step problems, the variables z and u are
usually naturally partitioned into k variables of lower dimensionality:

z = [z1, z2, . . . , zk]
>, u = [u1, u2, . . . , uk]

>, zi ∈ Rs, ui ∈ Rm, 1 ≤ i ≤ k.

Under this assumption, relation (1) is split into k relations as follows:

zi = F (i, Zi, Ui), 1 ≤ i ≤ k, n = s · k, r = m · k, (7)

where Zi and Ui are given sets of variables zj and uj, respectively, and the index i takes integer
values from 1 to k. A more general case, when i ∈ D ⊂ {1, . . . , k}, can be considered, but just
for brevity, we suppose further that D = {1, . . . , k}. For each i ∈ D, we introduce two sets of
indices Qi and Ki containing the indices of all variables zi and ui belonging to the sets Zi and
Ui, respectively. Then

Qi = {j ∈ D : zj ∈ Zi}, Ki = {j ∈ D : uj ∈ Ui}.

Let us introduce the conjugate index sets

Q
i
= {j ∈ D : zi ∈ Zj}, K

i
= {j ∈ D : ui ∈ Uj}

and the corresponding vector sets

Z
i
= {zj : j ∈ Q

i
}, U

i
= {uj : j ∈ K

i
}.

The de�nition of these sets imply that if zj ∈ Z
i
, ue ∈ U

q
(that is, if j ∈ Q

i
, e ∈ K

q
), then the

following explicit functional dependencies are valid:

zj = F (j, . . . , zi, . . .), ze = F (e, . . . , uq, . . .).

Therefore, the sets Qi and Ki may be called the input index sets, while Q
i
and K

i
are the

output index sets.

3



Consider in (1) the mapping Φ(z, u) composed of the mappings F (j, Zj, Uj) − zj, where
j ∈ D. Denote Nij = dz>j /dui ∈ Rs×m. Then for process (7), we can rewrite (2) and (4) as
follows:

Nij = F>
ui

(j, Zj, Uj) +
∑

q∈Qj

NiqF
>
zq

(j, Zj, Uj), (8)

dΩ

dui

= Wui
(z, u) +

∑

j∈D

NijWzj
(z, u). (9)

With multiplier vectors pj ∈ Rs we introduce the new auxiliary function

E(z, u, p) = W (z, u) +
∑

j∈D

F>(j, Zj, Uj)pj.

It is very convenient to rewrite (7), (5) and (6) in the following canonical form:

zi = Epi
(z, u, p), (10)

pi = Ezi
(z, u, p) = Wzi

(z, u) +
∑

q∈Q̄i

F>
zi

(q, Zq, Uq)pq, (11)

dΩ

dui

= Eui
(z, u, p) = Wui

(z, u) +
∑

q∈K̄i

F>
ui

(q, Zq, Uq)pq. (12)

We say that zi is an output vector if the index set Qi is empty. In this case,

pi = Wzi
(z, u). (13)

We say that the multistep process (7) is explicit if for every i ∈ D the input set Qi is such
that for any element j ∈ Qi the inequality j < i holds. According to (8) and (10), each matrix
Ni` and each vector zi can be expressed for such processes by means of the previous matrices
N`j and vectors zj, respectively, where 1 ≤ j < i. In the last computational step we obtain
zk and calculate pk = Wzk

(z, u). Then we �nd from (11) all components pi. Expression (12),
as well as (9), yields all derivatives. We say that zi and N`i are computed in forward mode
because during their computation the index i increases from 1 to k. On the other hand, all
vectors pi are found in the reverse, or top-down, mode, which means that i decreases from
i = k to i = 1. Explicit formulas are often used in discrete optimal control problems, where
continuous di�erential equations are integrated using explicit numerical schemes.

Instead of E we can use the Lagrange function

L(z, u, p) = W (z, u) +
∑

j∈D

[F>(j, Zj, Uj)− z>j ]pj.

The main expressions (10) � (12) can be rewritten as follows:

Lpi
(z, u, p) = 0s, Lzi

(z, u, p) = 0s,
dΩ

du i
= Lui

(z, u, p).

The latter representation is traditionally employed for �rst-order necessary optimality con-
ditions, where the statement Lui

(z, u, p) = 0 is added and all conditions acquire a symmetric
form. Since the representation (10) � (12) is based essentially on a particular structure of the
mapping Φ given by (7), this representation suits more for our purposes. Therefore, it will be
used in sequel.

