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1. Consider the general nonlinear programming problem
min
x∈X

f(x); (1)

here X ⊂ X0 ⊂ En, Ei is the i-dimensional Euclidean space, and the function f(x) is de�ned
on X0 and takes on real values. Denote by X∗ the set of all solutions of problem (1). In
what follows we always assume that X∗ is nonempty.

Consider a function H(x, y) = f(x) + ξ(x, y), where y ∈ Em and ξ(x, y) : X0×Em → E1,
and de�ne point-set mappings

X(y) = Argmin
x∈X0

H(x, y); Y (x) = {y ∈ Em : ξ(z, y) ≤ ξ(x, y), ∀ z ∈ X}.

As a rule, the set X0 is convex and has a relatively simple structure; therefore, the problem
of �nding points from X(y) is easier than problem (1). In particular, X0 may be the space
En. In many cases H may be chosen in such a way that for some y ∈ Em

X(y) = X∗. (2)
As examples let us take

H(x, y) = |f(x)− y|p + S(x), H(x, y) = (f(x)− y)p
+ + S(x), (3)

where S(x) : En → E1, S(x) = 0 for all x ∈ X, S(x) > 0 for any x /∈ X, ϕ+ = max[0, ϕ]
and p > 0. If y = f(x∗), x∗ ∈ X∗, then (2) holds. However, the value of f(x∗) is usually
unknown, which makes it di�cult to use (3) for numerical calculations. Let us give other
su�cient conditions for a minimum in problem (1).

De�nition 1. A point x, y) ∈ En × Em will be called a singular point of the function
H(x, y) if x ∈ X ∩X(y), y ∈ Y (x).

Theorem 1. Let there exist a singular point (x, y) of the function H(x, y). Then
x ∈ X∗ ⊂ X(y).

Theorem 2. Let there exist a vector y ∈ Em such that the set X(y) is nonempty,
X(y) ⊂ X, and the function ξ(x, y) has a constant value for all x ∈ X. Then (2) holds.

Theorem 3. Let f(x) be continuous on X0, and let there exist a sequence {xk, yk} such
that xk ∈ X(yk), yk ∈ Y (xk) and lim

k→∞
xk = x∗ ∈ X. Then x∗ ∈ X∗.

Theorem 1 is a new formulation of Theorem 1.7.1 in [1]. The vector y may not be present
in the function H; then, denoting

X̄ = Argmin
x∈X0

H(x), H(x) = f(x) + ξ(x), ξ(x) : En → E1,
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we obtain the following assertion from Theorem 1.
Corollary 1. Let x̄ ∈ X ∩ X̄, and let the function ξ(x) be such that ξ(x) ≤ ξ(x̄) for all

x ∈ X. Then x̄ ∈ X∗ ⊂ X̄.
Consider the functions

R(x, y) = f(x) + ξ̃(x, y), ξ̃(x, y) = ξ(x, y)− γ(y), γ(y) = sup
x∈X

ξ(x, y).

Denote by Y the domain of γ(y). Clearly, Y ⊃ ⋃
x∈X0

Y (x). Consider the problem of �nding

sup
y∈Y

inf
x∈X0

R(x, y) (4)

and put on R the constraint
(A0). For every x ∈ X there exists a point y ∈ Y such that ξ̃(x, y) = 0; for every

x ∈ X0\X there exists a sequence {yk} such that y1, y2, . . . ∈ Y and lim
k→∞

ξ̃(x, yk) = ∞.

Theorem 4. For a point (x, y) to be a singular point of R(x, y) it is necessary, and if
condition (A0) holds also su�cient, that it be a saddle point in problem (4).

2. Consider reducing the original nonlinear programming problem to the problem of
�nding points (x, y) that satisfy the conditions

G(x, y) = 0, x ∈ X(y); (5)

here G(x, y) : X0 × Em → Et. We recall a de�nition from [2].
De�nition 2. A pair {H,G} is consistent with problem (1) if the solution set of (5)

is nonempty and any point (x, y) satisfying (5) is such that x ∈ X∗.
Put the following constraint on the functions H and G.
(A1). If there exist x and y satisfying the equation G(x, y) = 0, then x ∈ X and

y ∈ Y (x).
Theorem 5. For every nonlinear programming problem (1) with a nonempty solution

set there exists a pair that is consistent with it. If for a pair {H,G} condition (A1) holds
and the solution set of (5) is nonempty, then this pair is consistent with problem (1).

Consider an auxiliary majorizing function η(y) that is de�ned on some set YH ⊂ Y and
satis�es on it the inequality γ(y) ≤ η(y). De�ne a mapping

W (x) = {y ∈ YH : η(y) ≤ ξ(x, y)}.

Clearly, W (x) ⊂ Y (x) for any x ∈ X0. Then in the formulation of Theorem 5 condition
(A1) can be replaced by

(A2). If the point (x, y) is such that G(x, y) = 0, then x ∈ X and y ∈ W (x).
With additional assumptions about the function ξ condition (A2) can be weakened. Let,

for instance, ξ(x, y) = η(y) for all (x, y) ∈ X × YH ; then instead of (A2) one may use the
condition

(A3). If the point (x, y) is such that G(x, y) = 0, then x ∈ X and y ∈ YH .
If, in addition, X(y) ⊂ X for any y ∈ YH , then (A2) is replaced by
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(A4). If the point (x, y) is such that G(x, y) = 0, then y ∈ YH .