4



There is an interesting graph representation for the computational process of evaluating
functions and their derivatives (see, for example, [11]). The process is visualized �guratively and
graphically. However, applying this technique to implicit scheme is very di�cult. The simplest
example of such a problem is the process (28) given in Section 6. There the computational
graph is cyclic and we have to use our uni�ed approach based on expressions (10) � (12), where
we did not postulate the explicitness of the computational process (7). If implicit integration
expressions are used, then at each step i we have to solve the system of nonlinear equations (7)
and to de�ne the vector zi. Next, from the linear algebraic systems (8) and (11), we de�ne Nij

and pi, respectively.
We should emphasize that there is an important di�erence between our expressions (8)

� (12) and the well-known �forward� and �reverse� di�erentiation formulas. Our expressions
reduce to the latter when process (7) is explicit. In the general case, our expressions could
not be called �forward� or �reverse�. The di�erence occurs when the equation (7) is implicit,
i.e., zi ∈ Zi. In this case, the de�nition of pi requires solving the system of linear equations,
where the vector pi appears on the left- and right-hand sides of (11). Similarly, the matrix Nij

appears on both sides in (8). Therefore, we cannot de�ne Nij and pi sequentially. We have to
solve all linear algebraic equations (8) or (11) simultaneously.

We consider simple examples that illustrate the characteristic properties of the two ap-
proaches presented for evaluating gradients. In many cases the reverse mode of computation
has an advantage over the forward mode.

3. Di�erentiation of elementary functions
The expressions presented above cover a wide range of problems. In this section, we apply

them to di�erentiating elementary functions.
The functions ax (a > 0), xa, loga x (a > 0, a 6= 1), sin x, cos x, tan x, cot x, arcsin x,

arccos x, arctan x, arccotx are called main elementary functions. We assume that the codes
for calculating the main elementary functions and their derivatives are stored in a computer
and these calculations are carried out exactly (or with machine precision). We can add new
functions to the list of the main elementary functions, as needed.

Assume that a real-valued function f(u) is given explicitly. We say that a function f(u)
is an elementary function if it can be represented as a �nite composition of main elementary
functions and arithmetic operations.

Suppose that we have to calculate partial derivatives of a scalar-valued function f(u), u ∈
∈ Rr, with respect to all components ui, 1 ≤ i ≤ r. The function f is assumed to be a
di�erentiable elementary function. Therefore, f(u) can be de�ned by a sequential program.
We introduce a new vector z ∈ Rk of intermediate variables. The evaluation of f(u) is now
carried out as a k-step computational process:

z1 = F (1, Z1, U1), z2 = F (2, Z2, U2), . . . zk = F (k, Zk, Uk), (14)

where all zj ∈ R1, zk = f(u); Zi and Ui are sets of some components of the vectors z and
u, respectively; z1 = Z2, Z1 is empty. The sets Zi consist of the already computed quantities
zj with j < i. In other words, f is the composition of basic operations whose derivatives are
assumed to be computable for all arguments of interest.

We introduce the scalars pi ∈ R1 and de�ne the function

E = zk +
k∑

i=1

F (i, Zi, Ui)p
i.

5



In (10) � (12) we set W = zk, therefore, (13) yields pk = 1. Using (11) and (12), we �nd
the gradient of f(u) in reverse mode. In this way we obtain the following expressions for FAD:

pi =
∑

q∈Q̄i

F>
zi (q, Zq, Uq)p

q, ∂f(u)/∂ui =
∑

q∈K̄i

F>
ui(q, Zq, Uq)p

q. (15)

Many publications analyze various algorithms for automatic di�erentiation from the point
of view of the algebraic complexity of the computation, i.e., the total number of arithmetic
operations required to compute a function and its partial derivatives. For results in this �eld,
we refer the interested readers to [2], [8]�[14] and the relevant references cited therein.

Let T0 denote the total time required to calculate the value of the underlying function f(u).
Let Tg denote the additional time required for computing all partial derivatives ∂f(u)/∂ui,
1 ≤ i ≤ r.

Theorem 3.1. Suppose that

1. f(u) is an elementary scalar-valued di�erentiable function of the vector u ∈ Rr;

2. the time for computing the derivative of each main elementary function is less than twice
the time required to evaluation the main elementary function itself;

3. the time required for memory processing and for execution of the assignment operator is
negligible.

If the formulas (15) for fast automatic di�erentiation of f(u) are used, then the gradient fu

is exact and the ratio R = Tg/T0 is bounded above by 3.
For comparison, recall that if we approximate the derivatives by divided di�erences, this

ratio is R = r, and the gradient is not exact for any nonlinear scalar function f .
Proof. To prove of the theorem we use the approach developed in [9, 12, 13]. We assume

that f is a composition of K main elementary functions whose values and gradients are assumed
to be exactly computable.

Let Ti denote the time required to compute the i-th main elementary function and Ni

be the number of computations of the i-th main elementary function value in process (14).
The time required for one execution of addition, subtraction, multiplication and division is
denoted by T+, T−, T×, T/, respectively. Let N+, N−, N×, N/ denote the number of additions,
subtractions, multiplications, and divisions, respectively, among binary operations. We assume
that T+ = T− ≤ T× ≤ T/ ≤ Ti for any i. The total time T0 for computing the value of a
function f(u) is

T0 =
K∑

i=1

TiNi + T+N+ + T−N− + T×N× + T/N/.

The number of computational steps in process (14) is equal to

k =
K∑

i=1

Ni + N+ + N− + N× + N/.

Hence we obtain the following relation:

R ≤ Tg

T0

≤

[
K∑

i=1
Ni(2Ti + T× + T+) + 2T+N+ + 2T−N− + 2N×(T× + T+) + 2N/(T/ + T+)− kT+

]

T0

.

6



The right-hand side is a nonlinear function of Ni, N+, N−, N×, N/. To �nd the upper
bound, we maximize this ratio with respect to these variables, i.e., we solve a linear fractional
problem, whose solution is obvious. Taking into account T× ≤ Ti, we have the estimate

R ≤ max
[
3, max

1≤i≤K
(2Ti + T×)/Ti

]
= 3,

which was to be proved.
This theorem gives us an upper estimate of the ratio R. Sometimes this ratio is smaller.

Following [8], we consider the simplest product example. Let f(u) =
r∏

i=1
ui. For this function

we generate the computational process and de�ne E-function as
z1 = u1, zi = zi−1ui, 1 ≤ i ≤ r,

E = W + u1p1 +
r∑

i=2
zi−1uipi, W = zr.

Applying the above technique to the problem, we obtain
pr = 1, pi = ui+1pi+1, 1 ≤ i ≤ r − 1,

∂f

∂u1
= p1,

∂f

∂uj
= zj−1pj, 2 ≤ j ≤ r.

It is obvious that in this case R = 2. We ignore the storage requirements. To compute the
gradient far the example considered, we have to store an r-vector of intermediate variables.

4. Rounding error estimation
Suppose that at each step of process (7) we determine every state vector zi with error εi.

Thus, instead of (7) we use the following formula:
zi = F (i, Zi, Ui) + εi, 1 ≤ i ≤ k. (16)

The auxiliary function can be written as
E(z, u, ε) = W (z, u) +

∑

j∈D

[F>(j, Zj, Uj) + ε>j ]pj.

Both vectors zi and pi have the same dimensionality. If process (16) is explicit, then the vector εi

is the machine precision of an arithmetic computation of the vector F (i, Zi, Ui). In the implicit
case, the error norms ‖εi‖ tend to be much larger and are mainly determined by the accuracy
of the solution to the nonlinear equations (16). Here Ω and p are composite functions of the
control vector u and the error vector ε> = [ε>1 , ε>2 , . . . , ε>k ]. Therefore, we can write Ω(u, ε),
p(u, ε). Let us use the canonical equations (10) � (12). We consider εi in these expressions as a
component of the control vector u. We obtain exactly the same expression as (11). Using (12),
we �nd that the gradient of Ω with respect to εi is given by

dΩ(u, ε)/dεi = pi(u, ε).

Suppose that the control vector u is given with an error and that, instead of u, we use
ū = u + δ. Then

Ω(ū, ε)− Ω(u, 0) =
k∑

i=1

[
〈pi(u, 0), εi〉+

〈
dΩ(u, 0)

dui

, δi

〉]
+ O(‖ε‖2 + ‖δ‖2),

where the derivatives of Ω with respect to ui are obtained from (12) and 〈a, b〉 denotes the inner
product of vectors a and b. This estimate can be used instead of a laborious interval analysis.
Theoretical and practical aspects of error estimation were investigated by Iri [12].