3. Let us give some examples of consistent pairs. We �rst specify the set X. Let

X = {x ∈ En : g(x) = 0, h(x) ≤ 0}; (6)

here g(x) : En → E` and h(x) : En → Ec. Denote by Ei
+ the nonnegative orthant of the

space Ei. De�ne the set YL = E` × Ec
+. Let us take for H the Lagrange function

L(x, y) = f(x) + ξ(x, y), ξ(x, y) =
∑̀

i=1

uigi(x) +
c∑

j=1

vjhj(x), y = (u, v) ∈ E`+c.

For any problem (1) with admissible set (6) we have YL ⊂ Y and γ(y) ≤ 0 on YL, i.e. the
function γ(y) ≡ 0 majorizes γ(y) on YL. Construct the function G in the form

G(x, y) = {α(g1(x), u1), . . . , α(g`(x), u`), β(h1(x), v1), . . . , β(hc(x), vc)}. (7)

Put the following conditions on α(a, b) and β(a, b) that map E2 into E1:
(B1). If the equation α(a, b) = 0 has a solution, then a = 0.
(B2). If the equation β(a, b) = 0 has a solution, then a ≤ 0, b ≥ 0 and ab = 0.
It is easy to construct functions α(a, b) satisfying (B1): a, sin a, arctan a, etc. Some

examples of functions β(a, b) satisfying (B2) are (a + b)+ − b, ab + a2
+ + b2

−, ab + (a − b)2
+,

b arctan a + a2
+ + b2

−, a arctan b + a2
+ + b2

−, (a + b)3
+ − b3 − (a2

−b)/(1 + a2).
If the function G is determined from (7) and conditions (B1) and (B2) are satis�ed,

then (A2) holds. If, in addition, in problem (1) there exists a saddle point of the Lagrange
function, then the pair {L,G} is consistent with problem (1).

Now take for H the function

L2(x, y) = f(x) +
∑̀

i=1

uigi(x) +
c∑

j=1

(vj)2hj(x).

For any problem (1), Y = E`+c and γ(y) ≤ 0; therefore, η(y) ≡ 0 majorizes γ(y) on E`+c.
The function G will as before be constructed in the form (7). Impose on β(a, b) the condition

(B3). If the equation β(a, b) = 0 has a solution, then a ≤ 0 and ab = 0.
Clearly, if for G(x, y) conditions (B1) and (B3) hold, then (A2) holds. On the other

hand, if in problem (1) there exists a saddle point of the function L2, then the pair {L2, G} is
consistent with this problem. Examples of functions β(a, b) that satisfy (B3) are ae−b− a−,
ap

+ + ab2 and ap
+ + ap

−b; here p > 0 is a natural number. Note that YL ⊂ E`+c; therefore,
when constructing a consistent pair {L2, G} one can use functions β that satisfy (B2).

4. One obtains a wide class of consistent pairs if one takes for H

H(x, y) = f(x) +
∑̀

i=1

ϕ(gi(x), ui) +
c∑

j=1

ψ(hj(x), vj), (8)

and G is determined, as before, from (7). Here ϕ(a, b) : E2 → E1 and ϕ(a, b) : E2 → E1.
In general it makes sense to choose ϕ and ψ in such a way that it becomes possible to choose
a su�ciently representative subset YH ⊂ Y and a majorant η(y) for all problems (1) with
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an admissible set in the form (6), and afterwards to determine the mapping W (x) and to
construct functions α and β such that for G one of the conditions (A2) � (A4) is satis�ed
(or directly condition (A1)). Let us make use of the functions α and β constructed in � 3.
For this we put conditions on ψ(a, b). Denote δ(b) = sup

a≤0
ψ(a, b).

(C1). δ(b) takes �nite values on E1
+, and if a ≤ 0 b ≥ 0 and ab = 0, then ψ(a, b) = δ(b).

(C2). δ(b) is de�ned everywhere on E1, and if a ≤ 0 and ab = 0, then ψ(a, b) = δ(b).
Let H(x, y) be de�ned by (8), and let (a, b) satisfy condition (C1) (or (C2)). Then the

function
η(y) =

∑̀

i=1

ϕ(0, ui) +
c∑

j=1

δ(vj)

majorizes γ(y) on YL(E`+c) for any problem (1). If, in addition, G is determined from (7)
and for α and β conditions (B1) and (B2) (or (B1) and (B3)) are satis�ed, then the pair
{H,G} satis�es condition (A2). By Theorem 5, this pair is consistent with problem (1),
provided the solution set of (5) is nonempty.

Examples of ψ(a, b) for which condition (C1) holds are r(a+ b)p
+, ab+rap

+ and bea +rap
+.

The following functions ψ(a, b) satisfy condition (C2): ab2 + rap
+ and a2p−1

+ b + 1/2a2p−1
− b2.

Here p > 0 is a natural number and r > 0 is a real number; p and r are chosen so as
to guarantee a solution of the minimization problem for H(x, y) on X0, if this is possible.
Examples of functions ϕ(a, b) are ab + rap, ab + r cosh a and a(b− 1) + rea.

5. Let us remark in conclusion that the transition from problem (1) to problem (5)
makes it possible, in solving the original nonlinear programming problem, to use a variety
of numerical methods for solving systems of nonlinear equations coupled with methods for
�nding a minimum on sets of simple structure. For example, if the dimensions of G and y
are the same then for solving (5) one may use the Jacobi iteration

yk+1 = yk + αG(xk, yk), xk ∈ X(yk),

where α is the coe�cient that guarantees the convergence of the process. At the same time,
the known su�cient conditions for the convergence of the Jacobi iteration method will be
reformulated in terms of the functions H and G. One may proceed similarly when using
other methods for solving systems of equations.
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