7



5. Derivatives with respect to initial conditions
The expressions for �forward� and �reverse� di�erentiation should not be considered as a

stand-alone topic in mathematical analysis. In this section we present similar results which
were obtained in the theory of ordinary di�erential equations. These results can be derived
from expressions given in Section 2. We brie�y illustrate how this can be done.

To compare the forward and reverse modes of di�erentiation, we consider the simplest
problem in which we have to di�erentiate a function W (z), z ∈ Rn. Let the process be
described by the following system of ordinary di�erential equations:

dz

dt
= f(z), T1 ≤ t ≤ T2. (17)

The solution of (17) is a function z(t, z1), with initial condition z(T1, z1) = z1. Assume that
for each z the right-hand side of (17) is a continuously di�erentiable function of z. We will �nd
the derivative of the composite function Ω(z1) = W (z(T2, z1)). We introduce a matrix N(t)
with size n× n and a n-dimensional vector p as follows:

N(t) =
∂z>(t, z1)

∂z1

, p(t) =
∂W (z(T2, z1))

∂z(t, z1)
,

with the initial and terminal conditions

N(T1) = I, p(T2) =
∂W (z(T2, z1))

∂z(T2, z1)
, (18)

where I is the identity matrix.
By applying the Euler numerical integration method, we obtain the following discrete ap-

proximation of continuous system (17):

z1 = u, zi = zi−1 + hf(zi−1), 1 ≤ i ≤ k,

where h = (T2 − T1)/(k − 1).
In discrete case Ω(z1) = W (zk). Denote Ni = ∂z>i /∂u, 1 ≤ i ≤ k. Then, using (8), we

obtain
N1 = I, Ni = Ni−1 + hNi−1f

>
z (zi), 2 ≤ i ≤ k, (19)

where f>z denotes the transposed Jacobian of the right-hand side of (17) with respect to z.
Introducing the auxiliary function E, using (11) and (13), we obtain the di�erence equations

for vectors pi ∈ Rn:

E(z, u, p) = W (zk) + p>1 u +
k∑

i=2

p>i (zi−1 + hf(zi−1)),

pi = pi+1 + hf>zi
(zi)pi+1, pk = Wzk

(zk), 1 ≤ i ≤ k − 1.

(20)

The desired gradient is given by the two formulas:

dΩ(z1)

dz1

= NkWzk
(zk),

dΩ(z1)

dz1

= p1.

Upon taking the limit as h → 0 and k →∞, we �nd from (19) that the resulting continuous
trajectory is described by the following matrix di�erential equation:

dN(t)

dt
= N(t)

∂f>(z(t, z1))

∂z(t, z1)
. (21)

8



Using (20), it easy to show that hi the limit as h → 0 and k → ∞, the adjoint (or costate)
vector p(t) satis�es the following vector di�erential equation:

dp(t)

dt
= −f>z (z(t, z1))p(t). (22)

The equations (21) and (22) appear in publications devoted to the theory of ordinary di�e-
rential equations [3]. Expression (21) can be found by di�erentiating both sides of equation
(17) with respect to z1, and using the chain rule. For each given z1 we compute the solutions
z(t, z1) and N(t) by integrating the di�erential equations (17) and (21) forward in time from
t = T1 to t = T2. We solve the di�erential equation (22) with the terminal condition (18)
backward in time from t = T2 to t = T1. The gradient of the composite function Ω can be
found in two ways:

dΩ(z1)

dz1

= N(T2)Wz(z(T2, z1)),
dΩ(z1)

dz1

= p(T1).

The last expression was given in [12]. Both expressions give exactly the same result, but in the
�rst case, we have to integrate the matrix system (21), which consists of n2 scalar di�erential
equations. In the second case, we integrate vector system (22) which consists of only n scalar
di�erential equations. Thus the second approach will be n times less costly than the �rst one.
The formula (22) can be used for numerical solution of two-point boundary-value problems.
The technique is based on the multiple back-and-forth shooting method which transforms a
given boundary-value problem into a sequence of initial-value problems. The method involves
forward integration of (17) and backward integration of (22).

We also mention the less common case where forward di�erentiation is less time consuming
than backward di�erentiation. This case arises when we need to �nd the gradients of m func-
tions Ωi = W i(z(T2, z1)), where 1 ≤ i ≤ m. We de�ne N(T2) from (21), and all gradients are
found as follows:

dΩi(z1)

dz1

= N(T2)W
i
z(z(T2, z1)).

Therefore, if m > n, then the forward mode is more e�cient than the reverse mode.

6. The optimal control problem
Optimal control theory has been formalized as a generalized extension of the calculus of

variations. Optimal control theory has many successful applications in various disciplines rang-
ing from mathematics and engineering to economics, social and management sciences. Many
numerical methods for solving optimal control problems have been proposed, and the research
continues, especially in the �eld of nonlinear problems.

The basic problem of optimal control can be described as follows. Let a process be governed
by a system of ordinary di�erential equations:

dz

dt
= f(t, z, u, ξ), T1 ≤ t ≤ T2, z(T1, z1) = z1, (23)

where the state vector z ∈ Rn, the control u is an arbitrary piecewise continuous function of
t having its values in U . The feasible set U is a given compact subset in the space Rr. The
vector of design parameters is ξ ∈ V ⊂ Rs. As a rule, the scalars T1, T2 are �xed. If T1, T2, z1

must be optimized, then we include them into vector ξ.

9



The problem is to �nd a control function u(t) ∈ U and a vector of design parameters
ξ ∈ V that minimize the cost functional W (z(T2, z1), ξ), subject to �mixed� constraints on
state, control and vector of design parameters:

g(t, z(t), u(t), ξ) = 0, q(t, z(t), u(t), ξ) ≤ 0, T1 ≤ t ≤ T2.

As a rule, this problem is reduced to a mathematical programming problem by using the
control parametrization technique. Here we use only the simplest discretized version of (23),
which is given by the Euler formula

zi = zi−1 + hi−1f(ti−1, zi−1, ui−1, ξ) = F (ti−1, zi−1, ui−1, ξ), (24)

where
k∑

i=2

hi−1 = T2 − T1, 0 < hi, t1 = T1, tk = T2, ti = ti−1 + hi−1, 2 ≤ i ≤ k.

Thus we approximate the control by a piecewise constant function. We take into account
the mixed constraints at each grid point:

g(ti, zi, ui, ξ) = 0, q(ti, zi, ui, ξ) ≤ 0, 1 ≤ i ≤ k. (25)

Now the objective function is W (zk, ξ) and the auxiliary function is expressed as

E(z, u, p, ξ) = W (zk, ξ) +
k∑

i=2

F>(ti−1, zi−1, ui−1, ξ)pi.

Discretizing control and constraints, we arrive at the following parametrization-discretization
scheme for approximate solution of optimal control problem.

Minimize W (zk, ξ) with respect to ui ∈ U , 1 ≤ i ≤ k, and ξ ∈ V , subject to mixed
constraints (25).

In order to apply NLP-solvers to this problem we must obtain an e�cient algorithm for
computing the �rst order derivatives of the objective and constraints. Applying the results of
Section 2, we �nd that all vectors pi ∈ Rn and the derivatives of Ω(u, ξ) = W (zk, ξ) can be
calculated from

pi = pi+1 + hf>zi
(ti, zi, ui, ξ)pi+1, pk = Wzk

(zk, ξ), 1 ≤ i ≤ k − 1,

dΩ

dui

= hif
>
ui

(ti, zi, ui, ξ)pi+1, 1 ≤ i ≤ k − 1,
dΩ

duk

= 0,

dΩ

dξ
= Wξ(zk, ξ +

k∑

i=2

F>
ξ (ti−1, zi−1, ui−1ξ)pi.

(26)

The �nite-dimensional approximate problems are solved by standard or adapted nonlinear
programming methods (penalty function method, modi�ed Lagrangian, gradient projection
method, linearization, interior point techniques, etc.). The gradient methods have been suc-
cessfully implemented and have been found to be more e�ective and robust than derivative-free
methods. Second derivative methods are most attractive, but su�er from high dimensionality.

To solve the discretized problem by standard nonlinear programming methods we introduce
additional functions (for example, penalty function, Lagrangian, modi�ed Lagrangian and so
on). According to (11) � (12), the expressions for computing their derivatives will be similar to
(26) if instead of W we substitute these functions and take into account all nonzero derivatives
Wui

, Wξ and Wzi
.

10



If we use a di�erentiable exterior penalty function with penalty coe�cient τ , then the
function E is de�ned as follows:

E = W (zk, ξ) +
k∑

i=2

F>(ti−1, zi−1, ui−1, ξ)pi + τ
k∑

i=1

[
‖g(ti, zi, ui, ξ)‖2

]
+

[
‖q+(ti, zi, ui, ξ)‖2

]
,

where a+ denotes the vector in R` with components

(a+)i = max[ai, 0], 1 ≤ i ≤ `.

The expressions for computing gradients of the objective and constraints are derived via the
adjoint system for the Euler and Runge�Kutta discretization schemes in [6]. These expressions
and similar results for second derivatives were used for solving the optimal control problem with
mixed constraints by gradient and Newton's methods. The implementation of expressions (26),
a short description of an optimal control package, and some numerical illustrative examples are
given in [6, 7].

Taking the limit as hi → 0 and k → ∞, we �nd from (26) that the function p(t) satis�es
the following di�erential equation:

ṗ = −f>z (t, z, u, ξ)p, p(T2) = Wz(z(T2, z1), ξ). (27)

This is the so-called costate (or adjoint, or conjugate) equation, which is used in the Pontryagin
maximum principle [17]. The adjoint system is integrated backward in time, from the t = T2

to t = T1.
If system (23) is sti�, we have to use an implicit integration scheme [19]. For example, the

application of the implicit Euler formula leads to

zi = zi−1 + hif(ti, zi, ui, ξ), 2 ≤ i ≤ k. (28)

Although we have to solve a system of nonlinear equations at each step in this case, we can
take much bigger step-size hi in (28) than in (24). We obtain the following discrete costate
equations from (11):

pi = pi+1 + hif
>
zi

(ti, zi, ui, ξ)pi, 2 ≤ i ≤ k − 1,
pk = Wzk

(zk, ξ) + hkf
>
zk

(tk, zk, uk, ξ)pk.

Hence all vectors pi are found from implicit linear algebraic systems. The gradient expressions
become

dΩ

dui

= hif
>
ui

(ti, zi, ui, ξ)pi, 2 ≤ i ≤ k,
dΩ

du1

= 0.

In the limit (hi → 0, k →∞) we obtain the same expressions as given in (27).
In some publications, the gradients are found from necessary optimality conditions by dis-

cretizing the initial and costate systems. In this case, some errors may arise. Indeed, if we
simultaneously discretize the system of ordinary di�erential equations (23) and (27) using the
Euler scheme, then we obtain (24) and

pi+1 = pi − hif
>
zi

(ti, zi, ui, ξ)pi, 1 ≤ i ≤ k − 1,

dΩ

dui

= hif
>
ui

(ti, zi, ui, ξ)pi.

These expressions do not coincide with (26) and, therefore, the gradient based on this approach
is not correct. If hi is rather small, then the di�erence between this expression and exact

11



expression (26) is O(h2
i ). But the error in the gradient calculation is not desirable when we use

sensitive minimization algorithms (for example, conjugate gradients) or when the step size hi

is not small enough.
We emphasize this important conclusion: when we deal with optimal control problems,

the discretization of the costate equation must correspond to the integration scheme of the
initial system. It should not be performed independently. The same property is valid for more
complicated processes described by partial di�erential equations. However, there the property
is not as obvious as in the case of ordinary di�erential equations.

7. The optimal control problem of a parabolic system
The optimal control theory for distributed parameter systems has been extensively studied

in [16, 20, 21, 22] and in many others research publications. In this and in the next sections
we will show that our approach gives us a new methodology for �nding the exact gradients in
complex control systems governed by partial di�erential equations.

We discretize the in�nite dimensional optimization problem to obtain an approximate �nite
dimensional nonlinear programming problem. We start with the second order parabolic heat
equation

∂z(x, t)

∂t
= a2∂2z(x, t)

∂x2
+ u(x, t), 0 < x < `, 0 < t < T, (29)

where z(x, t) is the temperature at time t at a point x and u(x, t) is a distributed control.
The initial and boundary conditions are given by

z(x, 0) = ϕ(x), 0 ≤ x ≤ `, (30)

∂z(0, t)

∂x
= 0,

∂z(`, t)

∂x
= ν[g(t)− z(`, t)], 0 < t ≤ T, (31)

where g(t) is a boundary control. The problem is to �nd control functions u(x, t) and g(t) that
minimize the cost functional

W =

`∫

0

Ψ(z(s, T ))ds, (32)

where Ψ is continuously di�erentiable with respect to its argument.
If we solve the problem (29) with conditions (30) and (31), then we substitute the solution

into (32) and evaluate W . This value is a composite function of the control functions u(x, t)
and g(t). Therefore, we denote this dependence as Ω(u, g).

Since the optimal control cannot be obtained as an analytic solution of the necessary and
su�cient optimality conditions, we attempt to �nd it numerically by minimizing W via a
descent algorithm. We are thus faced with computing the gradient of the cost functional for
which we apply the expressions given in Section 2. The problem is discretized by a �nite
di�erence approximation scheme. For the sake of simplicity we use uniform partition lengths
and denote

xi = i∆x, tj = j∆t, i = 0, . . . , k, j = 0, . . . , m,

∆x = `/k, ∆t = t/m, zj
i = z(i∆x, j∆t), uj

i = u(i∆x, j∆t),
ϕ = ϕ(i∆x), gj = g(j∆t), i = 0, . . . , k, j = 0, . . . , m.

Let us discretize the parabolic equation (29) with an explicit forward Euler scheme in time,
a centered scheme in space and use the simplest discretization in the vicinity of boundaries.

12



Then the cost functional (32), the di�erential equation (29) and the conditions (30), (31) are
replaced by

W = ∆x
k∑

i=0

αiΨ(zm
i ), (33)

zj
i =





(1− 2λ)zj−1
i + λ(zj−1

i−1 + zj−1
i+1 ) + ∆tuj−1

i , 1 ≤ i ≤ k − 1, 1 ≤ j ≤ m,

zj
1, i = 0, 1 ≤ j ≤ m,

µzj
k−1 + µν∆xgj, i = k, 1 ≤ j ≤ m,

ϕi, 0 ≤ i ≤ k, j = 0,

(34)

where λ = a2∆t/(∆x)2, αi � quadrature coe�cients, µ = 1/(1 + ν∆x).
We introduce the adjoint variables pj

i and the auxiliary function

E = W +
k−1∑

i=1

m∑

j=1

[(1− 2λ)zj−1
i + λ(zj−1

i−1 + zj−1
i+1 ) + ∆tuj−1

i ]pj
i +

+
m∑

j=1

[zj
1p

j
0 + µ(zj

k−1 + ν∆xgj)pj
k] +

k∑

i=0

ϕip
0
i .

Applying formula (11) we obtain

pj
i =





(1− 2λ)pj+1
i + λ(pj+1

i−1 + pj+1
i+1 ), 2 ≤ i ≤ k − 2, 0 ≤ j ≤ m− 1,

(1− 2λ)pj+1
1 + pj

0 + λpj+1
2 i = 1, 1 ≤ j ≤ m− 1,

(1− 2λ)pj+1
k−1 + µpj

k + λpj+1
k−2 i = k − 1, 1 ≤ j ≤ m− 1,

αi∆xΨzm
i

+ pm
0 δ1

i + µpm
k δk−1

i , 0 ≤ i ≤ k, j = m,

(1− 2λ)p1
i + λp1

i+1 i = 1, i = k − 1, j = 0,

λpj+1
1 i = 0, 0 ≤ j ≤ m− 1,

λpj+1
k−1 i = k, 0 ≤ j ≤ m− 1,

where δβ
α = 1 if α = β, else δβ

α = 0.
Using (12) we �nd the derivatives

dΩ

duj
i

= ∆tpj+1
i , 1 ≤ i ≤ k − 1, 0 ≤ j ≤ m− 1,

dΩ

duj
0

=
dΩ

duj
k

= 0, 0 ≤ j ≤ m− 1,

dΩ

dum
i

= 0, 0 ≤ i ≤ k,

dΩ

dgj
= µν∆xpj

k, 1 ≤ j ≤ m.

(35)

According to [18], the discrete approximation (34) is stable only if λ ≤ 1/2. We can replace
it with the more complicated implicit scheme which is stable for all λ:

zj+1
i = zj

i + λ[zj+1
i−1 − 2zj+1

i + zj+1
i+1 ] + ∆tuj+1

i .

In the interior region, the vector p is now de�ned by the di�erence equation

pj
i = pj+1

i + λ[pj
i+1 − 2pj

i + pj
i−1].

13



If we let k → ∞, ∆t → 0, ∆x → 0, then in both cases we �nd that the function p(x, t)
satis�es the following conditions:

∂p(x, t)

∂t
+ a2∂2p(x, t)

∂x2
= 0, 0 < x < `, 0 < t < T,

p(x, t) = Ψz(z(x, T )), 0 ≤ x ≤ `,

∂p(0, t)

∂x
= 0,

∂p(`, t)

∂x
+ νp(`t) = 0, 0 < t < T.

(36)

Discrete approximations of all these conditions were obtained on the basis of (11) and,
therefore, (35) gives us the exact gradients for the discretize process (34). Equation (36) is
conjugate (or adjoint) to (29).

The gradients of the cost functional for the continuous problem are given by

dΩ

du(x, t)
= p(x, t),

dΩ

dg(t)
= νa2p(`, t). (37)

Using the expressions widely used in classical calculus of variations, we can rewrite (37) in
the following standard form:

δΩ =

T∫

0

`∫

0

p(x, t)δu(x, t)dxdt + νa2

T∫

0

p(`t)δg(t)dt.

The meaning of notation (37) becomes clear. Similar results were obtained in [22] by calculus
of variations.

References

1. Aida-Zade K.R. and Evtushenko Y.G., (1989) Fast automatic di�erentiation, Mathematical Mo-
delling, 1, 121�139 (in Russian).

2. Baur W. and Strassen V., (1983) The complexity of partial derivatives, Theoretical Computer
Sciences, 22, 317�320.

3. Caratheodory C., (1956) Variationsrechnung und partielle Di�erentialgleichungen erster Ordnung,
Band 1, Leipzig.

4. Evtushenko Y.G. and Mazouric V.P., (1989) Optimization Software, Znanie, Moscow (in Russian).

5. Evtushenko Y.G., (1991) Automatic di�erentiation viewed from optimal control theory, in [9],
25�30.

6. Evtushenko Y.G., (1985) Numerical Optimization Techniques, Optimization Software, Inc., Pub-
lications Division, New York.

7. Grachev N.I. and Evtushenko Y.G., (1980) A library of programs for solving optimal control
problems, U.S.S.R. Comput. Maths. Math. Phys. (Pergamon Press), 19, 99�119.

8. Griewank A., (1989) On automatic di�erentiation, in: M. Iri and K. Tanabe (Eds.) Mathematical
Programming: Recent Developments and Applications, Kluwer Academic Publishers, 83�108.

9. Griewank A. and Corliss G.F., Eds. (1991) Automatic Di�erentiation of Algorithms Theory, Im-
plementation and Application, SIAM, Philadelphia.

14



10. Griewank A., (1992) Achieving logarithmic growth of temporal and spatial complexity in reverse
automatic di�erentiation, Optimization Methods and Software, 1, 35�54.

11. Iri M., (1991) History of Automatic di�erentiation and rounding error estimation. In: [9], 3�16.

12. Iri M., (1984) Simultaneous computation of functions, partial derivatives and estimates of rounding
errors. � Complexity and practicality, Japan Journal of Applied Mathematics, 1, 223�252.

13. Iri M. and Kubota K., (1987) Methods of fast automatic di�erentiation and applications, Research
memorandum RMI 87-02. Department of Mathematical Engineering and Instrumental Physics,
Faculty of Engineering, University of Tokyo.

14. Kim K., Nesterov Y., Skokov V., Cherkasskij B., (1984) E�cient algorithm for di�erentiation and
extremal problem, Economy and Mathematical Methods, 20, 309�318 (in Russian).

15. Lellouche J.M., Devenon J.L., Dekeyser I., (1994) Boundary control of Burger's equation. �
A numerical approach, Computers and Mathematics with Applications, 28 (5), 33�44.

16. Marchuk G.I., (1992) Conjugate equations and analysis of complex systems, Science, Moscow (in
Russian).

17. Pontryagin L.S., Boltyansky V.G½ Gamkrelidze R.V., Mitshenko E.F., (1961)Mathematical Theory
of Optimal Process, Nauka, Moscow.

18. Samarskii A.A., (1971) Introduction to the Theory of Finite-di�erence Methods, Nauka, Moscow
(in Russian).

19. Stetter H.J., (1973) Analysis of Discrimination Methods for Ordinary Di�erential Equations,
Springer-Verlag, Berlin, Heidelberg, New York.

20. Teo K.L. and Wu Z.S., (1984) Computation Methods for Optimizing Distributed Systems, Aca-
demic Press, Inc.

21. Teo K.L., Goh C.J., Wong K.H., (1991) A Uni�ed Computation Approach to Optimal Control
Problems, Longman Scienti�c & Technical, England.

22. Vasiliev F.P., (1981) Numerical Methods for Solving Optimization Problems, Nauka, Moscow (in
Russian).

15


